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Abstract

I analyze time series momentum along the Treasury term structure.

Yield curve momentum is primarily due to changes in the level factor

of yields. Because yield changes are partly induced by changes in the

federal funds rate, yield curve momentum is related to post-FOMC

announcement drift. The momentum factor is unspanned by the in-

formation in the term structure today and is hence inconsistent with

standard term structure, macrofinance and behavioral models. I argue

that the results are consistent with a model with unpriced longer term

dependencies, which can be explained by a specific form of bounded

rationality.
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1 Introduction

Past returns can predict future returns (Fama, 1965). Moskowitz et al. (2012)

find evidence of medium horizon return autocorrelation among a large set

of asset classes. They dub this phenomenon ”time series momentum”.1

Possibly due to the focus on a broad set of asset classes, the time series

momentum literature has evolved largely separately from the vast literature

on term-structure modelling and bond risk premia (e.g., Ang and Piazzesi,

2003; Fama and Bliss, 1987; Cochrane and Piazzesi, 2005). Because of this

disconnect it is for example not clear whether the observed return autocor-

relation of government bonds is consistent with standard term-structure

models.2 This paper is an attempt to study the finer dynamics of time series

momentum of government bonds, or yield curve momentum, and close the

gap between the two literatures.

The term structure literature features a dichotomy between variables

that are spanned by current yields and unspanned variables that contain

additional information useful for predicting returns (Duffee, 2011; Joslin

et al., 2014). The key empirical contribution of this paper is to argue that

past returns are spanned neither by current yields nor previously studied

possibly unspanned variables.

While no-arbitrage term structure models can in principle allow for

unspanned variables, theoretically motivated models imply full spanning.

Therefore my results are problematic for nearly all models attempting to

1This is a growing literature, see e.g. Pitkäjärvi et al. (2020) and Zhang (2022).
2Durham (2013) analyzes the performance of a duration neutral cross-sectional momen-

tum strategy with government bonds. He argues that some its profitability can be explained

by a specific affine term structure model. However, he does not address time series momen-

tum. Asness et al. (2013) study a cross-country momentum strategy with government bonds

finding that such a strategy yields positive yet fairly small returns. Brooks and Moskowitz

(2017) explain bond returns using value, momentum and carry factors. However, they do

not study the sources of momentum or relate the findings to the term structure modelling

literature. Osterrieder and Schotman (2017) connect bond return autocorrelations with

model risk parameters but do not explicitly address momentum.
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explain yield curve momentum.

My investigation starts by establishing basic properties of yield curve

momentum. First, I find that the term structure of momentum coefficients is

downward sloping. Slope coefficients from regressing bond returns on the

past return of the same maturity bond decline with the bond’s maturity.

Second, I argue that yield curve momentum occurs primarily due to

changes in the first principal component of yields, also known as the level

factor. This is even though the level of the level factor cannot explain mo-

memtum. The associated strong factor structure in bond returns implies

that most of momentum can be captured using a single return factor defined

as the average past return of different maturity bonds.

Third, I assess the relationship between monetary policy and yield curve

momentum. Because changes in the Treasury yield curve are related to

changes in the federal funds target rate, yield curve momentum is partly

induced by monetary policy. That is, yield curve momentum is in part

driven by a drift pattern following a recent rate change by the Fed. However,

because especially long maturity yields display movements unrelated to

target rate changes, yield curve momentum is not identical to post-FOMC

announcement drift discussed in Brooks et al. (2019).

Fourth, I analyze whether past returns are spanned by current yields.

Standard term structure models imply that yields are affine in a set of

factors, which also determine expected bond returns. But since the yields

are a simple function of the factors, controlling for sufficiently many yields

is equivalent to controlling for the factors. These models can in principle

generate return autocorrelation through autocorrelation in model factors.

However, they imply that past returns cannot predict future returns after

controlling for yields.

I find that past bond returns predict future returns also conditional on

the information in the yield curve today. In fact past returns appear largely

orthogonal to current yield curve factors. Hence the spanning condition is

clearly violated in the data.

Several papers (e.g. Duffee, 2011; Joslin et al., 2014) have pointed that
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macro variables related to real activity and inflation also appear unspanned

by yields. I therefore show that my results hold when controlling for macro

variables including a large panel of such variables as in Ludvigson and Ng

(2009). Hence past returns are also unspanned by macro variables.

