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Abstract

This paper presents a MIDAS type mixed frequency VAR forecasting model. First, we
propose a general and compact mixed frequency VAR framework using a stacked vector
approach. Second, we integrate the mixed frequency VAR with a MIDAS type Almon
lag polynomial scheme which is designed to reduce the parameter space while keeping
models flexible. We show how to recast the resulting non-linear MIDAS type mixed
frequency VAR into a linear equation system that can be easily estimated. A pseudo
out-of-sample forecasting exercise with US real-time data yields that the mixed frequency
VAR substantially improves predictive accuracy upon a standard VAR for different VAR
specifications. Forecast errors for, e.g., GDP growth decrease by 30 to 60 percent for
forecast horizons up to six months and by around 20 percent for a forecast horizon of one
year.
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1 Introduction

Vector autoregression (VAR) models are a standard tool for macroeconomic forecasting
due to their ease of use, their flexibility and the ability to produce coherent forecasts
for multiple variables (Stock and Watson, 2001 and Karlsson, 2013, e.g.). A challenge
to joining multiple macroeconomic variables in a VAR is that macroeconomic variables
are usually sampled at different frequencies. For instance, GDP comes at a quarterly
frequency whereas inflation is published monthly and short term interest rates are quoted
at a daily or even higher frequency. The traditional solution is to simply time-aggregate
all higher frequency series to the frequency of the lowest frequency series in the sample.
A VAR including GDP, inflation and a interest rate will then be a quarterly frequency
VAR (QFVAR).

However, such time aggregation comes at costs. First, any new data release, which occurs
within the lowest frequency, can only be taken into account after the end of each lowest
frequency period. To stick to the above example, a QFVAR does not allow to consider
inter-quarterly inflation and interest rate releases before the end of a quarter. This de-
layed processing of information potentially impairs forecasts and nowcasts. Second, the
time aggregation implies a peculiar constraint on the parameters attached to higher fre-
quency variables which induces a possible loss of information. When time aggregating
for instance a monthly flow variable to quarterly frequency all observations are weighted
equally with one third. Different weights for the monthly observations could be more
appropriate (i.e. the last month of a quarter could be more important than the first) but
this cannot be incorporated in a single frequency setup.

To overcome the aforementioned drawbacks, we integrate a mixed frequency VAR (MF-
VAR) framework with MIxed DAta Sampling (MIDAS). The MIDAS approach has orig-
inally been developed by Ghysels and co-authors for forecasting with single equations.1

Our paper makes the following contributions. First, we propose a stacked vector MFVAR
framework which is general (multiple variables and multiple frequencies) but designed to
still be compact and tractable. Previous expositions are limited to two frequencies for rea-
sons of tractability (Ghysels, 2012 and the applications in Francis et al., 2011 and Foroni
et al., 2014). Second, we augument the MFVAR with a MIDAS type non-linear Almon lag
polynomial scheme (Almon, 1965). The Almon lag polynomial prevents overparametriza-
tion even with long lag lengths while, at the same time, keeping the regression model
flexible. Comparisons between alternative MIDAS weight functions in a single equation
context yielded that the Almon lag polynomial is a preferable choice (Mikosch and Zhang,
2014). Subsequently, we show how to transform the resulting stacked vector non-linear
MIDAS type MFVAR into a linear equation system. The MIDAS parameters can then be
easily estimated equation by equation using standard ordinary least squares (OLS). Due
to this linear transformation the stacked vector MIDAS type MFVAR becomes feasible
for estimation with multiple variables. Previous research was limited to stacked vector
MIDAS type MFVARs with only few (mostly two) variables. The reason being that, in

1See Ghysels et al. (2004), Ghysels et al. (2007), Andreou et al. (2010), e.g. Cf. the applications by
Clements and Galvão (2008, 2009), Armesto et al. (2010), Drechsel and Scheufele (2012), Andreou et al.
(2013), Ferrara et al. (2014), Mikosch and Zhang (2014), among many others. The MIDAS approach is
related to earlier work on distributed lag models (Solow, 1960, Almon, 1965, Jorgenson, 1966, Tsurumi,
1971, Schmidt, 1974, Lütkepohl, 1981, Judge et al., 1985, Mitchell and Speaker, 1986, among many
others).
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absence of a linear transformation, the non-linear MIDAS type MFVARs had be esti-
mated directly which is cumbersome, if not infeasible, in a VAR context involving more
than two variables (provided one does not resort to auxiliary restrictions).

Ultimately, we conduct a pseudo out-of-sample forecast evaluation exercise using quarterly
and higher frequency US real-time data. Our MFVAR substantially improves forecast ac-
curacy upon a standard QFVAR for various different VAR specifications (three, six or
twelve variables, three, six or twelve months of lagged information). Root mean squared
forecast errors for GDP growth get reduced by 30 to 50 percent for forecast horizons
up to six months and by about 20 percent for a forecast horizon of one year. For infla-
tion the gains are even bigger with improvements of up to 90 percent in the very short
run. For forecasts of two years ahead our model improves forecasts upon a QFVAR by
around 20 percent. Even bigger are the improvements when forecasting the short term
interest rate where the MFVAR is constantly better than a QFAVR for all forecast hori-
zons. Further, we find that augmentation of a stacked vector MFVAR with an Almon lag
polynomial scheme has a distinct advantage for specifications with longer lag structures.
While a MFVAR with fully unrestricted parameters still yields considerable forecast im-
provements over a standard QFVAR when using few lags, these improvements vanish
almost completely for longer lags. An Almon augmented MFVAR instead still yields high
improvements over a QFVAR for longer lags.

This paper relates to a small but growing literature on mixed frequency VAR models
which fall in two basic classes.2 The first class uses a state space approach. The general
idea is to conceptually assume the mixed frequencies away by reformulating each lower
frequency series as a partially latent high frequency series. The Kalman filter or, in a
Bayesian context, the Gibbs sampler then provide the possibility to estimate the partially
latent VAR process. See Zadrozny (1988, 1990), Kuzin et al. (2011), Bai et al. (2013) and
Foroni and Marcellino (2014) for state space type MFVAR models using a non-Bayesian
version of the Kalman filter, Mariano and Murasawa (2010) for a state space type MF-
VAR using the EM algorithm, and Chiu et al. (2012) and Schorfheide and Song (2013)
for state space type MFVARs using the Gibbs sampler.3

The second class – to which our paper belongs – employs a stacking approach: all variable
observations, that pertain to the same lowest frequency period in the sample, are stacked
into one vector. For instance, when the sample includes quarterly GDP, monthly inflation
and a daily interest rate, the quarterly frequency is the lowest frequency in the sample
and, thus, the stacked vector for each quarter t includes one quarterly GDP observation,
three monthly inflation observations and 60 daily interest rate observations (assuming a
month has 20 trading days). Based on the stacked vectors a VAR process of any desired
order can then be modeled. Further, in order to achieve parsimony, distributed lag or
MIDAS style polynomial structures can then be imposed on the parameter space of the
stacked vector type MFVAR, resulting in a stacked vector MIDAS type MFVAR. The MI-
DAS approach aims to reduce the parameter space while keeping models flexible. Ghysels
(2012) provides a rich exposition of a stacked vector MIDAS type MFVAR model. Our

2Following Cox (1981) the first class may be referred to as parameter-driven, while the second approach
may be qualified as observation-driven.

3Important contributions on non-VAR state space models are Mariano and Murasawa (2003), Aruoba
et al. (2009), Giannone et al. (2008), e.g.
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model is similar to Ghysels’ model in some respects and different in other respects (see
Appendix 1 for a comparison). Building on Ghysels (2012), Francis et al. (2011) employ
a stacked vector MIDAS type MFVAR to study the effects of monetary policy shocks
on macroeconomic aggregates using daily interest rate data and monthly macroeconomic
indicators. Foroni et al. (2014) introduce Markov switching to both a state space type and
a stacked vector MIDAS type bivariate MFVAR model and compare these (and several
other bivariate) models in terms of predictive accuracy.

