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Abstract

We propose the use of a local autoregressive (LAR) model for adaptive estimation

and forecasting of three of China’s key macroeconomic variables: GDP growth, infla-

tion and the 7-day interbank lending rate. The approach takes into account possible

structural changes in the data-generating process to select a local homogeneous interval

for model estimation, and is particularly well-suited to a transition economy experienc-

ing ongoing shifts in policy and structural adjustment. Our results indicate that the

proposed method outperforms alternative models and forecast methods, especially for

forecast horizons of 3 to 12 months. Our 1-quarter ahead adaptive forecasts even match

the performance of the well-known CMRC Langrun survey forecast. The selected homo-

geneous intervals indicate gradual changes in growth of industrial production driven by

constant evolution of the real economy in China, as well as abrupt changes in interest-

rate and inflation dynamics that capture monetary policy shifts.
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1 Introduction

A large body of literature focuses on forecasting important macroeconomic variables such as
inflation rate and GDP growth, yet accurate prediction of these variables remains elusive for
economists and policymakers (Bräuning and Koopman, 2013; Clements and Hendry, 2008;
De Gooijer and Hyndman, 2006). One of the biggest challenges lies in the irregular, unantic-
ipated, and sometimes large, shifts in economic activities that lead to parameter instabilities
in parameterized models (D’Agostino et al., 2013; Stock and Watson, 1999, 2007). As a
result, the forecasting performance of econometric models may vary dramatically across
different sample periods (Rossi and Sekhposyan, 2010). The task of accurately forecast-
ing major macroeconomic variables become even more daunting for transition economies
such as China, Russia and countries in eastern Europe as they suffer from limited effective
data length compared to developed economies, as well as frequent structural changes and
evolving policies.
China has seen several decades of rapid economic growth and remarkable economic

achievements since the launch of its reforms in 1978. GDP growth averaged 9.8% a year from
1978 to 2013, and China surpassed Japan as the world’s second largest economy in 2009.
This extraordinary performance reflects two simultaneous trends: China’s gradual transi-
tion from a planned economy to its current socialist market model, and the active adoption
of modern technology and management practices. During its transition process, China has
experienced major policy regime shifts and vast structural reforms. Notable reforms include
the agricultural reform that introduced household responsibility system in 1981; the reform
of state-owned enterprises (SOEs) in the 1980s; decentralization of decision-making and the
rise of township enterprises in the mid-1980s; the marketization of prices in 1992; the fiscal
and tax system reform in 1994 to broaden the tax base and decentralize the tax collection
power; the financial system reform in 1999; entry into the WTO in 2002; and the reform in
exchange-rate regime in 2005 (Naughton, 2007; Lin, 2013; Chow, 2015). Such policy adjust-
ments can affect economic structures, pricing mechanisms, degrees of market competition
and the decision-making powers of agents in ways that impact aggregate economic variables
such as GDP growth, the inflation rate and key interest rates. Thus, the dynamics of these
variables in a transition economy context need to reflect these structural changes to achieve
a modicum of forecasting accuracy.
The literature provides many fruitful studies in forecasting macroeconomic variables,

ranging from parsimonious time-series models and macro-theoretical based models such as
the Philips curve model to structural VAR and factor-augmented VAR models (Stock and
Watson, 1999, 2002a,b; Forni et al., 2000, 2003; Bai and Ng, 2002, 2008). To address the
issue of parameter instability, many models include features of long memory or structural
breaks (Clements and Hendry, 1996; Banerjee et al., 2008; Stock and Watson, 2009; Clark
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and McCracken, 2010; Geweke and Jiang, 2011; D’Agostino et al., 2013). Even so, complex
econometric models often fail to outperform simple time-series models or forecasts based
on survey data (Ang et al., 2007; Stock and Watson, 2008; Belmonte and Koop, 2014). The
factor-augmented VAR model, for example, hinges on the effective selection of factors and
tends to perform poorly in out-of-sample forecasting due to potential structural changes of
the factors. Predicting local shifts in factors can also present computationally non-trivial
challenges (Castle et al., 2013).
Moreover, most of the above-mentioned methodological research work on predicting

macroeconomic time series focuses on developed countries. Existing macroeconomic fore-
casts for developing countries, especially transition economies, tend to be empirical applica-
tions and comparisons of the aforementioned forecast models and approaches. For example,
Krkoska and Teksoz (2007) make a comprehensive analysis of the forecast accuracy of output
growth for transition countries in central and eastern Europe and former Soviet Republics
based on the performance of forecasts produced by the European Bank for Reconstruction
and Development (EBRD). Ahumada and Garegnani (2012) estimate Argentinian money
demand with an equilibrium-correction model of monetary aggregate M2 and compare the
performance of the model with alternative forecasting approaches, including VAR, naive
models and pooling of different forecasts. Notably, studies of systematic forecasting in
transition economies largely overlook transition effects.
Forecasting macroeconomic indicators of transition economies has two notable features.

First, structural changes due to policy and regime shifts occur much more often than in de-
veloped economies. Second, available data tend to be far more limited and of poorer quality
than in developed economies. This paper takes these two features into consideration by in-
corporating an adaptive approach for estimating and forecasting three key macroeconomic
variables for China with a local autoregressive (LAR) model.
Chen, Härdle and Pigorsch (2010) initially propose a LAR model to forecast realized

volatilities in order to identify typical long-memory patterns of financial time series. Since
parameter instability of stationary processes can produce spurious long-memory phenomena,
the authors adopt a strategy of nesting local homogenous intervals with relatively stable
parameters into a global process. Through Monte Carlo experiments and empirical out-of-
sample forecasting for the potentially nonstationary time series, their LAR method beats
popular alternative models when dynamic selection of the homogeneous sample interval
is used with a parsimonious local AR(1) model. Chen and Niu (2014) further apply the
local adaptive approach to forecast the term structure of US interest rates. Their method
substantially outperforms alternative term-structure methods in forecasts with 3- to 12-
month horizons. The approach is shown to capture structural changes of the time series
quite well, and commonly identified interval endings are in line with major policy changes
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or economic recessions.
Given the above-mentioned feature of transition economies, the LAR model appears

particularly suitable for forecasting key macroeconomic variables in situations of limited
sample length or vulnerability to structural breaks. Recent successful applications of the
adaptive approach include Härdle et al. (2014a) and Härdle et al. (2014b) in forecasting
trading volumes and order flow in financial markets.
Based on adaptively identified homogeneous intervals, we directly utilize a parsimonious

LAR(1) model to forecast China’s macroeconomic variables. Our three selected variables
are the growth rate of industrial production (IP growth) as a proxy for real GDP growth, the
CPI inflation rate as a representative for nominal variables, and the 7-day China Interbank
Offered Rate (Chibor, i.e. National Interbank Offered Rate) as a money market indicator.
For forecast comparison, we choose popular forecast models with predetermined estimation
windows as alternatives. For inflation, we follow Ang et al. (2007), employing a Philips
curve model, a time-series AR model, an interest-rate term-structure model and a combined
model. For IP growth, we draw on the idea of selecting alternative models suggested by
Stock andWatson (2002a), choosing as our alternative models an AR model, macroeconomic
models with various factors, a random-walk model and a combined model. For interest rate,
we choose AR and random-walk models as alternatives.
The literature repeatedly points to the difficulty of beating survey forecasts (e.g. Ang

et al., 2007; Belmonte and Koop, 2014), so we compare our forecast results against the
well-recognized China Macroeconomic Research Center (CMRC) Langrun survey forecast.
Our LAR model substantially outperforms alternative models with predetermined re-

gression windows in 3- to 12-month ahead forecasts. For example, the forecast root mean
squared errors (RMSE) of the 12-month ahead LAR forecast has been reduced by about
30% compared to alternative models. Our 1-quarter ahead LAR forecasts are as good as
CMRC survey forecasts.
The LAR identified homogeneous intervals further provide useful information on monitor-

ing and understanding China’s economic dynamics in real time. We find from the identified
homogenous intervals several abrupt changes in inflation and interest rate that are in line
with major reforms of monetary policy and institutions. For IP growth, in contrast, only
gradual changes in homogenous intervals are detected. This likely reflects gradual transition
of the real economy, echoing the immensity and scope of China’s economic reforms.
The rest of the paper is organized as follows. Section 2 describes the adaptive model.

Section 3 presents our data, the forecast procedure and alternative models for comparison.
Section 4 presents the forecast results and comparison with detailed discussion. Section 5
concludes.
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2 LAR-based adaptive modeling and forecasting

We follow Chen, Härdle and Pigorsch (2010) to model each of the macroeconomic time series
as an LAR(1) model. The time series in an identified homogenous interval can be modeled
locally as a typical AR model with approximately constant parameters. The LAR treats the
parameters globally in a time-varying manner. Chen, Härdle and Pigorsch (2010) show that
a simple LAR model can outperform GARCH models and other popular volatility models
when applied to forecasting realized volatility. Chen and Niu (2014) extend their local
autoregressive model to incorporate exogenous variables (LARX model). The LARX model
effectively forecasts yield factors and outperforms typical yield curve models substantially
over 3- to 12-month forecast horizons.
Here, we implement a LAR estimation and forecast for three representative time series

of Chinese macroeconomic variables. Although potential information from other variables
can be used to enhance the forecast performance as in a LARX model, our focus is on
demonstrating that an adaptive forecast with a simple model can improve substantially
upon conventional models that rely on predetermined estimation windows, and that the
by-product of the identified homogenous interval is useful in monitoring and understanding
the pattern of structural changes in selected macroeconomic variables.

2.1 LAR model

This subsection gives a simplified, self-contained illustration of the LAR model estimation
procedure. For further insight, Chen and Niu (2014) provide a detailed elaboration on
technical calibration of critical values for the test procedure. We rely on properties and
robustness of the local model studied with Monte Carlo simulations in Chen, Härdle and
Pigorsch (2010).

2.1.1 LAR model and estimator

We model the variable using a simple LAR(1) that defines the data-generating process as
an autoregressive process with one lag. Unlike a traditional AR(1) model, the parameter
set is indexed to the local time t when the model is estimated with data up to t. Denoting
the parameter set as θt = (θ0t, θ1t, σt)>, the model is:

yt = θ0t + θ1tyt−1 + µt, µt ∼ N(0, σ2
t ). (1)

The time-varying parameter set indicates that the model recognizes possible parameter
changes in the data-generating process. Additionally, the model allows for the existence
and identification of a local interval of length mt, [t−mt+1, t], over which the parameter θt
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stays approximately constant, i.e. locally homogenous, so that the process can reasonably
be described by a traditional autoregressive model.
For a specified interval, the (quasi) maximum likelihood estimation can be implemented

to obtain the local maximum likelihood estimator θ̃t, which is defined as:

θ̃t = arg max
θt∈Θ

L(y; It, θt)

= arg max
θt∈Θ

−(mt − 1) log σt −
1

2σ2
t

t∑
s=t−mt+2

(ys − θ0t − θ1tys−1)2

 ,
where Θ is the parameter space and L(y; It, θt) is the local log-likelihood function.