As mentioned, while reduced form no-arbitrage models can be parametrized

to include unspanned variables, theoretically motivated models imply full

spanning. This includes macrofinance models characterized through investor

preferences. While some of these models imply non-linear relationship be-

tween bond returns and past yields, they still imply full spanning after

controlling for these non-linear relationships.

The majority of explanations offered for momentum feature deviations

from full information rational expectations. Can such behavioral theories ex-

plain my findings? Not necessarily. The reason is that the current behavioral

models tend to imply the same affine form for yields though the coefficients

might be different from those in rational models.

The key modelling contribution of this paper is to i) construct term

structure models consistent with my empirical findings, ii) offer a theoretical

interpretation for the models. In these models agents do not understand

that factors possess longer term dependencies and bond prices reflect this

misunderstanding. The mispecification of true factor dynamics leads to a

momentum pattern similar to that observed in the data. Moreover, it leads

to a violation of the standard spanning condition so that past bond returns

predict future returns conditional on standard yield curve factors. Finally,

this misinterpretion also explains the forecast errors documented in interest

rate surveys.

I explain that my term structure models are consistent with the form of

bounded rationality discussed by Molavi (2019) and Molavi et al. (2021).

Here an agent can only entertain models with at most a fixed number of

factors and chooses a mispecified model that gives a best representation of

the data. This constraint on model complexity leads agents to ignore longer

dependencies in factors.
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2 Data and Definitions

I start by describing the data sources and variable definitions.

Bond Yields and Returns I use the dataset on zero coupon US Treasury

yields constructed by Liu and Wu (2021). These yields are built using a

novel non-parametric method, which implies lower pricing errors compared

to previous interpolation procedures. I apply a sample of end of month data

between August 1971 and December 2019. Data is available for bonds with

maturities up to 10 years. In the appendix I show that the key results are

robust to using the alternative dataset constructed by Gürkaynak et al. (2007),

the data concerning the German yield curve available on the Bundesbank

webpage and the Bloomberg US Treasury Index.

I denote the monthly continuously compounded yield of a bond (or bill)

with n months until maturity by ynt . The logarithmic excess monthly return

of maturity n bond is then given by

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t (1)

Here the excess return is calculated as the monthly bond return deducted

by the one month bill rate. The return between month t and any month t +h,

rxnt,t+h, is given by the sum over the one period excess returns.

To save space, in most of the tables and figures I show results for bonds

with integer annual maturities rather than all the 120 different maturi-

ties. That is these focus on bonds with maturities 12,24, . . . ,120 months i.e.

1,2, . . . ,10 years. Table 1 shows key descriptive statistics for these yields and

excess returns.

Macro Variables and Other Data I construct a large panel of 135 other

macroeconomic and financial variables. This contains all the variables in

the FRED-MD database of McCracken and Ng (2016). Following Moench

and Siavash (2022) I further add 8 variables. This includes the weekly

hours of production and non-supervisory employees, the Philadelphia Fed
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Yields (%)

Maturity 1 2 3 4 5 6 7 8 9 10

Mean 5.06 5.31 5.50 5.69 5.82 5.96 6.06 6.14 6.22 6.27

Volatility 3.54 3.49 3.40 3.32 3.23 3.18 3.11 3.06 3.00 2.93

Skewness 0.48 0.40 0.38 0.39 0.39 0.42 0.44 0.45 0.46 0.45

Ex. kurtosis -0.15 -0.32 -0.36 -0.37 -0.38 -0.37 -0.32 -0.31 -0.28 -0.26

Obs# 580 580 580 580 580 580 580 580 580 580

Excess Returns (%)