The remainder of the paper is structured as follows: Section 2 presents our stacked vector
MIDAS type mixed frequency VAR framework. In particular, we show how to recast the
stacked vector MIDAS type non-linear MFVAR into a linear equation system that can
be easily estimated equation by equation using standard OLS. Subsequently, we analyze
whether our stacked vector MIDAS type mixed frequency VAR is helpful for forecasting
in real time. Section 3 describes the pseudo out-of-sample forecast evaluation set up and
the real-time data used, and Section 4 presents the results of the empirical assessment.
Finally, Section 5 provides conclusions and possible directions of further research.

2 A general MIDAS VAR framework

Let there be a set of time series variables of different frequencies. Denote each vari-
able by yi,t−1+τi/Ti where i is the variable subscript with i = 1, . . . , I and t − 1 + τi/Ti
is the time period subscript.4 t = 1, . . . , T denotes the lowest frequency periods such
that Ti is the frequency of the i-th variable in each period t, and τi = 1, . . . , Ti denotes
the subperiods of the i-th variable in each period t. For instance, when the set of vari-
ables comprises quarterly, monthly and daily variables, t = 1, . . . , T denotes the quarters,
Ti = 1/3/90 is the frequency of any quarterly/monthly/daily variable in each quarter t
and τi = 1/1, 2, 3/1, . . . , 90 denotes the quarter/months/days in each quarter t (assuming
that a quarter has 90 days).

For ease of exposition we assume in this section that each variable yi,t−1+τi/Ti with i ∈
{1, . . . , I} is released simultaneously with each variable yj,t−1+τj/Tj with j ∈ {1, . . . , I}
and with t − 1 + τj/Tj = t − 1 + τi/Ti. Further, we assume for ease of exposition that
each variable yi,t−1+τi/Ti is released directly after the end of period t−1+ τi/Ti (no ragged
edge). For instance, any quarterly variable is released directly after the end of a quarter
simultaneously with any other quarterly variable and with any monthly variable observa-
tion on the third month of that quarter. Our empirical application presented in Section
4 explicitly models ragged edges and delayed releases.

Appendix 2 illustrates the MIDAS VAR framework with the simple case of just one
monthly and one quarterly variable.

4We model the time period subscript as t − 1 + τi/Ti in order to let τi denote the τi-th subperiod in
period t. Clements and Galvão (2008, 2009), e.g., model the time period subscript as t− τi/Ti so that
τi denotes the (Ti − τi)-th subperiod. Both variants are equally possible.
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The stacking approach

We stack all observations of the i-th variable in period t − p with p ∈ N0 starting with
the latest observation and ending with the earliest observation to get

yi,t−p
Ti×1

≡


y
i,t−p−1+Ti

Ti
...

yi,t−p−1+ 1
Ti

 .5
Doing this for all I variables yields I variable vectors for period t − p. Next, we stack
these I variable vectors to get

yt−p∑I
i=1 Ti×1

≡

 y1,t−p
...

yI,t−p

 .
Further, we lag each element in the variable vector yi,t−p by the period 1

Ti to get

yi,t−p− 1
Ti

Ti×1

≡


y
i,t−p−1+Ti

Ti
− 1

Ti
...

yi,t−p−1+ 1
Ti
− 1

Ti

 .
Doing this for all periods t − p with p = 0, 1, . . . , P results in P + 1 vectors for the i-th
variable. We stack these P + 1 vectors to get

xi,t
(P+1)·Ti×1

≡


yi,t−0− 1

Ti
yi,t−1− 1

Ti
...

yi,t−P− 1
Ti

 .
xi,t contains all past observations of the i-th variable until (and including) period t− P .
For ease of exposition we set Pi = P for all variables. Our empirical application presented
in Section 4 allows Pi to be different for each variable. Iterating the last two stacking
steps for all variables leaves us with I variable vectors x1,t, . . . ,xI,t. In a last step, we
stack these I variable vectors to get the data vector

xt
(P+1)·

∑I
i=1 Ti×1

≡

 x1,t
...

xI,t

 .6

Stacked vector mixed frequency VAR

The stacked vectors from the previous subsection build the basis for our stacked vector
mixed frequency VAR framework. In particular, we model each element of vector yt,

5In case of the lowest frequency variable, yt−p consists of just one observation.
6Stacking of lagged variables into a vector xt follows Hamilton (1994, p. 292) and Hayashi (2000, p. 397).
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namely each yi,t−1+ τi
Ti

, as a regression function of the data vector xt:

yi,t−1+ τi
Ti

1×1

= ai,τi xt + εi,t−1+ τi
Ti

(1)

= [ai,τi,1 . . . ai,τi,I ]

 x1,t
...

xI,t

+ εi,t−1+ τi
Ti
.

εi,t−1+ τi
Ti

is an error term, and ai,τi,1, . . . , ai,τi,I are selection vectors defined as

ai,τi,j
1×(P+1)·Tj

≡ [0i,τi,j,1 αi,τi,j 0i,τi,j,2] (2)

which relates period τi-observation of the i-th variable to all observations of the j-th vari-
able with j = 1, . . . , I.7 The three parts of ai,τi,j are explained in turn.

First, 0i,τi,j,1 denotes a row vector of zero parameters with length Tj−d τiTiTje.
8 This vector

of zero parameters relates yi,t−1+τi/Ti to those observations of the j-th variable which are
published simultaneously with or later than yi,t−1+τi/Ti , i.e. in periods t−1+τi/Ti, . . . , t−
1+(Ti−1)/Ti. The reason for setting these relations to zero is as follows: Any observation
which is published simultaneously or later than observation yi,t−1+τi/Ti cannot be used for
forecasting observation yi,t−1+τi/Ti . Hence, these simultaneous or future observations must
be disregarded during the parameter estimation stage. This can be done by discarding
these observations, or by setting their parameters to zero.

Second, αi,τi,j denotes a row vector of parameters with length Ki,j ≡ P · Tj + dTjTi e:

αi,τi,j
1×Ki,j

≡ [αi,τi,j,1 . . . αi,τi,j,Ki,j ]. (3)

This parameter vector relates yi,t−1+τi/Ti to past observations of the j-th variable from
period Tj − d τiTiTje + 1 until period Tj − d τiTiTje + Ki,j. αi,τi,j will be further discussed in
the next subsection.

Third, 0i,τi,j,2 denotes a row vector of zero parameters with length d τiTiTje − d
Tj
Ti e. This

vector of zero parameters relates yi,t−1+τi/Ti to those past observations of the j-th variable
which have been published earlier than period Tj − d τiTiTje + Ki,j. Given the choice of
lag length P these observations are too “old” to be considered for forecasting observation
yi,t−1+τi/Ti . Hence, these observations must be disregarded during the parameter estima-
tion stage. Again, this can be done by discarding these observations, or by setting their
parameters to zero.

In a next step, we stack the selection vectors ai,1,j, . . . , ai,Ti,j to get

Ai,j
Ti×Tj ·(P+1)

≡

 ai,Ti,j
...

ai,1,j

 .
7i = j or i 6= j.
8The ceiling function dze ≡ min{n ∈ Z|n ≥ z}, where z is a real number and n is an integer from the set
of all integers Z.
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Ai,j contains the (zero and alpha) parameters which relate the I observations of the i-th
variable in period t to xj,t, i.e. to all observations of the j-th variable from period t−P −1
to period t− 1

Ti . Then, we collect all I times I matrices Ai,j in the big matrix

A∑I
i=1 Ti×(P+1)·

∑I
j=1 Tj

≡

 A1,1 . . . A1,I
...

. . .
...

AI,1 . . . AI,I

 .