2.1.2 Testing procedure for homogeneous intervals

The key issue in the LAR modeling is a backward testing procedure to identify the longest
possible homogeneous interval among various possible intervals up to time t. To reduce the
computational burden, at any particular time point t, we divide the sample with discrete
increments of M periods (M > 1) between any two adjacent sub-samples to obtain Kt

candidate sub-samples,

I
(1)
t , · · · , I(K)

t with I(1)
t ⊂ · · · ⊂ I(K)

t .

I
(1)
t is the shortest sub-sample and should be reasonably fit by an AR(1) model with constant
parameters.

To start the testing procedure, an underlying assumption is that I(1)
t is locally homo-

geneous. For a specific interval I(k)
t , the maximum likelihood (ML) estimator is denoted

as θ̃(k)
t and the local homogeneous estimator is denoted as θ̂(k)

t . For the first interval I(1)
t ,

we assume θ̂(1)
s = θ̃

(1)
s by default. For the subsequent intervals, we first obtain θ̃

(k)
t from

the maximum likelihood estimation, and then determine whether to accept it as the local
homogeneous estimator θ̂(k)

t with a likelihood ratio test. The test statistic is

T
(k)
t =

∣∣L(I(k)
t , θ̃

(k)
t )− L(I(k)

t , θ̂
(k−1)
t )

∣∣1/2, k = 2, · · · ,K (2)

where L(I(k)
t , θ̃

(k)
t ) = maxθt∈Θ L(y; I(k)

t , θt) denotes the fitted likelihood under hypothetical
homogeneity and L(I(k)

t , θ̂
(k−1)
t ) = L(y; I(k)

t , θ̂
(k−1)
t ) refers to the likelihood in the current

testing sub-sample assuming the parameter estimate from the previously accepted local ho-
mogeneous interval. The test statistic measures the difference between these two estimates.
If I(k)

t is homogenous, the difference will be due to sampling randomness. If parameter
changes occur between I

(k−1)
t and I

(k)
t , the difference should be relatively large. A set of

critical values ζ1, · · · , ζK will be used to test the differences. If T (k)
s ≤ ζk, we accept the cur-
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rent sub-sample I(k)
t as being homogeneous and update the adaptive estimator θ̂(k)

t = θ̃
(k)
t . If

T
(k)
t > ζk, it indicates that the model significantly changes, and the testing procedure ends

here and the latest accepted sub-sample I(k−1)
t is selected, such that θ̂(k)

t = θ̂
(k−1)
t = θ̃

(k−1)
t .

For ` ≥ k, we have θ̂(`)
s = θ̃

(k−1)
s , meaning that the adaptive estimator for even longer

sub-sample at time t is the ML estimate over the identified longest sub-sample of local
homogeneity. The procedure ends if a significant change is found or the longest sub-sample,
I

(K)
t , is reached under local homogeneity. The critical values are calibrated empirically with
Monte Carlo experiments using an initial training sample of the data. The computing pro-
cedure and robustness study have been illustrated in details in Chen, Härdle and Pigorsch
(2010) and Chen and Niu (2014).

2.2 Real-time estimation and forecast

Following the test and estimation procedure described above, we estimate the LAR(1) model
for each variable from a selected initial time of estimation, and then forecast the variable
h-step ahead assuming the parameters keep homogeneity over the forecast horizons. The
estimation and forecast moves forward one period at a time until the end of the entire
sample is reached.
For a specific forecast horizon h, we follow a direct forecast approach that is simple to

implement and robust for possibly mis-specified models. The LAR(1) model for horizon h
is specified as

yt = θ0t + θ1tyt−h + µt, µt ∼ N(0, σ2
t ). (3)

Hence, at time t, the LAR(1) model for different forecast horizons may have different sets
of parameter estimates and correspondingly identified homogenous intervals.

3 Data and out-of-sample forecasts with the LAR model

This section introduces the macroeconomic variables to be predicted, the forecast procedure
and measures of comparison with alternative models.

3.1 Data

Monthly data obtained from the CEIC China Economic and Industry Database cover the
CPI inflation rate and the year-on-year growth of industrial production (IP growth) for
the periods 1992:1–2014:3 (inflation) and 1995:1–2014:3 (IP growth). We use the weighted
average of the 7-day Chibor taken from the closing interest rate of the week’s final trading
day from January 2001 to March 2014, which gives a total of 682 data points. It is worth
mentioning that there are other interest rate candidates, such as the Shanghai Interbank
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Offer Rate (Shibor), which is officially launched from January 2007. Although Shibor is
the interbank quote-based average rate while Chibor is the weighted average of the daily
transaction rate at the end of each business trading day, both follow each other very closely
and jointly play crucial roles as the basic interest rates in China. Considering the sample
length and the consistency involved in comparison with the term structure interest models,
we uniformly choose Chibor in our paper.

[Figure 1. Plot of the three macroeconomic variables]

Table 1 presents the simple statistics for the three time series. All three time series
exhibit high persistence that is easily visualized from the autocorrelation functions in Figure
2, where the autocorrelations slowly decay. This feature indicates that either the series
possess relatively long memory or there are structural changes driving spurious persistence.
The interest-rate series presents clustering of volatility and jumps in the dynamics that
imply changing volatility in innovation. This evidence provides the justification for our
application of an adaptive approach that features a globally changing, locally stationary
data-generating process.

[Table 1. Statistics of the three macroeconomic variables]

[Figure 2. Autocorrelation functions of the three variables]

3.2 LAR forecast procedure

Due to data availability, the three macroeconomic time series have different sample periods
and frequencies. Thus for each time t estimation and its out-of-sample forecast, we set
the maximum length of interval I(K)

t to 120 + h periods for all variables (h denotes the
forecast horizon). To reduce the computational burden when identifying the homogenous
interval at time t, we use a universal set of sub-samples withK = 20 andM = 6 at each time
point, starting with the shortest sub-sample covering the most recent six lag periods, setting
the interval between two adjacent sub-samples to six periods, and ending with the longest
sub-sample of 120 + h periods. Once an optimal sub-sample is selected against the next
longer sub-sample, the parameter change is understood to have taken place sometime within
the six periods in between. In doing so, we trade off precision in break identification for
computational efficiency. Precise identification of the breaking point is not a major concern,
however, since our primary goal is to estimate from the identified sample with relatively
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homogeneous parameters. Also, as many changes occur smoothly, point identification of
breaks need not be precise or even necessary.
The resulting initial samples for a specific forecast horizon and the forecast comparison

periods are summarized in Table 2. For monthly data of inflation and IP growth, we make
out-of-sample 1-, 3-, 6-, 9- and 12-month ahead forecasts, and then move forward one month
at a time to forecast at these five horizons until we reach the end of the full sample. For
the weekly 7-day interbank offered rate, the first sample for estimation uses data up to end
2005 for 1-, 4-, 12-, and 24-week ahead forecasts. Then we move forward one week at a time
to forecast at these four horizons until we reach the end of the full sample.

[Table 2. Initial samples of estimation and periods of forecast comparison]

3.3 Alternative models for comparison

For comparison, we choose popular forecast models for each macroeconomic variable. The
choice of regression windows follow rule of thumb, either using a rolling window of 60
or 120 periods, or using a recursive window incorporating an increasing number of past
observations as the forecast moves forward. A recursive window approach is preferred if the
sample has no changing parameters and the extended sample length increases information
efficiency. A rolling window approach addresses the balance of information efficiency versus
possible breaks and resulting parameter uncertainty. In both cases, however, the choice
of window length is predetermined and not selected in a systematic, data-driven manner.
Using the direct forecast approach as for the h-step ahead forecast of LAR(1) in equation
(3), we also specify the alternative models for h-step ahead forecast as a generalized 1-step
ahead forecast by lagging the predetermined dependent variables h-step backward.
In addition to model comparison, we also use the CMRC Langrun survey forecast as an

alternative. The predictive power of the Langrun survey forecast is reputed to be unbeatable
as it combines the outlooks of forecast institutions in possession of rich information and
using sophisticated forecast methods. The Langrun survey was initiated in July 2005 by
the China Center for Economic Research (CCER) of Peking University. After the official
release of the previous quarter’s data, the CMRC invites about two dozen institutions to
predict the major macroeconomic variables for the next quarter, including GDP growth,
CPI, industrial production growth, interest rates and exchange rates. The resulting CMRC
Langrun forecast provides two measures: a simple average of institutional forecasts and a
weighted average based on the historical forecast accuracy of each participating institution.
We assess how our LAR(1) model performs compared to the alternative models with

various predetermined window length strategies and the Langrun forecast. We denote IP
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growth, CPI inflation rate and the 7-day Chibor at time t as yt, πt and rt, respectively. The
involved data in the alternative models, as will be mentioned in the following, are summa-
rized in Table 3. Due to data availability, the intervals of data varies. This occasionally
binds our choices of alternative window length selection in forecast comparison.

[Table 3. Summary of involved data in alternative models]

3.3.1 Alternative forecasts for IP growth

1. Time-series model of AR(1). Using a direct forecast approach as in the h-step ahead
forecast of LAR(1) in equation (3), the AR(1) model for h-step ahead IP growth
forecast is

yt = θ0 + θ1yt−h + εt, εt ∼ N(0, σ2
t ), (4)

and its corresponding time-t forecast is

ŷt+h/t = θ̂0 + θ̂1yt. (5)

2. Real-activity-related model (RA). As Shiu and Lam (2004); Chen et al. (2007); Narayan
et al. (2008) note, there is a strong correlation between real economic growth and real
activity variables such as electricity consumption. In such models, in addition to
lagged industrial production, a variable correlated with the real economy, Xt, is in-
cluded,

yt = θ0 + θ1yt−h + θ2Xt−h + εt, εt ∼ N(0, σ2
t ). (6)

We choose two alternatives for Xt, either the electricity consumption or a leading eco-
nomic indicator constructed by National Bureau of Statistics of China, both retrieved
from the CEIC database. We denote these two versions of RA models as RA1 and
RA2.

3. Interest-rate term-structure model (TS). Based on the RA model, the nominal risk-
free rate, represented by the one-month weighted average national interbank offered
rate of the People’s Bank of China, rt, is included. This short-term interest rate is
an important monetary policy instrument. It is closely linked to the business cycle
and carries useful information for forecasting performance of the real economy in
the short to medium run. While it would be useful to consider the term spread (the
difference between long-term and short-term interest rates) as it may be more effective
in predicting business cycles, we limit our term-structure information to the short rate.
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China has only had an active treasury bond market producing a meaningful yield curve
since 2006. The TS model is thus written as

yt = θ0 + θ1yt−h + θ2Xt−h + θ3rt−h + εt, εt ∼ N(0, σ2
t ). (7)

Here, the TS model with electricity consumption growth as additional related real
activity Xt−h is denoted as TS1, with the leading indicator as Xt−h denoted as TS2,
and with both variables in Xt−h denoted as TS3.