Maturity 1 2 3 4 5 6 7 8 9 10

Mean 0.07 0.10 0.15 0.17 0.20 0.22 0.22 0.25 0.24 0.26

Volatility 0.44 0.83 1.18 1.51 1.80 2.08 2.33 2.61 2.86 3.13

Skewness 1.20 0.54 0.14 -0.12 -0.02 0.09 0.11 0.13 0.11 0.10

Ex. Kurtosis 17.39 13.87 8.21 5.04 4.11 4.11 3.06 2.51 2.25 2.18

Obs# 579 579 579 579 579 579 579 579 579 579

Table 1: shows descriptive statistics for bond yields and excess returns. The data is

monthly but the bond yields are expressed in annual form.
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leading indicator for the U.S. economy, the VXO index and the measure of

realized stock market volatility of Berger et al. (2020). Moreover the data

contains the Bank of America Merrill Lynch MOVE bond volatility index,

a measure of financial uncertainty from Ludvigson et al. (2021), the excess

bond premium from Gilchrist and Zakrajšek (2012) and the three-Month

Treasury bill forecast from the Consensus Economics. The measures based

on academic papers are extended to cover my sample period accordingly.

I also show results when controlling only for the Chicago Fed National

Activity Index, used for example by Joslin et al. (2014), and the trend infla-

tion measure used in Cieslak and Povala (2015). Here I apply a smoothing

parameter of 0.987 in monthly updating terms to annual core inflation.3

I obtain the federal funds target rate and the relevant target ranges from

FRED. For monetary policy shock identification I utilize a series of the

front month federal funds futures contract listed on the CME. I apply the

information on the Federal Reserve web page to create a series of the meeting

dates of the Federal Open Market Committee.

3 Simple Regression Evidence

I first consider a univariate regression of the form

rxnt+1 = α + βrxnt−h,t + ϵt+1 (2)

That is I regress the excess return of an n maturity bond in month t+1 on

the excess return of an n maturity bond between months t − h and t. When

calculating excess returns I hold maturity constant by rolling over the bond

each month. I focus on lookback horizons (h) of 1,3,6 and 12 months. The

results are given in Table 2 and demonstrated further in Figure 1.

The results are statistically significant for the return over the past month.

However, the results for longer horizon past returns are not significant.

3The trend inflation τCP It is calculated using τCP It = (1−v)
∑t−1

i=0 v
iπt−i , where v is smooth-

ing/learning parameter. Cieslak and Povala (2015) compute v using survey data.
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Therefore, for the rest of this paper, I focus on the one month horizon. This

is in contrast to Moskowitz et al. (2012) who focus on 1 year past returns.4

I also ignore the volatility scaling applied by Moskowitz et al. (2012) as it

can induce return predictability unrelated to raw momentum in returns as

discussed in Kim et al. (2016) and Huang et al. (2020). Moreover, in contrast

to Moskowitz et al. (2012), I avert pooled regressions due to potentially

biased slope estimates and issues with calculating standard errors (Huang

et al., 2020; Hjalmarsson, 2010).

The regression betas decline in bond maturity. Hence the term structure

of momentum coefficients is downward sloping. In the theoretical section I

show that this is inconsistent with one factor interest rate models.

The results for the 1 month horizon have strong economic significance

as illustrated in Table 3 and Figures 2 and 3. These show the mean excess

returns and annualized Sharpe ratios for different maturity bonds both for

the full sample and in two subsamples with positive and negative past month

excess returns for the same maturity bond. The mean returns and Sharpe

ratios are substantially higher following positive rather than negative past

month returns. The mean returns are increasing in bond maturity but Sharpe

ratios decreasing in maturity. The Sharpe ratios of short maturity bonds are

over 0.8 for months following positive excess returns in the previous month.

Figure 4 provides an alternative way to look at the above momentum

patterns. It shows the share of total excess bond returns explained by excess

returns in months with positive past month excess returns. For all maturities

the bulk of returns comes from months with positive past month returns. For

many maturities this share is more than 100 per cent because average returns

in months with negative past month returns are negative. Because on average

only 56 % of months show positive excess returns, these relationships are

not mechanical. The appendix contains additional results concerning the

invesment performance of a simple momentum strategy.