Iterating Equation (2) for all Ti observations of the i-th variable in period t, namely for
yi,t−1+1/Ti , . . . , yi,t−1+Ti/Ti , yields Ti error terms εi,t−1+1/Ti , . . . , εi,t−1+Ti/Ti . We stack these
error terms to get

εi,t
Ti×1
≡


ε
i,t−1+Ti

Ti
...

εi,t−1+ 1
Ti

 .
Further iterating the above error term stacking for all variables gives I error term vectors
ε1,t . . . εI,t. We again stack these error term vectors to get

εt∑I
i=1 Ti×1

≡

 ε1,t...
εI,t

 .

The mixed frequency vector autoregressive (VAR) process then generally writes y1,t
...

yI,t

 =

 A1,1 . . . A1,I
...

. . .
...

AI,1 . . . AI,I


 x1,t

...
xI,t

+

 ε1,t...
εI,t

 ,
or more compactly

yt = Axt + εt. (4)

Unrestricted and Almon MIDAS type mixed frequency VAR

The core building blocks of the big matrix A are the parameter vectors αi,τi,j. αi,τi,j has
been generally defined in Equation (3) and relates yi,t−1+τi/Ti to all past observations of
the j-th variable from period Tj − d τiTiTje+ 1 until period Tj − d τiTiTje+Ki,j.

9 We model
the elements of αi,τi,j in two alternative ways.

First, an intuitive strategy is to regard each element of αi,τi,j as an unrestricted parameter.

Equation (2) is then a linear regression equation with
∑I

j=1(Tj − d
Tj
Ti e) zero restrictions

and with
∑I

j=1Ki,j unknown unrestricted parameters. The unrestricted parameters in

9In case j = i the relation is between observations of the same variable, in case j 6= i the relation is
between observations of two different variables.
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matrix A of Equation (4) can thus be easily estimated row by row via ordinary least
squares (OLS). The resulting unrestricted MIDAS (U-MIDAS) VAR is very flexible in
terms of parametrization, but gets overparameterized/looses parsimony as the number of
employed lags grows. Foroni et al. (2012) originally proposed the U-MIDAS approach for
single equation forecasting models.

Second, following Ghysels and co-authors (Ghysels et al., 2007, Andreou et al., 2010, e.g.)
one can regard αi,τi,j as a vector of unknown weights αi,τi,j,1, . . . αi,τi,j,Ki,j , where each
weight is a function of the unknown parameter vector θi,τi,j and of the lag index k with
k = 1, . . . , Ki,j. Accordingly, Equation (4) can be specified as

yt = A(Θ,K)xt + εt, (5)

where Θ denotes the space of Almon parameter vectors and K is the lag index space. We
model each weight function as a Almon lag polynomial,

αi,τi,j,k = αi,τi,j,k(θi,τi,j, k) = αi,τi,j,k(θi,τi,j,0, . . . , θi,τi,j,Q, k) =

Q∑
q=0

θqk
q, (6)

where Q ∈ N denotes the polynomial order.10

The Almon lag polynomial combines three features which makes it particularly attractive
for a stacked vector mixed frequency VAR. The first feature concerns parameter parsi-
mony: The polynomial order Q determines the number of θ-parameters to be estimated.
By setting Q << Ki,j the number of parameters to be estimated gets reduced. This
prevents parameter proliferation or overfitting even for a long lag length Ki,j. The sec-
ond feature concerns model flexibility: Even when Q is a small number the form of the
function αi,τi,j,k with respect to k – i.e. the relative importance of any lagged observation
as compared to any other lagged observation – is flexible and depends on the Almon pa-
rameter values θi,τi,j. Figure 1 illustrates this graphically. In practice, θi,τi,j is estimated
and, thus, the relative weight of each lagged observation is optimally chosen by the data.

– Figure 1 here –

The third feature concerns estimation: Since each Almon lag polynomial weight func-
tion αi,τi,j,k is highly non-linear in its parameters θi,τi,j, OLS is not feasible for a direct
estimation of the θ-parameters in matrix A in Equation (5). Further, since each row of
A contains a multitude of Almon lag polynomial weight functions, αi,τi,1,1, . . . , αi,τi,1,K ,
αi,τi,2,1, . . . , αi,τi,2,Ki,j , . . . , . . . , αi,τi,I,1, . . . , αi,τi,I,K , even non-linear optimization methods

reach their limits in practice. Specifically, each row of A contains
∑I

j=1Ki,j Almon lag
polynomial weight functions. Fortunately, as we show in the next subsection, when the
weight functions are modeled as Almon lag polynomials Equation (5) can be recast such
that OLS estimaton of the θ-parameters becomes feasible.

In sum, Almon MIDAS brings together three goals which are often in a trade-off position
to each other: parsimony in terms of parametrization, model flexibility and feasibility
concerning estimation.

10The literature knows yet other weight functions (see Ghysels et al., 2007, e.g.)
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Recasting the Almon MIDAS type MFVAR in linear form

The Almon MIDAS type MFVAR model is both parsimonious and flexible. However, the
model contains a multitude of highly non-linear terms which makes a direct estimation
infeasible. In the following we show how to recast the Almon MIDAS type MFVAR model
in a linear equation system which can be easily estimated via OLS.

Equation (6) has defined the Almon parameter vector as

θi,τi,j
1×(Q+1)

≡
[
θi,τi,j,0 . . . θi,τi,j,Q

]
. (7)

We stack the series of Almon parameter vectors θi,τi,1, . . . ,θi,τi,I into

θi,τi
1×I·(Q+1)

≡
[
θi,τi,1 . . . θi,τi,I

]
. (8)

Further, we define a transformation matrix

Mi,τi,j
(Q+1)×(P+1)·Tj

≡



0i,τi,j,1 1 1 1 . . . 1 0i,τi,j,2
0i,τi,j,1 1 2 3 . . . Ki,j 0i,τi,j,2
0i,τi,j,1 1 4 9 . . . K2

i,j 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 . . . . . . . 0i,τi,j,2
0i,τi,j,1 1 2Q 3Q . . . KQ

i,j 0i,τi,j,2


and condense the series of transformation matrices Mi,τi,1, . . . ,Mi,τi,J into the block matrix

Mi,τi
I·(Q+1)×(P+1)·

∑I
j=1 Tj

≡ diag(Mi,τi,1, . . . ,Mi,τi,I). (9)

Next, we premultiply the data vector xi,t with the block matrix to get a row vector of
transformed data

x∗i,τi,t
I·(Q+1)×1

≡Mi,τixt. (10)

Notably, Mi,τi and, hence, also x∗i,τi,t is specific to the subperiod τi-observation of the i-th
variable. Using Equation (10) and the fact that

ai,τi = θi,τiMi,τi

we can rewrite the basic regression equation (2) as

yi,t−1+ τi
Ti

= θi,τix
∗
i,τi,t

+ εi,t−1+ τi
Ti
. (11)

We stack the Almon parameter vectors θi,1, . . . ,θi,Ti defined in Equation (8) to get

Θi
Ti×I·(Q+1)

≡

 θi,Ti...
θi,1

 ,
9



Doing this for each variable index i = 1, . . . , I yields the series Θ1, . . . ,ΘI which can be
stacked to the big Almon parameter matrix

Θ∑I
i=1 Ti×I·(Q+1)

≡

 Θ1
...

ΘI

 . (12)

Further, upon transposition we stack all transformed data vectors specific to the i-th vari-
able in period t starting with the latest subperiod and ending with the earliest subperiod
to get

X∗i,t
Ti×I·(Q+1)

≡

 x
∗′
i,Ti,t
...

x∗′i,1,t

 .
Iterating the last stacking step for all variables leaves us with I matrices X∗1,t, . . . , X

∗
I,t.

We stack these matrices again to get the transformed data matrix

X∗t∑I
i=1 Ti×I·(Q+1)

≡

 X∗1,t
...