4. Random walk (RW) model.

yt = yt−h + εt, εt ∼ N(0, σ2
t ). (8)

ŷt+h/t = ŷt. (9)

5. Langrun survey forecast.

The CMRC Langrun survey forecast is a quarterly forecast at the annual frequency
for year-on-year growth rate that dates from the third quarter of 2005. Our IP growth
data, in contrast, are for monthly year-on-year growth rates. Thus we transform our
monthly results for 3-, 6-, 9-, and 12-months ahead forecasts into quarterly year-on-
year growth data corresponding to 1-, 2-, 3-, and 4-quarter ahead forecasts with the
following equation (10) (Mariano and Murasawa, 2003):

yt = 1
3
(
y∗t−2 + y∗t−1 + y∗t

)
, (10)

where yt denotes the transformed quarterly data, and y∗t represents the corresponding
monthly data.

For the same underlying realization yt, we compare the 1- to 4-quarter ahead LAR(1)
forecasts (ŷt|t−h, h = 1, ..., 4) with (quasi) 1-quarter ahead Langrun forecasts (ŷt|t−1).

3.3.2 Alternative forecasts for the inflation rate

1. Time-series model AR(1).

πt = θ0 + θ1πt−h + εt, εt ∼ N(0, σ2
t ), (11)

and its corresponding forecast is

π̂t+h/t = θ̂0 + θ̂1πt. (12)
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2. Phillips curve model (PC).

In addition to the lagged inflation, a variable proxying real activity, Xt, is also in-
cluded:

πt = θ0 + θ1πt−h + θ2Xt−h + εt, εt ∼ N(0, σ2
t ), (13)

where we choose two alternatives for Xt, either the IP growth or the leading economic
indicator constructed by the National Bureau of Statistics of China. We denote these
two versions as PC1 and PC2, respectively.

3. Interest-rate term-structure model (TS).

Based on the PC model, the nominal risk-free rate, represented by the one-month
Chibor, rt−h, is included to provide potential information closely linked to the business
cycle.

πt = θ0 + θ1πt−h + θ2Xt−h + θ3rt−h + εt, εt ∼ N(0, σ2
t ). (14)

The TS model with IP growth as Xt−h is here denoted as TS1, with the leading
indicator as Xt−h denoted as TS2, and with both IP growth and the leading indicator
as Xt−h denoted as TS3.

4. Random walk model (RW).

πt = πt−h + εt, εt ∼ N(0, σ2
t ). (15)

π̂t+h/t = π̂t. (16)

5. Langrun survey forecast.

As with the IP growth forecast, the CMRC Langrun survey forecast for inflation is also
a quarterly forecast for year-on-year inflation from the third quarter of 2005 onwards,
while our CPI inflation is a monthly year-on-year inflation rate. We thus transform
our monthly forecasting results for 3-, 6-, 9-, and 12-month horizons into quarterly
year-on-year growth data corresponding to 1-, 2-, 3-, and 4-quarter horizons with the
following equation (17)(Mariano and Murasawa, 2003):

πt = 1
3
(
π∗t−2 + π∗t−1 + π∗t

)
, (17)

where πt denotes the transformed quarterly inflation data, and π∗t represents the
corresponding monthly inflation data.

For the same underlying realization πt, we compare the 1- to 4-quarter horizon LAR(1)
forecasts (π̂t|t−h, h = 1, ..., 4) with (quasi) 1-quarter horizon Langrun forecasts (π̂t|t−1).
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3.3.3 Alternative models for key interest rate

1. Time-series model AR(1).

rt = θ0 + θ1rt−h + εt, εt ∼ N(0, σ2
t ), (18)

and its corresponding forecast is

r̂t+h/t = θ̂0 + θ̂1rt (19)

2. Random walk (RW) model.

rt = rt−h + εt, εt ∼ N(0, σ2
t ). (20)

r̂t+h/t = r̂t. (21)

3.4 Measures of forecast comparison

We use three measures as indicators of forecast precision, the forecast root mean squared
error (RMSE), the mean absolute error (MAE) and the mean error (ME). We also com-
pute the standard deviation of absolute errors (Std(AE)) and standard deviation of errors
(Std(Err)) to evaluate the forecast variation.

• Root mean squared error, RMSE.

RMSE =

√√√√ 1
Ti

Ti∑
t=1

(xt − x̂t)2. (22)

• Mean absolute error, MAE, and standard deviation of absolute errors, Std(AE).

MAE = 1
Ti

Ti∑
t=1
|xt − x̂t| , (23)

Std(AE) = std(|xt − x̂t|), (24)

where Ti is the forecasting interval, x̂t is the estimator for time t.

• Mean error, ME, and standard deviation of errors, Std(Err).

ME = 1
Ti

Ti∑
t=1

(xt − x̂t) , (25)

Std(Err) = std(xt − x̂t). (26)
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4 Forecast results

This section discusses comparison of forecasts, the potential monitoring function of the
LAR approach on identifying shifts occurring as part of the economic transition, as well as
robustness with respect to the forecast period.

4.1 LAR model performance compared to alternative forecasts

Table 4 reports the forecast RMSE and MAE, while Table 5 reports Std(AE) and Std(Err)
for the macroeconomic variables with the selected forecast horizons.
For IP growth and the inflation rate, we compare the out-of-sample forecast performance

for the LAR(1) model and the following alternative models and sample selection strategies:
(1) The autoregressive time-series model with three window-length strategies: 60- and

120-month rolling windows of fixed sample lengths, as well as a recursive window with
expanding sample length.
(2) Other models with additional macroeconomic variables, including the real activity

model (RA1, RA2) for IP growth and Phillips curve model (PC1, PC2) for inflation rate
(both incorporating electricity or a leading indicator), and models incorporating the interest
rate term structure (TS1, TS2, TS3) for IP growth and inflation. These models all have
two alternative sample length strategies: a 60-month rolling window with fixed length and
a recursive window with expanding sample length.
(3) The random walk model.
For the weekly interest rate Chibor, we presents the results of LAR(1), AR(1) with

130-week (2.5 year) and 260-week (5-year) rolling windows and a recursive window with
expanding length, and the random walk.
In each column, the best forecast is indicated in bold across the forecast measure/horizon.

The second-best forecast is underlined.

[Table 4. Forecast comparison of the three macroeconomic variables: RMSE and MAE]

[Table 5. Forecast comparison of the three macroeconomic variables: Std(AE) and
Std(Err)]

Table 4 demonstrates that the LAR(1) model for the three macroeconomic variables
always outperforms alternative models in 3- to 12-month ahead forecasts. Moreover, the
advantage increases with the length of the forecast horizon. With respect to IP growth and
inflation, the RMSE and the MAE for 6- to 12-month ahead forecasts with the LAR model
achieve a nearly 40–50% reduction compared to the second-best forecast. The superior
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performance of the LAR model over the alternatives is similar for the interest-rate forecast
measured by RMSE and MAE, where both are the smallest for LAR in each forecast horizon.
Table 5 shows the LAR model outperforming the alternatives in 3- to 12-month ahead

forecasts when forecast variance is considered in terms of standard deviation of mean abso-
lute error and mean error. For IP growth, the reduction of standard errors tends to range
between 10–40% as the forecast horizon increases from 3 months to 12 months. A similar
pattern is found for the inflation-rate forecast.
Overall, the LAR model outperforms alternative models except at the very short end

(1-week and 1-month ahead forecasts). The superior performance of 3- to 12-month ahead
forecasts for IP growth and inflation rate, as well as 4- to 24-week ahead forecasts for the
interest rate, are robust with respect to measures of RMSE, MAE and standard deviations
of forecast errors.
In Figure 3, we plot forecast comparison between the LAR and TS2 recursive forecast

for IP growth, TS3 rolling 60m forecast for inflation rate, and AR 60m rolling forecast for
interest rate. The first two rows present the forecast of IP growth and inflation rate for
1-, 6-, 9- and 12-month ahead forecasts, and the last row for 1-, 4-, 12- and 24-week ahead
interest-rate forecasts. The realized data are displayed with solid lines, LAR forecasts are
displayed with dashed lines, while the alternative forecasts have dot-dashed lines.
Because they are so close, it can be difficult to distinguish between the three series for

the 1-period ahead forecast. Nevertheless, as the forecast horizon increases, it is clear that
the dashed line of the LAR forecast tracks the dynamics of actual data more closely than
the alternatives. In particular, the LAR 6-month, 9-month and 12-month ahead forecasts
promptly capture sharp falls in IP growth and the inflation rate for the large swings during
the financial crisis in the period 2007–2010.

[Figure 3. Plots of the realized data with forecasts of LAR and representative comparing
models]

In Table 6, we report the R2 in the Mincer-Zarnowitz regressions (Mincer and Zarnowitz,
1969) and the Diebold-Mariano test statistics (Diebold and Mariano, 1995) to compare
the LAR versus alternative model forecasts. In the Mincer-Zarnowitz (MZ) regression, we
regress the observed actual data on the corresponding forecasts of model i:

yt = α+ βŷt,i + εt, (27)

and take the determination coefficient R2 as an indicator of forecast fit. Bold numbers
indicate the highest R2, the best forecast fit among the LAR and all alternatives. In the
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Diebold-Mariano (DM) test, we conduct a pairwise test on the equality of the mean squared
forecast errors by regressing the difference between the squared forecast errors of the LAR
model and the alternative model i, e2

t,LAR − e2
t,i = µ + εt. The null hypothesis of equal

performance is that H0 : µ = 0. We focus on the t-statistics of parameter µ, denoted as
DM t-stat, which favors the LAR if it is significantly negative (significance level marked by
asterisks).
Table 6 shows that although the advantage of the LAR is insignificant for the 1-month

ahead forecast for IP growth and inflation. However, it outperforms all alternative models
in the 3- to 12-month ahead forecasts with the largest R2 and significantly negative DM
test statistics. Similar patterns hold for the interest-rate forecast across horizons.

[Table 6. Forecast comparison between the LAR and alternative models: MZ regression
and DM test]

In Table 7, we compare the forecast performance of the LAR model against the CMRC
Langrun survey: IP growth in panel a), and inflation rate in panel b). For comparison
with the quarterly survey forecast, we transform our 3-, 6-, 9- and 12-month ahead forecast
data into 1-, 2-, 3- and 4-quarter ahead year-on-year forecast data with equation (10) and
(17). To match the same forecast period of inflation and IP growth, and in view of the
incompleteness of the involved forecast institutes at the initial stage of CMRC survey, we
discard the first two forecasts of the CMRC survey and conduct forecast comparison for
both variables over the period 2006:Q1–2014:Q1. The CMRC column presents the 1-quarter
ahead survey forecast. For the same targeted forecast period, we present 1- to 4-quarter
ahead predictions of the LAR. We first report the measures of RMSE, MAE and standard
deviations of errors. At the bottom of each panel, we provide two additional measures: the
R2 of MZ regression and the DM test statistics.
In panel a), the LAR outperforms the CMRC survey for IP growth on most measures,

including smaller values for RMSE and standard deviation of errors and higher R2 in the MZ
regression in the case of the 1-quarter ahead prediction. Even in the 2-, 3- and 4-quarter
ahead forecasts, the LAR model produces precision comparable to the 1-quarter horizon
forecast and with higher R2 in the MZ regressions and negative (even if not significant) DM
t-statistics. In panel b), the performance of the LAR model matches that of the CMRC
survey 1-quarter ahead inflation-rate forecast. The LAR model, however, produces overall
satisfactory results compared to the survey forecast and delivers more timely prediction of
forecast events than the CMRC survey.