4Note that here the significance of 1 year past returns is somewhat better than for 3 and

6 month past returns.
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1 month lookback 3 month lookback

Mat. α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.06 3.42 0.19 3.01 3.69 0.06 2.82 0.03 0.57 0.30

2 0.08 2.67 0.18 3.70 3.20 0.10 2.40 0.02 0.31 0.08

3 0.12 2.82 0.15 3.13 2.27 0.14 2.63 0.01 0.20 0.03

4 0.15 2.57 0.12 2.73 1.51 0.17 2.45 0.01 0.20 0.02

5 0.17 2.44 0.12 2.71 1.38 0.19 2.34 0.01 0.25 0.02

6 0.20 2.38 0.10 2.02 0.91 0.21 2.30 0.01 0.31 0.03

7 0.20 2.17 0.10 2.05 0.91 0.22 2.13 0.01 0.24 0.02

8 0.22 2.11 0.10 2.11 0.98 0.24 2.08 0.01 0.31 0.03

9 0.22 1.90 0.10 2.14 0.92 0.23 1.89 0.01 0.28 0.02

10 0.24 1.90 0.09 1.99 0.79 0.26 1.89 0.01 0.24 0.02

6 month lookback 12 month lookback

1 0.06 2.73 0.02 0.62 0.26 0.05 1.81 0.02 1.23 0.97

2 0.10 2.28 0.01 0.47 0.12 0.07 1.56 0.03 1.47 1.05

3 0.14 2.49 0.01 0.47 0.09 0.10 1.72 0.03 1.54 0.95

4 0.16 2.34 0.01 0.45 0.06 0.12 1.69 0.02 1.53 0.79

5 0.19 2.26 0.01 0.37 0.04 0.15 1.70 0.02 1.44 0.63

6 0.21 2.21 0.01 0.49 0.06 0.17 1.69 0.02 1.45 0.61

7 0.21 2.04 0.01 0.47 0.05 0.17 1.62 0.02 1.37 0.53

8 0.23 1.99 0.01 0.58 0.08 0.19 1.61 0.02 1.40 0.54

9 0.23 1.83 0.01 0.39 0.04 0.20 1.49 0.02 1.30 0.47

10 0.26 1.84 0.01 0.31 0.02 0.22 1.51 0.02 1.23 0.42

Table 2: shows the results from regressing the excess returns of different maturity

bonds (years) on the past return for the same maturity bond for lookback horizons

of 1,3,6 and 12 months. The t-values are based on Newey and West (1987) standard

errors and the lag selection procedure of Newey and West (1994)
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Figure 1: shows the slope coefficients and the relevant 95% confidence bounds

from regressing the returns of different maturity bonds (years) on the past return

for the same maturity bond for lookback horizons of 1,3,6 and 12 months.
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Figure 2: shows the mean returns for different maturity (years) bonds both for the

full sample and in subsamples following positive and negative past month returns.
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Figure 3: shows the annualized Sharpe ratios for different maturity (years) bonds

both for the full sample and in subsamples following positive and negative past

month returns.
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Figure 4: shows the share of total excess returns of different maturity (years) bonds

earned in months with positive past month excess returns.
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Average excess returns (%)
Maturity 1 2 3 4 5 6 7 8 9 10

All months 0.07 0.10 0.15 0.17 0.20 0.22 0.22 0.25 0.24 0.26

Positive past month ret. 0.09 0.17 0.26 0.30 0.37 0.40 0.38 0.41 0.49 0.57

Negative past month ret. 0.04 0.01 0.00 0.01 -0.02 -0.01 0.03 0.05 -0.05 -0.11

Sharpe ratios (annualized)

All months 0.57 0.43 0.44 0.40 0.38 0.36 0.33 0.33 0.29 0.29

Positive past month ret. 0.83 0.82 0.78 0.71 0.72 0.66 0.56 0.53 0.59 0.64

Negative past month ret. 0.26 0.04 0.00 0.02 -0.04 -0.01 0.04 0.06 -0.07 -0.12

Table 3: shows the mean excess returns and annualized Sharpe ratios for different

maturity (years) bonds in both the full sample and in two subsamples: following

positive and negative past month excess returns.

Factor momentum Yields and bond returns are often found to exhibit

strong factor structures (e.g., Litterman and Scheinkman, 1991). Hence yield

curve momentum might also be captured well using a simple factor. I next

demonstrate that most of this momentum can indeed be represented by a

single factor.

Let us create a simple average of the different maturity bond returns as

r̄xt =
1

10

∑
n∈N

rxnt , (3)

where N = {12,24,36,48,60,72,84,96,108,120}, i.e. I apply the integer

annual maturities between 1 and 10 years. I then run a regression

rxnt+1 = α + βr̄xt + ϵt+1 (4)

The results are given in Table 4. Using the average of excess returns

across different maturity bonds leads to only a minor loss in predictive power

relative to using the past return of a bond with the corresponding maturity.