X∗I,t

 . (13)

Next, we define a selection matrix

S
L×L·L

≡
(
I(L) ∗ I(L)

)′
where I(L) denotes the identity matrix of size L ≡

∑I
i=1 Ti and where “∗” is the (column-

wise) Khatri-Rao product. I. e.

I ∗ I ≡ [Il ⊗ Il]l , (14)

where l denotes the l-th column of I with l = 1, . . . , L.11

As is easily seen, the stacked vector MIDAS type non-linear MFVAR from Equation (5)
can then be reformulated as

yt = S vec (ΘX∗′t ) + εt. (15)

Using the fact that for any two matrices B with size R× T and C with size U × V

vec(BC) = (C ′ ⊗ I(R)) vec(B),

we further rewrite Equation (15) as a linear equations systems

yt = S(X∗t ⊗ I(L)) vec(Θ) + εt. (16)

S(X∗t ⊗ I(L)) with size L × I · (Q + 1) · L builds the right-hand side data matrix and
vec(Θ) with size I · (Q + 1) · L × 1 is the parameter vector. Equation (16) conforms
to the standard VAR matrix notation in the sense that each element, yi,t−1+τi/Ti , in the

11See Khatri and Rao (1968).
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left-hand side variable vector, yt, is a function of always the same right-hand side data
matrix, namely of S(X∗t ⊗ I(L)). On the other hand, Equation (16) deviates from the
standard VAR matrix notation in that the data come in matrix form (but not in vector
form) while the parameters come in vector form (but not in matrix form).

Importantly, the θ-parameters in Equation (16) can be easily estimated row by row via
OLS. As each row of S(X∗t ⊗ I(L)) contains only I · (Q + 1) non-zero elements, a single
row can only be used to estimate I · (Q + 1) θ-parameters in vec(Θ). Hence, all rows in
Equation (16) are needed to fully estimate the I · (Q+ 1) ·L parameters in vec(Θ). Upon
estimation of vec(Θ), the α-weights in matrix A of the general stacked vector MFVAR
equation (4) can be calculated using Equation (6).

3 Data and forecast evaluation set up

Can our stacked vector MIDAS type mixed frequency VAR help improve forecasts upon
a standard single frequency VAR? In order to answer this question we conduct a pseudo-
out-of sample forecast evaluation with US real time data.

The real-time data used in our analysis comprise quarterly real seasonal adjusted GDP as
well as the monthly consumer price index, industrial production and housing starts. Data
sources are the ArchivaL Federal Reserve Economic Data (ALFRED) published by the
Federal Reserve Bank of St. Louis and the Federal Reserve Bank of Philadelphia Real-
Time Data Set for Macroeconomists (RTDSM). In addition, we employ a set of time series
that are not subject to data revisions: the ISM indices for manufacturing and supplier
delivery times, S&P 500 stock market index, 3-month treasury bill yield, 10-year treasury
bond yield, and average weekly hours worked by production and supervisory workers.
Following common practice we time-aggregate all variables with a higher than monthly
frequency by using their end-of-month values (Carriero et al., 2012 and Schorfheide and
Song, 2013, e.g.) Table 1 provides precise data definitions. We use different data transfor-
mations for our forecast evaluation, namely year-on-year growth rates, 3-month growth
rates as well as month-on-month growth rates.

– Table 1 here –

The real-time dataset comprises 344 vintages covering the time frame January 1970 to
August 2013. The first vintage starts in January 1970 and includes all data available until
the end of January 1985. In order to use a rolling window setup each following vintage
is shifted by one month, i.e. the second vintage starts in February 1970 and includes all
data available until the end of February 1985, and so on.

We forecast at the end of each month m. In a first step, we estimate the model using
the first vintage and forecast all monthly and quarterly variables 1 to 24 months ahead of
release. We then re-estimate the model using the second vintage and generate again 1 to
24-months-ahead forecasts. This procedure gets iterated until the 315th vintage, which
starts in August 1995 and includes all data available until end of August 2010, resulting
for each variable in a series of h-months ahead forecasts with h = 1, . . . 24 months ahead of
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the actual realization of the variable.12 Forecast errors are then calculated by subtracting
each forecast from its actual realization. Finally, the forecast errors are used to calculate
a root mean square forecast error (RMSFE) for each variable and each forecast horizon
h, RMSFEi,h.

The choice of actual realizations is a delicate issue in a real time data context (cf. the
discussions in Croushore, 2006, Romer and Romer, 2000, and Sims, 2002). There have
been several benchmark revisions in the time series we use; the latest revision for GDP
occurred in mid-2014 and included a substantial redefinition of gross fixed capital for-
mation which accounts for 20 percent of GDP. A forecaster in, e.g., 1985 could not have
predicted such a definition change. Thus we follow Romer and Romer (2000), Faust and
Wright (2009) and Carriero et al. (2012) and use the second estimate of quarterly GDP
as the actual realization with which we compare our forecasts. We use this principle also
for the monthly variables, i.e. we use the second estimate of CPI when calculating the
forecast error. As a robustness test we also check the forecast performance with the first
and third estimate of the variables.

In order to reproduce the available information a forecaster would have had at each fore-
cast date, i.e. at the end of each month m, we need to take differing publication lags – so
called ragged edges – into account. For most monthly variables the (first) release for each
month is not available directly at the end of that month, but is published with a time lag
of up to one month. We call these variables lag variables. Hence, when forecasting at the
end of a month m the aforementioned releases cannot be used for forecasting but must
be backcasted themselves using all information available until the end of m. Only the
S&P 500 index, the 10-year treasury bond yield and the 3-month treasury bill yield are
available directly at the end of each month and, hence, can be used for back-, now- and
forecasting. The latter three variables are released daily and are never revised. As stated
above, we time-aggregate the variables to monthly frequency. Equally, for the quarterly
variable, namely GDP, the (first) release for each quarter q is published with a time lag
of up to one month. Consequently, when forecasting at the end of a quarter q the releases
for quarter q cannot be used for forecasting but must be backcasted using all information
available until the end of q.

Our benchmark model is a standard quarterly frequency VAR (QFVAR) where all higher
than quarterly frequency series are time-aggregated to quarterly frequency. Our choice
of benchmark model is motivated by the great popularity of VARs as a workhorse for
macroeconomic forecasting (Karlsson, 2013). VAR models are a standard tool for fore-
casting in many policy-oriented institutions and organisations due to their ease of use,
their flexibility and the ability to produce coherent forecasts for multiple variables. Thus,
our aim is to produce a forecasting model which improves upon the long proven method
of VARs.13

12h-months ahead, hence, inter-quarterly forecasts are also generated for quarterly GDP.
13It might be interesting to compare the MIDAS VAR with a state space type mixed frequency VAR or

with a variety of alternative forecasting models. However, such a comparative analysis goes beyond the
scope of this paper.
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Forecast performance for the i-th variable at forecast horizon h is measured by the differ-
ence between the RMSFE of the MIDAS VAR and the QFVAR in percent of the RMSFE
of the QFVAR,

∆RMSFEi,h = 100 ∗

(
RMSFEMIDAS VAR

i,h −RMSFEQFVAR
i,h

RMSFEQFVAR
i,h

)
.

We refer to ∆RMSFEi,h as the relative change in the RMSFE. The more negative
∆RMSFEi,h is, the better performs the MIDAS VAR relative to the QFVAR in terms of
predicitive power. MIDAS VAR and benchmark QFVAR are always specified such that
they have the same amount of lagged information available. Thus, differences in forecast
performance between competing models can solely accrue from two sources: how flexible
– or parsimonious – the models are in terms of parametrization, and whether they can
incorporate higher frequency data updates (new releases or revisions).

On a last note, it is not the purpose of this paper to find the best MIDAS VAR specifica-
tion. Rather, we want to know whether MIDAS VARs robustly improves upon standard
QFVARs. For this we compare MIDAS VAR and QFVAR for alternative reasonable spec-
ifications, i.e. for alternative variables included and alternative lag structures. None of
these specifications dominates the others in terms of forecasting accuracy. Hence, the MI-
DAS VAR must outperform the QFVAR for all specifications in order for the improvement
to be robust.