[Table 7. Forecast Comparison between the LAR and CMRC survey]
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In Figure 4, we plot the LAR and CMRC survey forecasts for the IP growth rate and
inflation rate 1-quarter ahead in the first row. The actual data are indicated with solid
lines, LAR forecast with dashed lines and survey forecast with dot-dashed lines. The figure
shows that the LAR and CMRC survey forecasts match the actual data both very well,
but the LAR better forecasts the economic downturn in 2008. The second row presents the
actual data with solid lines, together with the LAR forecasts 2-, 3- and 4-quarter ahead
marked as dashed lines, dotted lines and dot-dashed lines, respectively. Even for the 2- to
4-quarter ahead predictions, the LAR model captures the realized data without showing
the dramatic rising prediction errors that typically accompany longer horizon forecasts.

[Figure 4. Plots of the realized data with LAR and CMRC forecasts]

4.2 Lengths of stable sub-samples

Table 8 summarizes the average lengths for detected homogenous intervals of the three
variables in each forecast horizon. The average sample length is relatively low with a mean
value 19 months for IP growth. The average range of homogenous interval is 32–80 months
for inflation and 36–70 weeks for interest rates. These average stable lengths are much
shorter than the traditionally used sample lengths of, say, 5 years, 10 years or even longer
in rolling and recursive window forecasts.

[Table 8. Average lengths of homogeneous intervals detected by LAR]

Figure 5 presents the parameter evolution in the LAR model for a 1-period ahead forecast
with the three variables. We see here that the estimated parameters change over time with
abrupt breaks and gradual changes that indicate regime shifts. The financial crisis dra-
matically drags down the persistence of inflation and interest rate, and pushes up standard
deviations for all variables to historical highs.

[Figure 5. Parameter evolution in the LAR model]

4.3 Patterns of implied breaks and policy changes

Having shown our LAR model predicts selected Chinese macroeconomic variables better
than traditional alternatives, we now consider if there might be other benefits from the
model’s adaptive feature. Is useful information hidden in the detected breaks and parameter
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shifts that drives good predictive ability of the model? Understanding the time-varying
features of state dynamics in real time, after all, could be valuable not just for forecasting,
but for real-time diagnosis of the macroeconomy and policy making.
Figure 6 plots the detected stable sub-samples and breaks along the vertical time axis

for each macroeconomic variable. We report the results of the 1-step ahead forecast of the
LAR(1) model. The vertical axis denotes the time when the forecast is made. At each point
of time, an optimal sub-sample is detected. This is shown as a light solid line along the
horizontal time axis. At the end of the line, a dark dotted line indicates the period, in this
case six months for IP growth and inflation rate and six weeks for interest rate, during which
the most recent break happens such that the hypothesis of homogenous interval no longer
holds. When these (dark blue) dotted lines are stacked along the forecast time, common
areas of detected breaks become evident.

[Figure 6. Detected sub-samples of homogeneity]

Observing Figure 6, we find that the stable sub-samples of the inflation rate are relatively
longer than those of IP growth and interest rate as illustrated by the average sample lengths
in Table 8. The real variable, IP growth, has fewer clear cut breaks with short homoge-
neous intervals, suggesting gradual and smooth changes in the data-generating process.
This finding echoes the gradual transition strategy of China and the diffusion of growth
factors such as technology innovation, human capital development and the implementation
of gradual institutional reforms. In contrast, the nominal variables for inflation rate and
interest rate have several commonly identified ending periods of the homogeneous intervals,
that is abrupt breaks in late 1994, early 2005 and early 2009 for inflation, and early 2004
and early 2008 for interest rates.
Nominal variables are prone to impacts of monetary policy and regime changes. Although

break identification is purely data driven and a by-product of testing homogenous intervals
for local estimation, commonly identified break periods in the nominal variables are quite
in line with major policy changes. For instance, 1994 marks the official response to the
economic overheating that began in 1992. At that time, the People’s Bank of China (PBoC)
embraced monetary policies that have ever since kept inflation below 10%.
Over our common samples of interest rate and inflation between 2001 to 2014, the LAR

identifies two break periods for each variable. The breaks for interest rate (early 2004 and
early 2008) leads the breaks for inflation (early 2005 and early 2009) by about a year. This
is consistent with the stickiness of price and sensitivity of interest rate to policy changes.
However, what policy changes might have caused such substantial dynamic changes in the
nominal variables?
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First, there was the launch of marketization of interest rates in China in January 1, 2004.
The PBoC allowed commercial bank lending rates to float between 0.9 to 2 times the official
lending rate. As a result, interest-rate formation became partly determined by the market
and bank interest rates began to vary in response to supply and demand. There were also
preparations for a change in exchange rate regime from a fixed to managed float in July
2005. A period of stable inflation ended as inflationary pressure began to build in mid-2005
in anticipation of yuan appreciation and large inflows of international capital.
Second, there was an abrupt change in monetary policy stance in the first half of 2008. At

that time. the PBoC increased bank reserve requirements four times, eventually reaching
16.5%, the highest level since 1985. The reserve ratio averaged about 10% between 1985
and 2007. This tightened monetary policy ended some of the overheating in credit markets
and altered interest-rate dynamics. However, with global financial crisis depressing Chinese
exports and economic growth, the drop in inflationary pressure turned into a deflation
nightmare in 2009, and ending another period of stable inflation.
Overall, our LAR method is useful in monitoring structural breaks of the economic pro-

cess, showing gradual and smooth transition in the real economic variable, and abrupt
changes in nominal variables which are largely in line with major monetary policy shifts.

4.4 Stability and robustness of the LAR forecast performance

The LAR model demonstrates outstanding forecast performance for the three key macroe-
conomic variables. Is the performance restricted to the above-specified sample periods? The
extreme large swings before 1997 may favor the LAR due to its quick detection and shedding
off the initial period for the later forecast. Thus, the LAR may enjoy specific advantage
in forecasting the IP growth and inflation rate compared to rolling window or recursive
forecast of alternative models. To test the stability and robustness of the LAR forecast
performance, we select the period of 1998:1 to 2007:12 as the initial sample to estimate and
forecast the period of 2008:1 to 2014:3, a period that includes the global financial crisis.
We use similar procedures to those described above, including the same set of alternative
models and similar forecast comparison measures.
The results are summarized in Table 9. Panel a) reports the concrete estimation time

spans and forecast intervals for each forecast horizon. Panels b) and c) provide the forecast
comparison in terms of RMSE, MAE and standard deviations of errors. In each column,
the first best is bolded and the second best underlined. Results in panel b) and c) yet again
show that the LAR outperforms alternative models for 3- to 12-month ahead forecasts for
both IP growth and inflation. The reduction in RMSE, MAE and standard deviations
of errors remains in the range of 10–50% with respect to the second-best model. Again,
the advantage increases with the forecast horizon. Panel d) provides the comparison with
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MZ regression and DM test, where the advantage of LAR begins to dominate alternative
models starting from 3-month ahead forecast horizons with significant p-values, the highest
R-square and significant negative DM statistics. This robustness check demonstrates that
the advantage of the LAR in 3- to 12-month ahead forecasts of real activity and inflation
is maintained across sample periods.

[Table 9. Robustness check with sub-sample forecast for IP growth and inflation rate]

5 Conclusion

This study demonstrates how a LAR model may be applied to forecasting three key macroe-
conomic variables for China in a way that captures the features of its transition economy.
Our proposed method is shown to outperform popular models and window selection meth-
ods in predicting real and nominal out-of-sample variables, as well as display remarkable
real-time monitoring power in detecting structural changes in the underlying economy. An
ability to make timely, precise predictions can serve market participants and policymakers
in assessing and monitoring economic dynamics.
Extension of the proposed LAR to forecasting other economic variables should be fairly

straightforward. Future studies could also extend application of a LAR with exogenous
variables (LARX) to improve forecasts and model-averaging based on an adaptive method.
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Table 1. Statistics of the three macroeconomic variables 

Variables 
Sample 

periods 
Mean(%) Std(%) Skewness Kurtosis 

Growth of industrial production 231 12.918 3.691 -0.036 2.756 

Inflation rate 267 4.690 6.409 1.813 5.888 

Interest rate 682 2.669 1.166 1.971 9.301 

Notes: 

The first row is monthly data of the growth rate of industrial production from 

1995:1 to 2014:3; the second row is the monthly CPI inflation rate from 1992:1 to 

2014:3; the third row is the selected interest rate, the weekly 7-day Chibor (China 

Interbank Offered Rate), taken from the weighted average closing rate of the last 

trading day of a week, from January 2001 to March 2014. All data are from CEIC 

China Economic and Industry Database.  
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Table 2. Initial samples of estimation and periods of forecast comparison 

a) IP growth

The maximal interval of the initial sample Out-of-sample forecast comparison 

Forecast 
horizon h 
(month) 

Dependent variable 
interval 

Explanatory variable 
in lag term 

Forecast interval 
Number of forecast 

periods  

1 1995:02-2003:12 1995:01-2001:11 2005:01-2014:03 111 

3 1995:04-2005:02 1995:01-2001:11 2005:03-2014:03 109 

6 1995:07-2005:05 1995:01-2001:11 2005:06-2014:03 106 

9 1995:10-2005:08 1995:01-2001:11 2005:09-2014:03 103 

12 1996:01-2005:11 1995:01-2001:11 2005:12-2014:03 100 

b) Inflation rate

The maximal interval of the initial sample Out-of-sample forecast comparison 

Forecast 
horizon h 

(month) 

Dependent variable 
interval 

Explanatory variable 
in lag term 

Forecast interval 
Number of forecast 

periods  

1 1992:02-2001:12 1992:01-2001:11 2002:01-2014:03 147 

3 1992:04-2002:02 1992:01-2001:11 2002:03-2014:03 145 

6 1992:07-2002:05 1992:01-2001:11 2002:06-2014:03 142 

9 1992:10-2002:08 1992:01-2001:11 2002:09-2014:03 139 

12 1993:01-2002:11 1992:01-2001:11 2002:12-2014:03 136 

c) Interest rate

The maximal interval of the initial sample Out-of-sample forecast comparison 

Forecast 
horizon h 

(week) 