For longest maturity bonds the R2 actually increases but this improvement is

small. I confirm this overall result in the next section by showing that yield

curve momentum is driven by a change in the first principal component of

yields. Note that the loadings for the momentum factor are still different for

14



Mat. α t-value β t-value R2 (%)

1 0.06 3.58 0.04 2.37 3.16

2 0.09 2.68 0.08 2.75 2.73

3 0.13 2.84 0.09 2.57 2.04

4 0.15 2.56 0.09 2.43 1.31

5 0.17 2.43 0.11 2.45 1.22

6 0.19 2.37 0.14 2.65 1.46

7 0.19 2.14 0.15 2.59 1.42

8 0.21 2.08 0.17 2.55 1.33

9 0.21 1.85 0.17 2.45 1.17

10 0.23 1.85 0.18 2.27 1.05

Table 4: shows the results from regressing the returns of different maturity (years)

bonds on the previous month average return of different maturity bonds. The

t-values are based on Newey and West (1987) standard errors.

returns based on different maturity bonds.

4 Sources of Momentum

What is driving the results obtained in the previous section? This section

derives four key results. First, yield curve momentum is due to a change

in the level factor of yields. Second, these level factor changes are not

spanned by current yields. Third, results are similar when controlling for

macroeconomic variables. Fourth, the change in the level factor of yields

also predicts survey based forecast errors concerning interest rates.

4.1 The Effect of Level Changes

To begin note that we can decompose the excess return on a bond as

rxnt+1 = −(n− 1)yn−1
t+1 +nynt − y1

t =

−(n− 1)yn−1
t +nynt − y1

t︸                       ︷︷                       ︸
excess carry

− (n− 1)(yn−1
t+1 − y

n−1
t )︸                  ︷︷                  ︸

yield change

≡ cnt − ycnt+1. (5)
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Maturity Cov(cnt , c
n
t−1) Cov(cnt , yc

n
t ) Cov(ycnt+1, c

n
t−1) Cov(ycnt+1, yc

n
t )

1 5.3 -0.9 5.6 90.0

2 7.2 1.4 2.7 88.7

3 5.7 2.4 3.0 88.9

4 5.4 2.2 4.8 87.5

5 4.7 4.1 2.3 88.9

6 4.9 5.3 4.9 85.0

7 4.1 1.1 3.4 91.5

8 3.7 4.8 6.1 85.3

9 3.3 3.7 6.3 86.7

10 3.6 0.2 2.8 93.4

Table 5: shows the share of covariance between bond return and past month bond

return in per cent accounted by the four channels. Bond maturities are in years.

Here carry (cnt ) describes the excess return on a bond assuming the yield

curve would remain unchanged. This part of the return between t and t + 1

is observable already at time t. On the other hand, yield change (ycnt+1)

represents the effect of a change in the yield curve on the bond excess return.

Therefore for the covariance between current returns and past returns we

have

Cov(rxnt+1, rx
n
t ) = Cov(rxnt+1, c

n
t−1 − yc

n
t ) =

Cov(cnt , c
n
t−1) +Cov(−ycnt+1, c

n
t−1) +Cov(cnt ,−ycnt ) +Cov(−ycnt+1,−yc

n
t )

(6)

This implies that past bond returns can predict future bond returns either

because (i) past carry predicts current carry, (ii) past carry predicts future

yield changes, (iii) past yield changes predict current carry or (iv) past yield

change predicts future yield change.

Table 5 gives the covariance decomposition above. One can see that

covariance between future and past bond returns is mainly due to covariance

between future and past yield changes. In the appendix I also verify these

dependencies using regressions. For Treasuries time series momentum is

primarily yield momentum.
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Given this finding I now revisit the question about whether yield curve

momentum can be captured using a single factor. I extract the first principal

components using all the 120 maturities between 1 month and 10 years. I

then consider the following regression:

rxnt+1 = α + β∆pc1
t + ϵt+1 (7)

I also decompose return autocovariance to a level change effect and a

residual component. In particular consider the contemporaneous projection:

rxnt = a+ b∆pc1
t + et (8)