4 Empirical results

The following sections present the results of the forecast evaluation outlined in Section
3. We compare MIDAS VARs and QF-VARs for four alternative specification setups:
few variables and few lags, few variables and many lags, higher number of variables and
few lags, and higher number of variables and many lags. Competing MIDAS VARs and
QFVARs always have the same amount of lagged information available. Thus, differences
in forecast performance between competing models can solely accrue from two sources:
how flexible – or parsimonious – the models are in terms of parametrization, and whether
they can incorporate higher frequency data updates (new releases or revisions).

3-variable MIDAS VAR with 3-month memory

In a first step it might be interesting to see whether MIDAS VAR models improve forecasts
upon a standard VAR when model specifications are kept minimal. Following common
practice in macroeconomics our minimum VAR specification includes three variables only:
GDP growth, consumer price inflation and a (3-month) short-term interest rate (treasury
bill rate).

Figure 2 presents results for an Almon MIDAS VAR of order 1 and a U-MIDAS VAR both
with one quarterly GDP growth lag, three monthly inflation lags and three monthly inter-
est rate lags.14 The benchmark model is a quarterly frequency VAR (QFVAR) with one

14When three lags are employed an Almon MIDAS VAR of order 2 delivers identical results as a U-MIDAS
VAR.
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quarterly lag of GDP growth, inflation and interest rate, respectively. As regards forecast-
ing GDP growth, the two MIDAS VAR specifications reduce the RMSFE by more than 30
percent compared to the QFVAR for forecast horizons of one to six months. The RMSFE
improvement gradually declines as the forecast horizon increases, but is still substantial
for longer horizons: One year before publication of GDP the MIDAS VAR forecasts are
still more than 20 percent better than the QFVAR forecasts. For forecast horizons of
22 months or longer the MIDAS VARs yield no improvement over the QFVAR anymore.
The zig-zag pattern of the relative RMSFE is due to the mixed frequency structure of
our setup: the MIDAS VAR gets new information every month whereas the data of the
QFVAR are only updated every third month when new quarterly information is available.

For inflation, the Almon MIDAS VAR and the U-MIDAS VAR yield very high RMSFE
reductions for short forecast horizons (more than 65 percent for months 1 to 3). On the
other hand, RMSFE improvements quickly vanish as the forecast horizon grows. And for
forecast horizons of one year onwards the relative change in the RMSFE decreases again.
The reason for this pattern is that the QFVAR forecast errors inititally decrease with an
increase in the forecast horizon, but then increase again from a forecast horizon of one
year onwards. In contrast, the forecast errors of the MIDAS VAR slowly and steadily
increase as the forecast horizon becomes bigger (which is what one would expect). When
it comes to forecasting the interest rate, the Almon MIDAS VAR and the U-MIDAS VAR
improve forecasts substantially throughout all considered forecast horizons as compared
to the QFVAR. The RMSFE reductions reach more the 75 percent for horizons of one to
three months. Forecast improvements gradually decline with an increase in the forecast
horizon, but even two years before GDP publication the MIDAS VARs reduce the RMSFE
by 5 percent or more compared to the QFVAR. All previous findings remain robust when
we iterate the forecast evaluation for the first or third GDP estimate instead of the second
estimate (see Section 3).

– Figure 2 here –

3-variable MIDAS VAR with 6- or 12-month memory

VAR models of higher order than the ones presented in the previous section arguably
achieve better forecasting performance for longer forecast horizons. Thus, it is important
to know whether MIDAS VARs still improve forecasts upon a standard VAR for specifi-
cations with longer time series memory. Figure 3 shows the results for an Almon MIDAS
VAR of order 1 and a U-MIDAS VAR both with two quarterly GDP growth lags, six
monthly inflation lags and six monthly interest rate lags. The benchmark model here
is a QFVAR with two quarterly lags of GDP growth, inflation and interest rate, respec-
tively, where two lags are chosen in order to provide each competing model with the same
amount of lagged information (see Section 3).

To allow for even longer memory, Figure 4 depicts results for an Almon MIDAS VAR of
order 1 and a U-MIDAS VAR both with four quarterly GDP growth lags, twelve monthly
inflation lags and twelve monthly interest rate lags. In accordance with the above reason-
ing about the appropriate information set, the benchmark model now is a QFVAR with
four quarterly lags of GDP growth, inflation and interest rate, respectively. Generally,
the RMSFE patterns in Figures 3 and 4 strongly resemble the patterns in Figure 2: the
two MIDAS VAR specifications yield substantial improvements in forecast accuracy upon
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the QFVAR for GDP growth, inflation as well as the interest rate. That said, for the 12-
month memory specification the U-MIDAS VAR performs clearly worse than the Almon
VAR when it comes to forecasting GDP growth. When the forecast horizon exceeds 13
months the U-MIDAS VAR forecasts are even less accurate than the QFVAR forecasts.
This finding is not surprising: U-MIDAS specifications easily become overparametrized
when the lag order grows. As a consequence, U-MIDAS is less suitable for – and is actu-
ally not meant for – forecasting with longer lags.

We iterated the analysis with an Almon MIDAS VAR of order 2 (not shown in the figures).
The RMSFE patterns very closely resemble the patterns of the order 1 Almon MIDAS
VAR.

– Figures 3 and 4 here –

6-variable MIDAS VAR with 3-month memory

The previous minimum scale VAR specifications including only GDP growth, inflation
and an short-term interest rate provide us with first evidence on the potential of MIDAS
VAR models for forecasting. However, in order to improve predictive accuracy forecasters
usually employ VAR models with more than just the aforementioned variables. So, do
MIDAS VARs still improve forecasts upon standard VARs when more variables are in-
cluded? To answer this question we include three additional variables which are commonly
considered to be helpful for now- or forecasting GDP growth: industrial production in
month-on-month growth rates, housing starts in year-on-year growth rates and the Stan-
dard & Poor’s 500 stock market index in month-on-month growth rates.15

Figure 5 depicts results for an Almon MIDAS VAR of order 1 and a U-MIDAS VAR both
with one quarterly GDP growth lag and three monthly lags of the five monthly variables.
The benchmark model here is a QFVAR with one quarterly lag of each of the aforemen-
tioned six variables. Thus, as before each competing model has the same amount of lagged
information such that differences in forecast performance cannot accrue from differences
in the (lagged) information set. The RMSFE patterns in Figure 5 strongly resemble the
patterns presented in the previous subsections: the two MIDAS VAR specifications sub-
stantially improve predictive accuracy upon the QFVAR for GDP growth, inflation and
the interest rate.

– Figure 5 here –

6-variable MIDAS VAR with 6- or 12-month memory

The previous section has shown that small scale MIDAS VARs substantially improve
predictive accuracy upon a standard small scale VAR when only very short time series

15Indeed, we find that a small scale MIDAS VAR (with industrial production, housing starts, S&P 500,
GDP growth, inflation and the interest rate) improves forecast accuracy upon a minimum MIDAS VAR
(with only the latter three variables). Equally, the corresponding small scale benchmark QFVAR per-
forms better than the corresponding minimum scale benchmark QFVAR. A rigorous variable selection
procedure might deliver small scale specifications with still greater forecasting ability. That said, it is
not the goal of this paper to find the best model specification. Rather, we compare MIDAS VARs and
standard VARs for several sensible, yet alternative model specifications in order to see whether MIDAS
VARs robustly outperform standard VARs.
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memory is taken into account (one quarterly lag or three monthly lags). Is this gain
is robust to allowing for longer time series memory (which increases the risk of over-
parametrization)?