Dependent variable 
interval 

Explanatory variable 
in lag term 

Forecast interval 
Number of forecast 

periods  

1 2001:02-2005:52 2001:01-2005:51 2006:01-2014:14 426 

4 2001:05-2006:03 2001:01-2005:51 2006:04-2014:14 423 

12 2001:14-2006:12 2001:01-2005:51 2006:13-2014:14 414 

24 2001:28-2006:26 2001:01-2005:51 2006:27-2014:14 401 
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Table 3. Summary of involved data in alternative models 

Variables Frequency Sample data interval 

Growth of industrial production monthly 1995:M1-2014:M3 

Growth of electricity consumption monthly 1996:M2-2014:M3 

Leading economic indicator monthly 1992:M1-2014:M3 

One-month weighted average Chibor rate monthly 1996:M1-2014:M3 

Inflation rate monthly 1992:M1-2014:M3 

7-day Chibor rate(weekly weighted 
average) 

weekly 2001:M1-2014:M3 

CMRC Langrun survey data quarterly 2006:Q1-2014:Q1 
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Table 4. Forecast comparison of the three macroeconomic variables: RMSE and MAE 

a) IP growth

h=1m h=3m h=6m h=9m h=12m 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LAR(1) 1.195 0.875 1.640 1.262 1.695 1.254 1.725 1.206 1.591 1.104 

AR Rolling 60m 1.165 0.842 2.130 1.474 3.023 2.228 3.386 2.565 3.460 2.618 

AR Rolling 120m 1.117 0.832 2.083 1.503 3.149 2.474 3.757 3.024 4.076 3.280 

AR Recursive 1.107 0.814 2.033 1.437 2.993 2.199 3.497 2.631 3.727 2.839 

RA1 Rolling 60m 1.169 0.863 2.145 1.486 3.045 2.246 3.440 2.592 3.491 2.634 

RA1 Recursive 1.105 0.823 2.042 1.429 3.012 2.216 3.524 2.647 3.749 2.847 

RA2 Rolling 60m 1.071 0.786 1.946 1.350 2.904 2.114 3.359 2.569 3.409 2.697 

RA2 Recursive 1.029 0.778 1.907 1.344 2.896 2.145 3.529 2.690 3.854 2.896 

TS1 Rolling 60m 1.157 0.856 2.060 1.407 2.789 1.989 2.947 2.184 2.821 2.313 

TS1 Recursive 1.096 0.811 1.990 1.361 2.854 2.073 3.247 2.477 3.341 2.616 

TS2 Rolling 60m 1.090 0.806 2.003 1.436 2.875 2.065 2.957 2.226 2.514 2.024 

TS2 Recursive 1.032 0.778 1.897 1.306 2.817 2.051 3.268 2.513 3.330 2.581 

TS3 Rolling 60m 1.093 0.828 2.030 1.453 2.910 2.107 3.011 2.274 2.540 2.031 

TS3 Recursive 1.030 0.778 1.902 1.298 2.822 2.058 3.275 2.514 3.332 2.582 

Random Walk 1.106 0.827 2.111 1.445 3.330 2.379 4.144 2.944 4.646 3.275 

b) Inflation rate

h=1m h=3m h=6m h=9m h=12m 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LAR(1) 0.583 0.448 0.888 0.754 0.967 0.772 1.024 0.791 1.075 0.807 

AR Rolling 60m 0.675 0.515 1.281 0.994 1.922 1.491 2.234 1.711 2.267 1.753 

AR Rolling 120m 0.667 0.514 1.280 1.009 2.011 1.564 2.506 1.932 2.741 2.076 

AR Recursive 0.664 0.507 1.276 0.984 2.052 1.563 2.655 2.053 3.053 2.372 

RA1 Rolling 60m 0.599 0.466 1.178 0.963 1.838 1.444 2.169 1.674 2.110 1.544 

RA1 Recursive 0.587 0.442 1.127 0.912 1.819 1.454 2.321 1.864 2.639 2.122 

RA2 Rolling 60m 0.619 0.484 1.031 0.848 1.549 1.230 1.860 1.453 2.009 1.477 

RA2 Recursive 0.620 0.475 1.102 0.872 1.779 1.363 2.378 1.787 2.983 2.230 

TS1 Rolling 60m 0.597 0.459 1.168 0.958 1.865 1.479 2.232 1.748 2.208 1.700 

TS1 Recursive 0.592 0.448 1.143 0.922 1.832 1.461 2.279 1.809 2.444 1.941 

TS2 Rolling 60m 0.618 0.485 0.991 0.812 1.530 1.246 1.899 1.507 2.116 1.596 

TS2 Recursive 0.621 0.480 1.078 0.865 1.693 1.341 2.119 1.650 2.409 1.857 

TS3 Rolling 60m 0.582 0.451 0.992 0.809 1.550 1.251 1.921 1.512 2.116 1.617 

TS3 Recursive 0.590 0.451 1.061 0.859 1.684 1.350 2.113 1.668 2.372 1.869 

Random Walk 0.663 0.505 1.292 0.999 2.143 1.657 2.905 2.271 3.549 2.820 

c) Interest rate

h=1w h=4w h=12w h=24w 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LAR(1) 0.922 0.527 1.074 0.628 1.063 0.652 1.110 0.695 

AR Rolling 30m 0.979 0.603 1.104 0.712 1.212 0.770 1.286 0.868 

AR Rolling 60m 0.951 0.590 1.097 0.705 1.231 0.780 1.231 0.816 

AR Recursive 0.962 0.596 1.113 0.719 1.271 0.818 1.285 0.867 

Random Walk 1.006 0.546 1.191 0.737 1.441 0.895 1.416 0.990 

Notes: 

h denotes the forecast horizon. Std(AE) denotes the standard deviation of the absolute forecast errors, and Std(Err) 

denotes the standard deviation of the forecast errors. For each column, the best forecast, i.e., the smallest Std(AE) or 

Std(Err), is marked in bold-face; the second best is underlined. When the first and second best are the same, both are 

marked in bold-face, and no second best is further indicated. When the second and third best are the same, both are 

underlined. 
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Table 5. Forecast comparison of the three macroeconomic variables: Std(AE) and Std(Err) 

a) IP growth

h=1m h=3m h=6m h=9m h=12m 

Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) 

LAR(1) 0.812 1.195 1.037 1.640 1.139 1.695 1.234 1.725 1.146 1.591 

AR Rolling 60m 0.810 1.164 1.537 2.111 2.044 2.910 2.211 3.075 2.263 2.870 

AR Rolling 120m 0.748 1.114 1.442 2.058 1.986 3.052 2.230 3.555 2.420 3.769 

AR Recursive 0.750 1.107 1.439 2.032 2.043 2.986 2.340 3.471 2.414 3.679 

RA1 Rolling 60m 0.793 1.168 1.547 2.127 2.056 2.927 2.261 3.119 2.292 2.882 

RA1 Recursive 0.738 1.105 1.458 2.039 2.058 2.998 2.371 3.491 2.439 3.691 

RA2 Rolling 60m 0.740 1.050 1.426 1.867 1.991 2.660 2.165 3.048 2.085 3.047 

RA2 Recursive 0.676 1.025 1.354 1.896 1.960 2.865 2.323 3.473 2.542 3.774 

TS1 Rolling 60m 0.778 1.157 1.505 2.053 1.956 2.699 1.979 2.683 1.616 2.388 

TS1 Recursive 0.739 1.094 1.451 1.976 1.962 2.802 2.132 3.132 2.078 3.125 

TS2 Rolling 60m 0.733 1.038 1.397 1.866 2.001 2.571 1.947 2.698 1.491 2.337 

TS2 Recursive 0.681 1.028 1.376 1.873 1.931 2.746 2.123 3.148 2.104 3.131 

TS3 Rolling 60m 0.714 1.046 1.418 1.887 2.008 2.595 1.973 2.745 1.525 2.366 

TS3 Recursive 0.677 1.026 1.390 1.878 1.931 2.751 2.132 3.155 2.106 3.132 

Random Walk 0.737 1.105 1.544 2.105 2.329 3.313 2.917 4.111 3.296 4.584 

b) Inflation rate

h=1m h=3m h=6m h=9m h=12m 

Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) 

LAR(1) 0.374 0.683 0.574 0.988 0.714 1.067 0.730 1.094 0.710 1.075 

AR Rolling 60m 0.438 0.675 0.813 1.278 1.220 1.916 1.436 2.213 1.444 2.178 

AR Rolling 120m 0.427 0.665 0.807 1.270 1.278 1.981 1.596 2.437 1.789 2.593 

AR Recursive 0.429 0.663 0.815 1.275 1.330 2.052 1.692 2.653 1.923 3.046 

RA1 Rolling 60m 0.377 0.595 0.680 1.146 1.138 1.790 1.410 2.117 1.438 1.990 

RA1 Recursive 0.386 0.586 0.662 1.100 1.092 1.729 1.390 2.202 1.569 2.491 

RA2 Rolling 60m 0.392 0.617 0.586 1.020 0.944 1.531 1.161 1.844 1.362 1.954 

RA2 Recursive 0.403 0.619 0.681 1.100 1.155 1.778 1.572 2.378 1.986 2.975 

TS1 Rolling 60m 0.383 0.595 0.669 1.153 1.142 1.852 1.394 2.216 1.437 2.155 

TS1 Recursive 0.387 0.591 0.679 1.134 1.108 1.810 1.426 2.231 1.509 2.332 

TS2 Rolling 60m 0.383 0.618 0.573 0.990 0.888 1.530 1.158 1.897 1.398 2.097 

TS2 Recursive 0.399 0.620 0.650 1.068 1.037 1.671 1.346 2.076 1.573 2.319 

TS3 Rolling 60m 0.368 0.581 0.581 0.991 0.915 1.550 1.185 1.921 1.381 2.098 

TS3 Recursive 0.380 0.589 0.623 1.050 1.006 1.660 1.314 2.070 1.491 2.276 

Random Walk 0.429 0.662 0.826 1.290 1.392 2.138 1.837 2.896 2.181 3.536 

c) Interest rate

h=1w h=4w h=12w h=24w 

Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) 

LAR(1) 0.754 0.922 0.871 1.074 0.839 1.063 0.865 1.110 

AR Rolling 30m 0.773 0.978 0.851 1.100 0.947 1.194 0.951 1.279 

AR Rolling 60m 0.755 0.941 0.849 1.081 0.952 1.190 0.922 1.185 

AR Recursive 0.761 0.944 0.854 1.087 0.973 1.213 0.949 1.210 

Random Walk 0.845 1.006 0.936 1.191 1.131 1.439 1.024 1.406 

Notes: 

h denotes the forecast horizon. Std(AE) denotes the standard deviation of the absolute forecast errors, and Std(Err) 

denotes the standard deviation of the forecast errors. For each column, the best forecast, i.e., the smallest Std(AE) or 

Std(Err), is marked in bold-face; the second best is underlined. When the first and second best are the same, both are 

marked in bold-face, and no second best is further indicated. When the second and third best are the same, both are 

underlined. 
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Table 6. Forecast comparison between the LAR and alternative models: MZ regression and DM test 

a) IP growth

h=1m h=3m h=6m h=9m h=12m 

p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. 