Now we have

Cov(rxnt+1, rx
n
t ) =

Cov(β∆pc1
t + ϵt+1,b∆pc

1
t + et) =

Cov(β∆pc1
t + ϵt+1,b∆pc

1
t ) +Cov(β∆pc1

t + ϵt+1, et) =

βV ar(∆pc1
t )b︸          ︷︷          ︸

Level change effect

+Cov(β∆pc1
t + ϵt+1, et)︸                     ︷︷                     ︸

Residual effect

Here the 3rd line uses the fact that ϵt+1 must be orthogonal to ∆pc1
t . In a

standard one factor model the first component would account for 100% per

cent of return autocovariance.

The first principal component explains roughly 98.5% of the variation in

yields. This component is often called a level factor since it loads fairly evenly

on all maturities. The average contemporaneous correlation between the

change in this factor and excess bond returns is -0.95. That is an increase in

this factor is related to an upward shift in the yield curve but also to negative

excess bond returns. This high correlation between bond excess returns and
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changes in the level factor indicates that these level factor changes will also

explain a large fraction of yield curve momentum.

Results from the predictability regression and decomposition are given in

Table 6. The share of return autocovariance explained by level factor changes

is on average 94% and ranges between 81% and 110%. A share of more

than 100% implies that the residual component from a contemporaneous

projection of returns on the change in the level factor is negatively associated

with next month returns. The R2 statistics in the regressions are of similar

magnitude than in the plain momentum regressions, where returns are

explained by past returns. Overall, I conclude that the bulk of yield curve

momentum is explained by changes in the level factor.

The appendix further considers the predictive power of changes in higher

order principal components, finding weak results for most principal compo-

nents. Also note that while level changes are important predictors of bond

returns, as seen from the later tables, the level of the level factor contains

only minor predictive information for returns.

4.2 Spanning decomposition

Past bond returns can predict future bond returns either because i) past

bond returns contain information about current yield curve factors that

predict future bond returns or ii) past returns contain additional information

relevant for future returns. Formally the first explanation implies that past

returns are spanned by current yields whereas the second implies that they

are not. As explained later standard term structure models imply that the

spanning condition holds so that yield curve momentum should be explained

by the first channel.

To test the relevant importance of the two channels consider two linear

projections of returns on the principal components of yields

rxnt+1 = A′P Ct + ϵt+1 (9)
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Regression Decomposition

Mat. α t-value β t-value R2 (%) ∆pc1
t change Other

1 0.07 4.00 -0.02 -2.47 3.41 86.32 % 13.68 %

2 0.10 3.05 -0.03 -2.86 2.59 86.37 % 13.63 %

3 0.14 3.14 -0.04 -2.57 1.85 88.24 % 11.76 %

4 0.17 2.79 -0.04 -2.29 1.07 82.38 % 17.62 %

5 0.19 2.65 -0.05 -2.22 0.94 80.78 % 19.22 %

6 0.21 2.60 -0.06 -2.39 1.17 109.91 % -9.91 %

7 0.22 2.37 -0.07 -2.37 1.22 110.25 % -10.25 %

8 0.24 2.30 -0.07 -2.36 1.21 103.88 % -3.88 %

9 0.23 2.06 -0.07 -2.23 1.02 96.38 % 3.62 %

10 0.25 2.05 -0.08 -2.09 0.92 96.09 % 3.91 %

Table 6: shows the results of predicting returns of different maturity (years) bonds

on the change in the first principal components of yields. It also shows a decom-

position of return autocovariance into an effect due to a change in this principal

component and a residual component. The t-values are based on Newey and West

(1987) standard errors.
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Maturity Spanned Unspanned

1 7.4 % 92.6 %

2 1.8 % 98.2 %

3 1.3 % 98.7 %

4 0.7 % 99.3 %

5 0.2 % 99.8 %

6 -2.9 % 102.9 %

7 -2.0 % 102.0 %

8 1.2 % 98.8 %

9 1.7 % 98.3 %

10 0.7 % 99.3 %

Table 7: shows the decomposition of covariance between the return of different

maturity (years) bonds and their past value into a part spanned by yields and an

unspanned part.

rxnt = B′P Ct + εt (10)

The autocovariance in bond returns can then be decomposed to spanned

and unspanned parts:5

Cov(rxnt+1, rx
n
t ) = A′V ar(P Ct)B︸          ︷︷          ︸

Spanned

+Cov(rxnt+1, rx
n
t )−A′V ar(P Ct)B︸                                  ︷︷                                  ︸

Unspanned

(11)

I apply five principal components of yields, including further compo-

nents has minor effects on the results. The results are given in Table 7. On

average only about 1% of the covariance between current and past returns is

spanned by yields.