Figure 6 (or Figure 7) shows the results for an Almon MIDAS VAR of order 1 with two
(or four) quarterly GDP growth lags and six (or twelve) monthly lags of inflation, the
short-term interest rate, industrial production, housing starts and the S&P 500 stock
market index. The benchmark model is a QFVAR with two (or four) quarterly lags for
each of the aforementioned six variables such that each competing model has again the
same amount of lagged information (see Section 3). The Almon MIDAS VAR still largely
outperforms the benchmark QFVAR in terms of forecast accuracy at least for shorter
horizons. A comparison between the RMSFE improvements resulting from the longer
memory Almon MIDAS VARs in Figures 6 and 7 with the RMSFE improvements from
the 3-month memory Almon MIDAS VAR in Figure 5 yields the following differences:
Regarding GDP growth, the forecast improvement vanishes earlier (at a forecast horizon
of 16 instead of 19 months) and turns into a deterioration for higher forecast horizons.
In contrast, for inflation and the interest rate, the longer horizon forecast improvement is
substantially larger.

The predictive accuracy of the U-MIDAS VAR substantially deteriorates for longer mem-
ory small scale specifications. Figure 6 shows that for a specification with two quarterly
and six monthly lags the U-MIDAS VAR is generally outperformed by the Almon MIDAS
VAR when it comes to forecasting GDP growth, inflation or the short-term interest rate
(an exception being the very short-term forecasts for inflation and the interest rate). For
the specification with four quarterly lags and twelve monthly lags the forecast performance
of the U-MIDAS VAR is so poor that we do not show it in Figure 7. U-MIDAS does not
help for – and is actually not meant for – forecasting with longer memory because of over-
parametrization. In contrast, Almon MIDAS keeps models parsimonious despite long lags.

Again, interating the analysis with an Almon MIDAS VAR of order 2 yields RMSFE
patterns that closely resemble the patterns of the order 1 Almon MIDAS VAR (not shown
in the figures).

– Figures 6 and 7 here –

12-variable MIDAS VAR with 3-month memory

Using a MIDAS setup does not only give an advantage when using a model with longer
memory but also when using a bigger amount of variables, both when short or long
memories are considered. To show this we increase our variable set by six additional vari-
ables, namely the (10-year) long-term interest rate (treasury bond yield), hours worked
by production and supervisory workers in 3-month growth rates, the ISM index for man-
ufacturing (= ISM total) in levels, the ISM index for supplier delivery times both in levels
and year-on-year growth rates and the month-on-month growth in housing starts. In or-
der to improve precision of the parameter estimates we increase the estimation sample by
5 years. The forecast comparison now starts in January 1990 only instead of January 1985.

Figure 8 depicts results for an Almon MIDAS VAR of order 1 and a U-MIDAS VAR
both with one quarterly GDP growth lag and three monthly lags of the eleven monthly
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variables. The benchmark model here is a QFVAR with one quarterly lag of each of the
aforementioned twelve variables giving again each competing model the same amount of
lagged information. The two MIDAS VAR specifications substantially improve predictive
accuracy upon the QFVAR for GDP growth, inflation and the interest rate over all forecast
horizon.

– Figure 8 here –

12-variable MIDAS VAR with 6- or 12-month memory

As shown in the previous section the 12-variable U-MIDAS and Almon MIDAS VARs
deliver a forecast improvement over a 12-variable QFVAR when considering only a short
memory of 1 quarter (3 months). Does this result hold when taking into account longer
time series memories? Figure 9 (10) shows the relative RMSFE changes of the Almon
MIDAS VAR of order 1 with two (four) quarterly lags of GDP growth and six (twelve)
monthly lags of the aforementioned eleven variables as compared to a QFVAR with two
(four) quarterly lags for each of the twelve variables. The improvement in forecast accu-
racy of the Almon MIDAS VAR relative to the QFVAR benchmark is even higher than
for the short memory specification shown in Figure 8. Apparently, the Almon MIDAS
VAR is rather robust against overparametrization, while the QFVAR tends to get over-
parametrized with both a large number of variables and a large number of lags. Not
surprisingly, the U-MIDAS VAR suffers even more from overparametrization. We do not
show the U-MIDAS VAR in Figures 9 and 10 because of its very poor relative forecast
performance.

– Figures 9 and 10 here –

5 Conclusion

VAR models are widely used for macroeconomic forecasting and policy analysis (Stock
and Watson, 2001 and Karlsson, 2013, e.g.). An initial challenge for VARs is that the
variables they include must have the same frequency, whereas macroeconomic time series
usually come at different frequencies. For instance, GDP is published every quarter, in-
flation is a monthly variable and interest rates come at a daily or even higher frequency.
The traditional solution is to time-aggregate all variables to a common frequency. A VAR
including GDP, inflation and an interest rates series will then be a quarterly frequency
VAR. However, the time-aggregation comes with inconveniences: First, higher frequency
data releases can only be taken into account with a delay. For instance, a quarterly
frequency VAR can only consider inter-quarterly inflation or other indicator releases af-
ter the end of a quarter. Second, the time aggregation implies a peculiar constraint on
the parameters attached to higher frequency variables which is potentially suboptimal.
Whether or to what degree these inconveniences affect the forecasting ability of VAR
models is ultimately an empirical question. We find that time-aggregation substantially
impairs the forecasting power of VAR models even for higher forecast horizons.

Against this backdrop, a number of authors have developed VAR models which can deal
with variables of differing frequencies. Zadrozny (1988, 1990), Mariano and Murasawa
(2010), Kuzin et al. (2011), Chiu et al. (2012), Bai et al. (2013) and Schorfheide and Song
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(2013) propose mixed frequency VAR (MFVAR) models using a state space approach.
Ghysels (2012) develops a MFVAR using a stacked vector approach (cf. applications in
Francis et al., 2011 and Foroni et al., 2014). Both approaches have their merits and
promises (Kuzin et al., 2011, Bai et al., 2013 and Foroni and Marcellino, 2014). We make
the following contributions to this emerging research on MFVARs. First, we propose a
general and yet tractable stacked vector MFVAR framework. Previous expositions are
limited to VARs with only two different frequencies for reasons of tractability. Second, we
augment the stacked vector MFVAR with a MIDAS type non-linear Almon lag polyno-
mial scheme (Almon, 1965) which is designed to prevent overparametrization even with
long lag lengths while, at the same time, keeping the VAR model flexible.16 In turn, we
show how to transform the resulting stacked vector non-linear MFVAR into a linear equa-
tion system which can be easily estimated via OLS. Due to the linear transformation the
stacked vector MIDAS type MFVAR becomes feasible for estimation with multiple vari-
ables. Previous stacked vector MIDAS type MFVARs were limited to only few variables.
The reason is that, in absence of a linear transformation, the non-linear MFVARs had
be estimated directly which is cumbersome, if not infeasible, in a VAR context involving
multiple variables (provided no auxiliary restrictions).

Using quarterly and higher frequency US real-time data we test the forecast performance
of our MIDAS type MFVAR against a quarterly frequency VAR for various different
specifications (three, six or twelve variables, three, six or twelve months of lagged infor-
mation). The MIDAS type MFVAR yields root mean squared forecast error reductions
of 30 to 50 percent for forecast horizons up to six months and of about 20 percent for a
forecast horizon of one year. For inflation and interest rates forecast error reductions are
even bigger. According to our results, augmentation of a stacked vector MFVAR with an
Almon lag polynomial scheme has a distinct advantage for specifications with longer lag
structures. While a MFVAR with fully unrestricted parameters still yields considerable
forecast improvements over a standard QFVAR when using few lags, these improvements
vanish almost completely for longer lags. An Almon augmented MFVAR instead still
yields high improvements over a QFVAR for longer lags.