LAR(1) 0.323 0.885 0.301 0.811 0.297 0.775 0.432 0.765 0.426 0.803 

AR Rolling 60m 0.640 0.888 0.526 0.316 0.642 -1.396 0.315 0.320 -2.125
**

0.099 0.245 -2.000
**

0.000 0.436 -2.359
**

AR Rolling 120m 0.812 0.897 1.267 0.499 0.652 -1.552
*

0.179 0.262 -2.972
***

0.160 0.051 -2.956
***

0.151 0.000 -3.089
***

AR Recursive 0.949 0.898 1.371 0.828 0.661 -1.333 0.423 0.301 -2.635
***

0.405 0.109 -2.497
***

0.471 0.032 -2.470
***

RA1 Rolling 60m 0.605 0.888 0.439 0.316 0.636 -1.454 0.301 0.313 -2.148
**

0.107 0.220 -1.994
**

0.000 0.415 -2.380
**

RA1 Recursive 0.982 0.898 1.369 0.630 0.660 -1.366 0.301 0.304 -2.622
***

0.357 0.107 -2.457
***

0.431 0.034 -2.431
**

RA2 Rolling 60m 0.073 0.911 1.470 0.056 0.730 -1.040 0.067 0.441 -1.876
*

0.113 0.254 -1.982
***

0.180 0.265 -2.627
***

RA2 Recursive 0.565 0.913 2.320
**

0.388 0.709 -1.139 0.194 0.368 -2.648
***

0.243 0.130 -2.411
**

0.305 0.031 -2.336
**

TS1 Rolling 60m 0.322 0.891 0.597 0.045 0.674 -1.332 0.166 0.435 -1.852
*

0.115 0.426 -1.656
*

0.017 0.550 -3.115
***

TS1 Recursive 0.836 0.901 1.431 0.680 0.679 -1.191 0.415 0.371 -2.339
**

0.434 0.223 -2.198
**

0.303 0.221 -2.390
**

TS2 Rolling 60m 0.011 0.911 1.138 0.023 0.728 -1.423 0.023 0.487 -1.951
**

0.132 0.417 -1.743
*

0.142 0.564 -2.733
***

TS2 Recursive 0.449 0.913 2.299
**

0.283 0.717 -1.041 0.250 0.404 -2.334
**

0.404 0.218 -2.227
**

0.365 0.218 -2.405
**

TS3 Rolling 60m 0.017 0.910 1.116 0.020 0.722 -1.517
*

0.020 0.479 -1.994
**

0.130 0.398 -1.769
**

0.138 0.554 -2.752
***

TS3 Recursive 0.466 0.913 2.277
**

0.291 0.715 -1.060 0.249 0.403 -2.333
**

0.408 0.215 -2.202
**

0.362 0.218 -2.395
**

Random Walk 0.351 0.900 1.517 0.016 0.663 -1.548
*

0.004 0.294 -2.724
***

0.014 0.088 -2.343
**

0.022 0.013 -2.181
**
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b) Inflation rate

h=1m h=3m h=6m h=9m h=12m 

p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. 

LAR(1) 0.113 0.919 0.092 0.847 0.065 0.832 0.015 0.791 0.088 0.778 

AR Rolling 60m 0.085 0.919 1.255 0.087 0.717 -2.200
**

0.028 0.370 -2.725
***

0.022 0.130 -2.851
***

0.073 0.096 -2.840
***

AR Rolling 120m 0.092 0.921 2.240
**

0.064 0.719 -2.297
**

0.007 0.354 -2.924
***

0.001 0.077 -2.903
***

0.000 0.001 -2.883
***

AR Recursive 0.078 0.922 1.937
***

0.065 0.724 -2.207
**

0.006 0.352 -2.695
***

0.000 0.066 -2.528
***

0.000 0.013 -2.527
***

RA1 Rolling 60m 0.137 0.936 2.513
*

0.005 0.772 -2.660
**

0.003 0.455 -3.655
***

0.010 0.188 -3.218
***

0.163 0.202 -2.522
***

RA1 Recursive 0.872 0.937 3.105
***

0.154 0.777 -1.610
*

0.012 0.450 -3.385
***

0.000 0.160 -3.374
***

0.000 0.021 -3.308
***

RA2 Rolling 60m 0.296 0.931 2.151
**

0.049 0.816 -0.466 0.001 0.616 -2.974
***

0.000 0.433 -3.057
***

0.084 0.271 -2.507
***

RA2 Recursive 0.054 0.932 3.359
***

0.067 0.790 -1.287 0.013 0.495 -2.443
***

0.000 0.220 -2.189
**

0.000 0.026 -2.150
**

TS1 Rolling 60m 0.030 0.938 2.475
**

0.002 0.778 -2.147
**

0.002 0.450 -3.733
***

0.001 0.175 -3.655
***

0.030 0.128 -2.784
***

TS1 Recursive 0.821 0.936 2.881
***

0.237 0.767 -1.788
*

0.036 0.427 -3.151
***

0.003 0.154 -3.120
***

0.000 0.044 -3.064
***

TS2 Rolling 60m 0.139 0.932 2.162
**

0.016 0.833  0.005 0.000 0.639 -3.356
***

0.000 0.439 -3.249
***

0.006 0.217 -2.759
***

TS2 Recursive 0.231 0.931 2.604
**

0.106 0.795 -1.091 0.020 0.518 -2.950
***

0.001 0.278 -2.807
***

0.000 0.085 -2.724
***

TS3 Rolling 60m 0.156 0.940 2.732
**

0.012 0.834 -0.005 0.000 0.630 -3.215
***

0.000 0.421 -3.272
***

0.002 0.217 -2.735
***

TS3 Recursive 0.704 0.937 2.797
**

0.172 0.800 -0.853 0.021 0.520 -3.066
***

0.001 0.278 -3.035
***

0.000 0.103 -2.925
***

Random Walk 0.102 0.922 1.992
**

0.035 0.721 -2.380
**

0.001 0.341 -2.938
***

0.000 0.054 -2.831
***

0.000 0.023 -2.975
***
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c) Interest rate

h=1w h=4w h=12w h=24w 

p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. 

LAR(1) 0.182 0.561 0.101 0.448 0.076 0.417 0.017 0.396 

AR Rolling 60m 0.301 0.497 -2.069
**

0.116 0.373  -0.827 0.271 0.254 -1.823
*

0.033 0.209 -2.599
***

AR Rolling 120m 0.005 0.530 -0.870 0.013 0.386  -0.396 0.045 0.255 -2.206
**

0.070 0.269 -2.210
**

AR Recursive 0.000 0.528 -1.221 0.003 0.376  -0.666 0.015 0.225 -2.460
***

0.010 0.242 -2.641
***

Random Walk 0.000 0.535 -1.403
*

0.000 0.390  -1.985
**

0.000 0.204 -3.391
***

0.000 0.217 -3.562
***

Notes: 

1) h denotes the forecast horizon. The forecast periods are the same with Table 3 and Table 4.

2) For each forecast horizon, we report the p-value of the F-test on forecast rationality, i.e., 0 : 0H  
and 1  , as well as the coefficient of

determination (
2R ) of the Mincer-Zarnowitz regression given in Equation (5). The third column (DM t-stat.) gives the t-statistics of the

Diebold-Mariano test, that is 0 : 0H  
in the regression 

2 2

, ,t LAR t i te e    
where ,t ie

denotes the forecast error of model i. Both tests are modified 

with robust Newey-West variances for heteroscedasticity and autocorrelation with the lags equal to the forecast horizon.

3) For column of
2R , the best forecast, i.e., the largest

2R is marked in bold-face; the second best is underlined.

4) For column of the DM-stat., * denotes the significance level of 10%; ** denotes significance level of 5% and *** denotes 1%.
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Table 7. Forecast Comparison between the LAR and CMRC survey 

a) Growth of industrial production

CMRC LAR(1) 

h=1q h=1q h=2q h=3q h=4q 

RMSE 1.621 1.422 1.433 1.541 1.435 

MAE 1.099 1.144 1.095 1.028 1.006 

Std(AE) 1.194 0.833 0.907 1.147 0.994 

Std(Err) 1.589 1.422 1.433 1.541 1.435 

p_value 0.467 0.074 0.603 0.657 0.631 
2R 0.791 0.857 0.832 0.804 0.831 

DM t-stat. -0.428 -0.581 -0.229 -1.380 

b) Inflation rate

CMRC LAR(1) 

h=1q h=1q h=2q h=3q h=4q 

RMSE 0.645 0.639 0.813 0.880 0.791 

MAE 0.477 0.473 0.664 0.623 0.568 

Std(AE) 0.445 0.554 0.610 0.604 0.551 

Std(Err) 0.639 0.799 0.913 0.880 0.791 

p_value 0.172 0.115 0.100 0.105 0.828 
2R 0.930 0.933 0.887 0.864 0.883 

DM t-stat. 1.203 1.433 1.381 1.588 

Notes: 

1) h denotes the forecast horizon. The column CMRC denotes the one-quarter horizon forecast with the

CMRC data. We transform the 3-, 6-, 9- and 12-month horizon monthly forecast of LAR into 1-, 2-, 3- and

4-quarter horizon quarterly forecast according to the equations (10) and (17). For simplifying the

comparison, the data intervals are uniformly chosen as the same, from 2006:Q1 to 2014:Q1, for CMRC

survey data, IP growth, and inflation rate, a total of 33 quarters.

2) In each forecast horizon of LAR(1), the bold-face number indicates the better of the pair of a LAR h-step

ahead forecast and the CMRC survey 1-step ahead forecast for the same targeting forecast interval for

each measure of RMSE, MAE, Std(AE) , Std(Err) and
2R .

3) Both the p-value and
2R  report the results of the Mincer-Zarnowitz regression for CMRC and LAR(1)

model with different forecast horizons. The last row, DM t-stat. reports the test 0 : 0H  
in the regression 

2 2

, ( ) ,t LAR h i t CMRC te e     
where , ( )t LAR h ie  represents the LAR(1) forecast with horizon h=1, 2, 3, 4. Both 

tests are modified with robust Newey-West variances for heteroscedasticity and autocorrelation with the 

lags equal to the forecast horizon. 