The VAR specifications in our empirical application are intentionally kept simple. For
instance, each variable’s own lags are kept as flexible concerning polynomial order as
its other variables lags. A model specification procedure with respect to polynomial
flexibility and lag length will boost the predictive power of the MIDAS type MFVAR.
Further, the linearly transformed stacked vector MIDAS type MFVAR could be estimated
using Bayesian methods instead of OLS. This would allow to employ Bayesian VAR
specifications with prior types that are known to deliver a better forecast performance
than non-Bayesian or flat prior Bayesian VAR specifications (see Giannone et al., 2014,
e.g.). We leave these steps for future research.

16See a discussion in Judge et al. (1985).
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6 Figures and Tables

Figure 1: Almon lag polynomial

y-axis: Almon lag polynomial weight of order Q = 2, αi,τi,j,k(θi,τi,j,0, θi,τi,j,1, θi,τi,j,2, k), attached to
observation yj,t−1+τi/Ti−k/Tj conditional on different values of θi,τi,j,0, θi,τi,j,1 and θi,τi,j,2. See Equation
(6). x-axis: k = 1, . . . , 12 (= first to twelfth lag). Sum of weights normalized to one for ease of exposition.

23



Table 1: Data overview

VARIABLE NAME FREQUENCY REAL TIME SOURCE NOTES

Real seasonal adjusted GDP quarterly yes RTDSM

Industrial production
index: manufacturing monthly yes RTDSM From 1997M12 to 1998M10 his-

torical data from 1969 to 1970
were not available in the data
set. As there do not seem to
be any revisions in between,
we make the assumption that
there were no revisions.

Consumer price index monthly yes ALFRED For some months two vintages
were available. In those cases
we used the later publications.
This was the case for 2000M9,
2005M2, 2006M2, 2007M2,
2008M2, 2009M2, 2010M2,
2011M2 and 2012M2.

Housing starts monthly yes RTDSM There were no observations
available for the first publica-
tion of 1995M11 and 1995M12.
We make the assumption that
in those cases no revision took
place and use the same values
as in the second publication.

ISM index for manufacturing
(= ISM total) monthly no Institute for Supply Management

ISM index for supplier
delivery times monthly no Institute for Supply Management

Average weekly hours of produc-
tion and supervisory workers

monthly no US Bureau of Labor Statistics

S&P 500 stock market index monthly no Thomson Reuters Datastream

3-month treasury bill yield monthly no Thomson Reuters

10-year treasury bond yield monthly no Thomson Reuters
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Figure 2: MIDAS VAR with 3 variables and 3 months of lagged information

Figure 3: MIDAS VAR with 3 variables and 6 months of lagged information

Figure 4: MIDAS VAR with 3 variables and 12 months of lagged information

x-axis: Forecast horizon, i.e. months prior to GDP growth/inflation/interest rate release. y-axis: Relative
change in RMSFE, ∆RMSFE, i.e. difference between RMSFE of MIDAS VAR and RMSFE of QFVAR
in percent of RMSFE of QFVAR.
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Figure 5: MIDAS VAR with 6 variables and 3 months of lagged information

Figure 6: MIDAS VAR with 6 variables and 6 months of lagged information

Figure 7: MIDAS VAR with 6 variables and 12 months of lagged information

x-axis: Forecast horizon, i.e. months prior to GDP growth/inflation/interest rate release. y-axis: Relative
change in RMSFE, ∆RMSFE, i.e. difference between RMSFE of MIDAS VAR and RMSFE of QFVAR
in percent of RMSFE of QFVAR.
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Figure 8: MIDAS VAR with 12 variables and 3 months of lagged information

Figure 9: MIDAS VAR with 12 variables and 6 months of lagged information

Figure 10: MIDAS VAR with 12 variables and 12 months of lagged information

x-axis: Forecast horizon, i.e. months prior to GDP growth/inflation/interest rate release. y-axis: Relative
change in RMSFE, ∆RMSFE, i.e. difference between RMSFE of MIDAS VAR and RMSFE of QFVAR
in percent of RMSFE of QFVAR.
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Appendix 1: Comparison with Ghysels (2012)

Ghysels (2012) is the first to develop a stacked vector MIDAS type mixed frequency VAR.
Our model is similar to Ghysels’ model in some respects and different in other respects.
First, Ghysels (2012) mainly concentrates on impulse response analysis, whereas we focus
on forecasting.

Second, while Ghysels’ framework in principle allows for more multiple frequencies it be-
comes conceptually untractable as the number of frequencies grows. Ghysels limits his
exposition to two frequencies (Ghysels, 2012, p. 3). In contrast, our MFVAR framework
is designed for multiple variables and multiple frequencies while still being relatively com-
pact and straightforward.

Third, Ghysels’ and our framework differ in the way they handle the relationships between
variable observations that pertain to the same lowest frequency period t with t = 1, . . . T
and, thus, are stacked in the same vector (for instance, the relationship between the GDP
observation of a quarter and the first monthly inflation observation of the same quarter,
or the relationship between the second and the first monthly inflation observation of the
same quarter). These within-t relationships are crucial for now- and forecasting since they
allow to incorporate data releases or revisions which occur within period t (within a quar-
ter, for instance). In order to capture the aforementioned relationships Ghysels (2012,
p. 12ff) proposes a scheme that augments a reduced form MFVAR with a matrix struc-
ture derived from the Choleski lower triangular decomposition. In contrast, we propose
to capture the within-t relationships via a recursive form type MFVAR scheme. While
the two schemes may ultimately be transformed into each other they fundamentally differ
in terms of exposition.

Fourth, while both frameworks adopt a stacking approach, the stacking is done in dif-
ferent ways resulting in quite different model setups and solutions. Ghysels starts with
stacking all variable observations that pertain to the same lowest frequency period t into
one vector. Then he stacks all resulting t-vectors with t = 1, . . . , T .17 In contrast, we
start with stacking all lagged observations that belong to the same variable into one vector
possibly extending over several periods t (nucleus vector). Thereupon we stack all result-
ing i-vectors with i = 1, . . . , I. The reason for pursuing this way is as follows: A single
MIDAS type polynomial possibly spans a larger number of lagged observations of a vari-
able and, hence, possibly extends over several lowest frequency periods t. For instance, a
single MIDAS type polynomial with two parameters might span twelve lags of a monthly
variable; provided that the lowest frequency period in the data sample is a quarter, the
polynomial thus extends over four periods t.18 By making the i-vectors the nuclei of our
stacked vector system and imposing a (separate) MIDAS type polynomial on each nucleus,
we can build a system of MIDAS blocks. Not only can this system of MIDAS blocks be
written in very compact notation, but it gives also a good basis for further transformation.

Fifth, the MIDAS literature knows various weighting functions which are quite different

17Actually, Ghysels does not show this second step, but presents the VAR directly in sum or lag operator
notation (Ghysels, 2012, Equation (2.1) or (2.5)). Still, the second step would result from simply
rewriting the sum notation into matrix notation.

18In contrast, one would not want a single polynomial to span several variables, at least unless there does
exist a specific justification of the resulting parameter restriction.
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from each other in several respects. Actually, the only uniting feature is that they can
all be used in a MIDAS context. Ghysels stresses that various different MIDAS type
specifications might be employed in the MFVAR context sketching some of them in turn
(Ghysels, 2012, ch. 2.3 with reference to Appendix A). He concentrates on the beta prob-
ability density function (pdf) which is highly non-linear and conceptually very convenient
for reducing the parameter space while keeping models flexible. A problem is that, due the
non-linearity of the function, estimation becomes cumbersome (if not infeasible) in a con-
text involving more than two variables. We propose to employ the Almon lag polynomial
(Almon, 1965). The Almon polynomial is also highly non-linear but can be rewritten in
linear form. We devote a substantial part of our theory section to showing how a stacked
vector MIDAS type MFVAR involving Almon lag polynomials can be recast into a linear
equation system.19 Comparisons between alternative MIDAS type polynomials in a sin-
gle equation context yield that the Almon lag polynomial is a preferable choice (Mikosch
and Zhang, 2014). This is because it can be rewritten in linear form and hence linear
estimation becomes feasible (see also Drechsel and Scheufele, 2012).

Appendix 2: MIDAS VAR example for one quarterly

and one monthly variable

In this section we give a simple illustrative example of the MIDAS VAR framework pre-
sented in Section 2. Let there be one monthly variable, y1,t−1+τ1/3 and one quarterly
variable, y2,t−1+τ2/1, with t = 1, . . . , T , τ1 = 1, 2, 3 and τ2 = 1. Further let P = 1. In this
case,

yt−p =


y1,t−p
y1,t−p− 1

3

y1,t−p− 2
3

y2,t−p

 , 20
and

xt =



y1,t− 1
3

y1,t− 2
3

y1,t−1
y1,t−1 1

3

y1,t−1 2
3

y1,t−2
y2,t−1
y2,t−2


.

19Further, both Ghysels’ and our paper employs a MFVAR specification that refrains from any reduction
or restriction of the parameter space. This is the unrestricted MIDAS (U-MIDAS) approach proposed
by Foroni et al. (2012). U-MIDAS works well for short lag structures where the parameter space is
relatively small a priori. Ghysels also uses step functions following Ghysels et al. (2007).
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The mixed-frequency VAR process from Equation (4) then writes


y1,t
y
1,t− 1

3
y
1,t− 2

3
y2,t

 =

 α1,3,1,1 α1,3,1,2 α1,3,1,3 α1,3,1,4 0 0 α1,3,2,1 α1,3,2,2
0 α1,2,1,1 α1,2,1,2 α1,2,1,3 α1,2,1,4 0 α1,2,2,1 α1,2,2,2
0 0 α1,1,1,1 α1,1,1,2 α1,1,1,3 α1,1,1,4 α1,1,2,1 α1,1,2,2

α2,1,1,1 α2,1,1,2 α2,1,1,3 α2,1,1,4 α2,1,1,5 α2,1,1,6 α2,1,2,1 α2,1,2,2





y
1,t− 1

3
y
1,t− 2

3
y1,t−1
y
1,t−1 1

3
y
1,t−1 2

3
y1,t−2
y2,t−1
y2,t−2


+


ε1,t
ε
1,t− 1

3
ε
1,t− 2

3
ε2,t

 .

To keep the example simple we assume that all lags are modeled as Almon lag polynomials
of order Q = 1. To exemplify the data transformation, consider the block transformation
matrix of Equation (9) for the third observation of the first variable (i = 1, τ1 = 3)

M1,3 = diag(M1,3,1,M1,3,2) =


1 1 1 1 0 0 0 0
1 2 3 4 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 2

 .
As shown in Equation (10) this matrix can be used to build the transformed data vector

x∗1,3,t
4×1

=


x∗1,3,1,0,t
x∗1,3,1,1,t
x∗1,3,2,0,t
x∗1,3,2,1,t

 =


1 1 1 1 0 0 0 0
1 2 3 4 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 2





y1,t− 1
3

y1,t− 2
3

y1,t−1
y1,t− 4

3

y1,t− 5
3

y1,t−2
y2,t−1
y2,t−2



=


y1,1·t− 1

3
+ 1 · y1,t− 2

3
+ 1 · y1,t−1 + 1 · y1,t− 4

3

y1,1·t− 1
3

+ 2 · y1,t− 2
3

+ 3 · y1,t−1 + 4 · y1,t−1 1
3

1 · y2,t−1 + 1 · y2,t−2
1 · y2,t−1 + 2 · y2,t−2


Further, we construct the big parameter matrix of Equation (12) which contains all Almon
parameters of the MFVAR:

Θ =

[
Θ1

Θ2

]
=


θ1,3
θ1,2
θ1,1
θ2,1

 =


θ1,3,1,0 θ1,3,1,1 θ1,3,2,0 θ1,3,2,1
θ1,2,1,0 θ1,2,1,1 θ1,2,2,0 θ1,2,2,1
θ1,1,1,0 θ1,1,1,1 θ1,1,2,0 θ1,1,2,1
θ2,1,1,0 θ2,1,1,1 θ2,1,2,0 θ2,1,2,1


Accordingly, the big data matrix of Equation (13), which contains all transformed data,
writes

X∗t =

[
X∗1,t
X∗2,t

]
=


x∗′1,3,t
x∗′1,2,t
x∗′1,1,t
x∗′2,1,t

 =


x∗1,3,1,0,t x∗1,3,1,1,t x∗1,3,2,0,t x∗1,3,2,1,t
x∗1,2,1,0,t x∗1,2,1,1,t x∗1,2,2,0,t x∗1,2,2,1,t
x∗1,1,1,0,t x∗1,1,1,1,t x∗1,1,2,0,t x∗1,1,2,1,t
x∗2,1,1,0,t x∗2,1,1,1,t x∗2,1,2,0,t x∗2,1,2,1,t

 .
With L =

∑I
i=1 Ti = 4 the selection matrix of Equation (14) writes

S
4×16

= (I4 ∗ I4)′ =


1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 .
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The above matrices can then be used to rewrite the Almon MIDAS type MFVAR from
Equation (5) into the representation given in Equation (15). As shown in Section 2 we can
further transform the MFVAR into the linear system of equations displayed in Equation
(16), namely yt = S(X∗t ⊗ IL) vec(Θ) + εt. In case of this example with one monthly and
one quarterly variable,

S(X∗t ⊗ I4) =

 x∗1,3,1,0,t 0 0 0 x∗1,3,1,1,t 0 0 0 . . .
0 x∗1,2,1,0,t 0 0 0 x∗1,2,1,1,t 0 0 . . .
0 0 x∗1,1,1,0,t 0 0 0 x∗1,1,1,1,t 0 . . .
0 0 0 x∗2,1,1,0,t 0 0 0 x∗2,1,1,1,t . . .

. . . x∗1,3,2,0,t 0 0 0 x∗1,3,2,1,t 0 0 0

. . . 0 x∗1,2,2,0,t 0 0 0 x∗1,2,2,1,t 0 0

. . . 0 0 x∗1,1,2,0,t 0 0 0 x∗1,1,2,1,t 0

. . . 0 0 0 x∗2,1,2,0,t 0 0 0 x∗2,1,2,1,t


and

vec(Θ) =



θ1,3,1,0
θ1,2,1,0
θ1,1,1,0
θ2,1,1,0
θ1,3,1,1
θ1,2,1,1
θ1,1,1,1
θ2,1,1,1
θ1,3,2,0
θ1,2,2,0
θ1,1,2,0
θ2,1,2,0
θ1,3,2,1
θ1,2,2,1
θ1,1,2,1
θ2,1,2,1



,

so that the linear system of equations of Equation (16) actually writes
y1,t
y1,t− 1

3

y1,t− 2
3

y2,t

 =


θ1,3,1,0 · x∗1,3,t,1 + θ1,3,1,1 · x∗1,3,t,2 + θ1,3,2,0 · x∗1,3,t,3 + θ1,3,2,1 · x∗1,3,t,4
θ1,2,1,0 · x∗1,2,t,1 + θ1,2,1,1 · x∗1,2,t,2 + θ1,2,2,0 · x∗1,2,t,3 + θ1,2,2,1 · x∗1,2,t,4
θ1,1,1,0 · x∗1,1,t,1 + θ1,1,1,1 · x∗1,1,t,2 + θ1,1,2,0 · x∗1,1,t,3 + θ1,1,2,1 · x∗1,1,t,4
θ2,1,1,0 · x∗2,1,t,1 + θ2,1,1,1 · x∗2,1,t,2 + θ2,1,2,0 · x∗2,1,t,3 + θ2,1,2,1 · x∗2,1,t,4

+


ε1,t
ε1,t− 1

3

ε1,t− 2
3

ε2,t

 .
The θ-parameters in this system can be easily estimated row-by-row using OLS. They are
then used to calculate the above α-weights.
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