33 

Table 8. Average lengths of homogeneous intervals detected by LAR 

h = 1m h = 3m h = 6m h = 12m 

IP growth 32 16 14 16 

Inflation rate 81 37 32 34 

h = 1w h = 4w h = 12w h = 24w 

Interest rate 70 50 40 36 

Notes: h denotes the forecast horizon. 
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Table 9. Robustness check with subsample forecast for IP growth and inflation rate 

 

a) Initial samples of estimation and periods of forecast comparison  

 
The maximal interval of the initial sample Out-of-sample forecast comparison 

Forecast horizon h 

(month) 

Dependent variable 
interval 

Explanatory variable 

in lag term 

Forecast  

interval 

Forecast  

periods 

1 1998:02-2007:12 1998:01-2007:11 2008:01-2014:03 75 

3 1998:04-2008:02 1998:01-2007:11 2008:03-2014:03 73 

6 1998:07-2008:05 1998:01-2007:11 2008:06-2014:03 70 

9 1998:10-2008:08 1998:01-2007:11 2008:09-2014:03 67 

12 1998:01-2008:11 1998:01-2007:11 2008:12-2014:03 64 
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b) Out-of-Sample forecast comparison: RMSE and MAE

IP growth 

h=1m h=3m h=6m h=9m h=12m 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LAR(1) 1.192 0.820 1.766 1.266 2.125 1.457 2.095 1.376 1.309 0.983 

AR Rolling 60m 1.230 0.867 2.455 1.738 3.552 2.741 4.044 3.275 3.815 3.097 

AR Rolling 120m 1.144 0.820 2.353 1.710 3.617 2.929 4.397 3.719 4.472 3.796 

AR Recursive 1.134 0.806 2.311 1.626 3.462 2.627 4.113 3.264 4.057 3.245 

RA1 Rolling 60m 1.235 0.891 2.471 1.754 3.576 2.763 4.110 3.317 3.872 3.135 

RA1 Rolling 120m 1.146 0.839 2.362 1.717 3.633 2.947 4.432 3.743 4.505 3.833 

RA1 Recursive 1.134 0.814 2.318 1.629 3.472 2.634 4.139 3.279 4.081 3.265 

RA2 Rolling 60m 1.102 0.783 2.225 1.527 3.393 2.543 3.998 3.246 3.811 3.246 

RA2 Rolling 120m 1.058 0.762 2.218 1.626 3.556 2.851 4.456 3.792 4.554 3.844 

RA2 Recursive 1.032 0.757 2.145 1.502 3.339 2.494 4.138 3.291 4.127 3.275 

TS1 Rolling 60m 1.216 0.875 2.350 1.581 3.225 2.309 3.427 2.585 3.104 2.633 

TS1 Rolling 120m 1.135 0.812 2.239 1.513 3.135 2.325 3.509 2.786 3.241 2.648 

TS1 Recursive 1.113 0.788 2.181 1.459 3.072 2.217 3.481 2.699 3.086 2.468 

TS2 Rolling 60m 1.130 0.802 2.292 1.656 3.333 2.411 3.429 2.621 2.721 2.209 

TS2 Rolling 120m 1.080 0.767 2.184 1.562 3.193 2.338 3.556 2.791 3.022 2.377 

TS2 Recursive 1.041 0.756 2.090 1.422 3.048 2.180 3.499 2.712 2.948 2.280 

TS3 Rolling 60m 1.132 0.821 2.322 1.681 3.375 2.465 3.494 2.685 2.756 2.225 

TS3 Rolling 120m 1.080 0.769 2.195 1.565 3.209 2.351 3.577 2.803 3.021 2.366 

TS3 Recursive 1.040 0.755 2.098 1.422 3.060 2.191 3.527 2.724 2.964 2.288 

Random walk 1.138 0.820 2.404 1.650 3.859 2.823 4.902 3.578 5.218 3.852 

Inflation 

h=1m h=3m h=6m h=9m h=12m 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

LAR(1) 0.710 0.536 0.929 0.686 1.100 0.811 1.208 0.818 0.904 0.637 

AR Rolling 60m 0.706 0.528 1.359 1.082 2.104 1.655 2.274 1.705 1.893 1.557 

AR Rolling 120m 0.696 0.523 1.356 1.080 2.210 1.725 2.630 2.022 2.556 1.944 

AR Recursive 0.696 0.523 1.360 1.094 2.240 1.775 2.700 2.118 2.688 2.076 

RA1 Rolling 60m 0.662 0.524 1.253 1.062 2.041 1.628 2.279 1.722 1.801 1.303 

RA1 Rolling 120m 0.669 0.509 1.227 1.018 2.011 1.611 2.377 1.792 2.295 1.711 

RA1 Recursive 0.652 0.489 1.198 0.994 2.027 1.661 2.490 2.018 2.511 2.119 

RA2 Rolling 60m 0.634 0.506 1.048 0.887 1.730 1.423 2.002 1.571 1.717 1.322 

RA2 Rolling 120m 0.641 0.507 1.099 0.945 1.808 1.466 2.238 1.758 2.303 1.719 

RA2 Recursive 0.627 0.487 1.059 0.914 1.786 1.426 2.273 1.841 2.453 2.031 

TS1 Rolling 60m 0.661 0.510 1.257 1.055 2.065 1.626 2.277 1.725 1.831 1.382 

TS1 Rolling 120m 0.663 0.507 1.254 1.079 2.082 1.715 2.418 1.836 2.237 1.654 

TS1 Recursive 0.650 0.487 1.201 1.000 2.018 1.643 2.432 1.948 2.364 1.999 

TS2 Rolling 60m 0.616 0.483 0.968 0.814 1.637 1.368 1.898 1.549 1.696 1.295 

TS2 Rolling 120m 0.613 0.475 1.005 0.834 1.767 1.440 2.215 1.710 2.236 1.651 

TS2 Recursive 0.616 0.478 1.025 0.866 1.789 1.447 2.289 1.861 2.379 1.991 

TS3 Rolling 60m 0.633 0.489 0.995 0.827 1.687 1.404 1.976 1.618 1.815 1.435 

TS3 Rolling 120m 0.638 0.486 1.007 0.848 1.754 1.444 2.190 1.671 2.215 1.618 

TS3 Recursive 0.634 0.488 1.031 0.865 1.797 1.495 2.309 1.894 2.409 2.045 

Random walk 0.699 0.524 1.413 1.125 2.504 2.005 3.439 2.738 4.137 3.295 
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c) Out-of-Sample forecast comparison: Std(AE) and Std(Err)

IP growth 

h=1m h=3m h=6m h=9m h=12m 

Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) 

LAR(1) 0.861 1.192 1.204 1.766 1.546 2.125 1.580 2.095 0.864 1.309 

AR Rolling 60m 0.879 1.217 1.764 2.388 2.346 3.219 2.372 3.279 2.228 2.515 

AR Rolling 120m 0.799 1.120 1.634 2.238 2.278 3.259 2.589 3.779 2.365 3.718 

AR Recursive 0.798 1.120 1.664 2.249 2.364 3.283 2.758 3.822 2.619 3.742 

RA1 Rolling 60m 0.868 1.224 1.770 2.403 2.340 3.236 2.427 3.329 2.272 2.537 

RA1 Rolling 120m 0.787 1.121 1.637 2.244 2.283 3.270 2.580 3.805 2.367 3.743 

RA1 Recursive 0.792 1.120 1.665 2.255 2.373 3.291 2.760 3.845 2.633 3.764 

RA2 Rolling 60m 0.804 1.044 1.619 2.032 2.246 2.788 2.333 3.241 1.996 3.047 

RA2 Rolling 120m 0.735 1.017 1.508 2.041 2.144 3.065 2.635 3.815 2.443 3.900 

RA2 Recursive 0.708 1.011 1.531 2.054 2.220 3.100 2.760 3.824 2.694 3.829 

TS1 Rolling 60m 0.846 1.214 1.739 2.330 2.251 3.031 2.250 2.910 1.644 2.275 

TS1 Rolling 120m 0.793 1.128 1.651 2.205 2.103 2.945 2.134 3.127 1.869 2.724 

TS1 Recursive 0.786 1.105 1.621 2.136 2.127 2.907 2.234 3.165 1.879 2.660 

TS2 Rolling 60m 0.796 1.004 1.585 2.005 2.302 2.693 2.212 2.887 1.590 2.370 

TS2 Rolling 120m 0.778 1.037 1.572 2.070 2.175 2.866 2.203 3.211 1.883 2.714 

TS2 Recursive 0.731 1.024 1.532 2.018 2.130 2.839 2.239 3.195 1.868 2.590 

TS3 Rolling 60m 0.779 1.016 1.601 2.020 2.305 2.714 2.236 2.941 1.626 2.418 

TS3 Rolling 120m 0.767 1.040 1.584 2.079 2.183 2.878 2.223 3.230 1.887 2.715 

TS3 Recursive 0.727 1.022 1.552 2.024 2.136 2.848 2.265 3.221 1.884 2.606 

Random walk 0.793 1.132 1.763 2.384 2.632 3.812 3.351 4.831 3.556 5.151 

Inflation 

h=1m h=3m h=6m h=9m h=12m 

Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) Std(AE) Std(Err) 

LAR(1) 0.465 0.710 0.624 0.929 0.735 1.100 0.886 1.208 0.642 0.904 

AR Rolling 60m 0.468 0.703 0.838 1.340 1.325 2.048 1.504 2.190 1.138 1.820 

AR Rolling 120m 0.459 0.692 0.827 1.334 1.382 2.170 1.681 2.602 1.663 2.554 

AR Recursive 0.460 0.695 0.826 1.352 1.397 2.228 1.695 2.698 1.759 2.675 

RA1 Rolling 60m 0.418 0.635 0.668 1.212 1.284 2.024 1.512 2.278 1.248 1.800 

RA1 Rolling 120m 0.435 0.646 0.693 1.213 1.236 2.006 1.605 2.369 1.546 2.241 

RA1 Recursive 0.432 0.635 0.674 1.185 1.217 2.014 1.557 2.443 1.565 2.335 

RA2 Rolling 60m 0.399 0.627 0.559 1.026 1.012 1.718 1.254 2.000 1.104 1.716 

RA2 Rolling 120m 0.404 0.634 0.560 1.083 1.117 1.797 1.453 2.219 1.568 2.262 

RA2 Recursive 0.400 0.624 0.534 1.051 1.105 1.776 1.405 2.231 1.518 2.326 

TS1 Rolling 60m 0.421 0.647 0.705 1.237 1.296 2.063 1.493 2.277 1.202 1.831 

TS1 Rolling 120m 0.429 0.650 0.658 1.247 1.189 2.082 1.601 2.415 1.506 2.197 

TS1 Recursive 0.432 0.632 0.676 1.186 1.241 2.003 1.568 2.384 1.600 2.194 

TS2 Rolling 60m 0.383 0.616 0.532 0.967 0.902 1.636 1.110 1.895 1.095 1.689 

TS2 Rolling 120m 0.388 0.613 0.561 1.005 1.040 1.764 1.409 2.215 1.509 2.226 

TS2 Recursive 0.400 0.614 0.548 1.017 1.083 1.777 1.407 2.243 1.492 2.257 

TS3 Rolling 60m 0.401 0.626 0.564 0.989 0.941 1.686 1.151 1.970 1.113 1.815 

TS3 Rolling 120m 0.413 0.623 0.543 1.000 1.000 1.754 1.425 2.187 1.513 2.165 

TS3 Recursive 0.415 0.614 0.561 1.004 1.042 1.768 1.389 2.229 1.497 2.197 

Random walk 0.462 0.697 0.874 1.397 1.584 2.464 2.160 3.384 2.550 4.077 
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d) Out-of-Sample forecast comparison: MZ regression and DM test

IP growth 

h=1m h=3m h=6m h=9m h=12m 

p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R  DM t-stat.

LAR(1) 0.186 0.866 0.017 0.715 0.000 0.625 0.000 0.572 0.195 0.819 

AR Rolling 60m 0.161 0.863 -0.470 0.029 0.494 -1.491 0.031 0.081 -2.281** 0.050 0.001 -2.140** 0.000 0.331 -2.460*** 

AR Rolling 120m 0.239 0.880  1.364 0.044 0.526 -1.627* 0.003 0.072 -3.088*** 0.000 0.060 -3.180*** 0.000 0.360 -3.305*** 

AR Recursive 0.378 0.880  1.512 0.052 0.525 -1.477 0.010 0.080 -2.602*** 0.004 0.029 -2.536*** 0.004 0.145 -2.526*** 

RA1 Rolling 60m 0.145 0.862 -0.499 0.026 0.489 -1.531 0.027 0.078 -2.311** 0.042 0.000 -2.128** 0.000 0.306 -2.487*** 

RA1 Rolling 120m 0.231 0.879  1.438 0.041 0.523 -1.655* 0.002 0.070 -3.134*** 0.000 0.062 -3.159*** 0.000 0.358 -3.299*** 

RA1 Recursive 0.375 0.880  1.651* 0.049 0.523 -1.499 0.009 0.079 -2.624*** 0.003 0.031 -2.514*** 0.003 0.150 -2.519*** 

RA2 Rolling 60m 0.001 0.907  1.022 0.000 0.679 -0.940 0.003 0.330 -1.932** 0.045 0.017 -2.101** 0.014 0.047 -2.830*** 

RA2 Rolling 120m 0.002 0.915  1.150 0.000 0.666 -1.215 0.000 0.231 -3.366*** 0.000 0.036 -3.178*** 0.000 0.400 -3.213*** 

RA2 Recursive 0.029 0.910  1.711* 0.001 0.636 -1.038 0.002 0.204 -2.651*** 0.006 0.005 -2.464*** 0.002 0.161 -2.452*** 

TS1 Rolling 60m 0.086 0.867 -0.072 0.001 0.538 -1.321 0.036 0.206 -1.866* 0.066 0.208 -1.598* 0.000 0.527 -3.199*** 

TS1 Rolling 120m 0.471 0.879  1.294 0.031 0.555 -1.247 0.014 0.220 -2.351** 0.047 0.143 -2.012** 0.002 0.281 -2.748*** 

TS1 Recursive 0.602 0.882  2.098** 0.180 0.562 -1.060 0.094 0.199 -2.072** 0.183 0.076 -1.820* 0.056 0.247 -2.110** 

TS2 Rolling 60m 0.000 0.909  0.653 0.000 0.683 -1.229 0.001 0.395 -1.927** 0.062 0.206 -1.682* 0.012 0.433 -2.517*** 

TS2 Rolling 120m 0.004 0.910  0.929 0.000 0.674 -1.017 0.000 0.367 -2.097** 0.025 0.140 -2.073** 0.110 0.252 -2.250** 

TS2 Recursive 0.088 0.905  1.721* 0.010 0.636 -0.817 0.025 0.271 -2.029** 0.188 0.066 -1.822* 0.026 0.264 -1.931** 

TS3 Rolling 60m 0.000 0.909  0.653 0.000 0.678 -1.296 0.000 0.389 -1.978** 0.063 0.186 -1.709* 0.014 0.417 -2.538*** 

TS3 Rolling 120m 0.003 0.910  0.937 0.000 0.672 -1.035 0.000 0.365 -2.110** 0.025 0.136 -2.058** 0.110 0.253 -2.215** 

TS3 Recursive 0.085 0.905  1.793* 0.011 0.634 -0.833 0.024 0.269 -2.042** 0.181 0.061 -1.808* 0.030 0.257 -1.920** 

Random Walk 0.208 0.881  1.218 0.000 0.525 -1.780* 0.000 0.081 -2.716*** 0.000 0.019 -2.385** 0.000 0.104 -2.175** 
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Inflation 

h=1m h=3m h=6m h=9m h=12m 

p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R DM t-stat. p_v 2R  DM t-stat.

LAR(1) 0.004 0.923 0.004 0.888 0.047 0.826 0.010 0.736 0.009 0.836 

AR Rolling 60m 0.231 0.920  1.483 0.129  0.705  -1.825*  0.032  0.233  -1.967**  0.016  0.002  -1.923**  0.571  0.270  -2.400**  

AR Rolling 120m 0.409 0.921  2.040** 0.204  0.702  -1.938** 0.008  0.209  -2.176**  0.000  0.005  -2.080**  0.000  0.204  -2.096**  

AR Recursive 0.397 0.921  1.978** 0.166  0.702  -2.039**  0.003  0.214  -2.302**  0.000  0.002  -2.216**  0.000  0.246  -2.292**  

RA1 Rolling 60m 0.000 0.939  1.302 0.000  0.790  -2.940*** 0.002  0.358  -3.345*** 0.004  0.044  -2.775*** 0.996  0.254  -2.434*** 

RA1 Rolling 120m 0.024 0.931  1.191 0.242  0.751  -2.075**  0.031  0.296  -2.625*** 0.006  0.022  -2.410**  0.038  0.010  -2.363**  

RA1 Recursive 0.059 0.933  1.575 0.261  0.761  -1.958**  0.018  0.307  -2.863*** 0.000  0.026  -2.950*** 0.000  0.005  -3.225*** 

RA2 Rolling 60m 0.230 0.935  1.641* 0.020  0.830  -0.814 0.000  0.587  -3.116*** 0.000  0.384  -2.872*** 0.196  0.397  -2.777*** 

RA2 Rolling 120m 0.373 0.933  1.581 0.167  0.801  -1.224 0.004  0.498  -2.811*** 0.000  0.275  -2.807*** 0.000  0.165  -2.276**  

RA2 Recursive 0.655 0.935  2.029** 0.467  0.806  -0.941 0.029  0.471  -2.585*** 0.000  0.237  -3.053*** 0.000  0.145  -3.062*** 

TS1 Rolling 60m 0.000 0.938  1.326 0.000  0.788  -2.361**  0.001  0.372  -3.317*** 0.001  0.060  -3.242*** 0.861  0.239  -2.540*** 

TS1 Rolling 120m 0.001 0.933  1.340 0.015  0.766  -2.954*** 0.003  0.311  -3.149*** 0.002  0.022  -2.614*** 0.051  0.025  -2.363** 

TS1 Recursive 0.017 0.934  1.636* 0.185  0.764  -2.046**  0.026  0.299  -2.714*** 0.001  0.024  -2.731*** 0.001  0.028  -3.038*** 

TS2 Rolling 60m 0.543 0.938  1.973** 0.026  0.853  -0.275  0.000  0.636  -3.754*** 0.000  0.422  -3.047*** 0.305  0.406  -2.660*** 

TS2 Rolling 120m 0.625 0.938  2.195** 0.052  0.839  -0.628 0.000  0.527  -3.040*** 0.000  0.268  -2.672*** 0.000  0.177  -2.267**  

TS2 Recursive 0.462 0.938  2.143** 0.135  0.827  -0.725 0.008  0.498  -2.752*** 0.000  0.248  -3.095*** 0.000  0.149  -3.059*** 

TS3 Rolling 60m 0.014 0.938  1.803* 0.002  0.853  -0.442 0.000  0.615  -3.558*** 0.000  0.378  -3.188*** 0.130  0.343  -3.094*** 

TS3 Rolling 120m 0.003 0.938  1.649* 0.006  0.844  -0.596 0.000  0.530  -3.143*** 0.000  0.267  -2.713*** 0.000  0.176  -2.398**  

TS3 Recursive 0.011 0.938  1.676* 0.045  0.832  -0.718 0.005  0.501  -2.898*** 0.000  0.247  -3.402*** 0.000  0.161  -3.615*** 

Random Walk 0.288 0.922  1.911* 0.059  0.699  -2.180** 0.000  0.212  -2.339**  0.000  0.001  -2.213**  0.000  0.219  -2.184**  

Notes: 

1) For each forecast horizon, we report the p-value of the F-test on forecast rationality, i.e., 0 : 0H  
and 1  , as well as the coefficient of determination (

2R ) of

the Mincer-Zarnowitz regression given in Equation (5). The third column (DM t-stat.) gives the t-statistics of the Diebold-Mariano test. Both tests are modified

with robust Newey-West variances for heteroscedasticity and autocorrelation with the lags equal to the forecast horizon.

2) For column of
2R , the best forecast, i.e., the largest

2R is marked in bold-face; the second best is underlined.

3) For column of the DM-stat., * denotes the significance level of 10%; ** denotes significance level of 5% and *** denotes 1%.
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Figure 1. Plot of the three macroeconomic variables

Notes: 

The first row is monthly data of the growth rate of industrial production from 1995:1 to 2014:3; the second 

row is the monthly CPI inflation rate from 1992:1 to 2014:3; the third row is the selected interest rate, the 

weekly 7-day Chibor (China Interbank Offered Rate), taken from the weighted average closing rate of the 

last trading day of a week, from January 2001 to March 2014. All data are from CEIC China Economic and 

Industry Database.  
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Figure 2. Autocorrelation functions of the three variables
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Figure 3. Plots of the realized data with forecasts of LAR and representative comparing models

Notes: The solid lines indicate the actual data; dashed lines are the LAR(1) forecasts; dot-dashed lines for IP growth are the TS2 recursive forecast, 

for inflation rate the TS3 Rolling 60m forecast, and for interest rate AR Rolling 60m forecasts, respectively.
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Figure 4. Plots of the realized data with LAR and CMRC forecasts 

Notes: 

1) In the first row about the IP growth and inflation rate, the solid lines indicate the actual

data; dashed lines are the 1-quarter horizon LAR forecasts; dot-dashed lines are the

CMRC survey forecasts.

2) In the second row about the IP growth and inflation rate, the solid lines indicate the

actual data; dashed lines are the 2-quarter horizon LAR forecasts; dot-dashed lines are

the 3-quarter horizon LAR forecasts; dotted lines are the 4-quarter horizon LAR

forecasts.



43 

Figure 5. Parameter evolution in the LAR Model 

Notes: In each column, we plot the time evolution of the estimated coefficients for the 

LAR(1) model for h=1 of each variables. The first row displays the intercept; the second 

row is the autoregressive coefficient on the lagged factor; the bottom row is the standard 

deviation of the error term. 
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Figure 6. Detected subsamples of homogeneity 

Notes: The vertical axis marks the time when the estimation and forecast is made. The 

selected stable sample interval is marked horizontally as a light solid line, which then decks 

together to form the light colored area. The dark line marks the 6-month interval during 

which the most recent break is detected, which then decks together to outline the boundaries 

of the homogeneous intervals along time. 
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