Results from the spanning decomposition above suggest that unspanned

variation in returns is important to explaining yield curve momentum. I now

5In a standard spanned term structure model: Et[rx
n
t+1] = A′P Ct , where the expectation

is computed conditional on all information available at time t. Then Cov(rxnt+1, rx
n
t ) =

Cov(A′P Ct , rx
n
t ) = Cov(A′P Ct ,B

′P Ct) = A′V ar(P Ct)B.
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mat 1 2 3 4 5 6 7 8 9 10

const. -0.03 -0.02 -0.03 -0.03 -0.08 -0.19 -0.34 -0.53 -0.61 -0.71

t-value -0.63 -0.20 -0.21 -0.17 -0.33 -0.69 -1.13 -1.52 -1.58 -1.66

β1 (rxt) 0.19 0.18 0.16 0.13 0.12 0.10 0.10 0.10 0.10 0.09

t-value 2.77 3.50 3.01 2.59 2.65 2.08 2.10 2.12 2.09 1.97

pc1 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.0004 0.001

t-value 1.82 1.29 1.15 0.84 0.71 0.52 0.38 0.40 0.12 0.02

pc2 0.00 -0.01 -0.02 -0.03 -0.04 -0.06 -0.07 -0.08 -0.09 -0.10

t-value -0.40 -0.82 -1.30 -1.68 -1.85 -2.14 -2.48 -2.74 -2.72 -2.80

pc3 -0.03 -0.08 -0.11 -0.15 -0.17 -0.15 -0.15 -0.15 -0.13 -0.13

t-value -1.39 -2.43 -2.69 -2.83 -2.57 -2.00 -1.74 -1.50 -1.19 -1.04

pc4 -0.12 -0.20 -0.25 -0.29 -0.33 -0.38 -0.53 -0.71 -0.86 -1.03

t-value -2.11 -1.88 -1.73 -1.58 -1.54 -1.63 -2.08 -2.46 -2.74 -2.96

pc5 -0.26 -0.33 -0.42 -0.60 -0.91 -1.26 -1.44 -1.41 -1.15 -0.91

t-value -2.24 -1.60 -1.53 -1.76 -2.12 -2.21 -2.32 -2.21 -1.78 -1.38

R2 (%) 8.7 7.2 6.2 5.7 5.9 5.8 6.4 6.6 6.0 5.9

Table 8: shows the results of predicting returns of different maturity (years) bonds

on the past return of the bond and the first five principal components of yields. The

t-values are based on Newey and West (1987) standard errors.

test this result more formally by including the first five principal components

into the predictive regression shown in Table 1. The results are given by in

8. The table suggests that the past return is still significant and numerical

values of the corresponding slope coefficient similar to before. These results

confirm that past returns are largely unspanned by current yields. The

appendix provides additional support that this holds when including more

yields to the predictability regression as well as controlling for potential

non-linearities.

4.3 Controlling for Macro Variables

Macroeconomic variables are often found to forecast bond returns on top of

yields (Duffee, 2011; Joslin et al., 2014; Cieslak and Povala, 2015; Coroneo

et al., 2016; Moench and Siavash, 2022). As discussed later, this suggests
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these variables are unspanned by current yields. In theory past returns

might be correlated with such unspanned macro variables, which could

explain why past returns themselves are unspanned. I next argue that my

results are valid also when controlling for information in macroeconomic

data.

To control for a large set of macro variables, I first follow an approach

similar to that in Ludvigson and Ng (2009). Consider predicting bond

returns using a factor model of the form:

mit = λ′ft + eit

rxnt+1 = α′Mt + β′Zt + ϵt+1,

where Mt ⊂ ft. Here I posit that each macroeconomic variable mit is driven

by a smaller set of common factors ft. These common macroeconomic factors

then predict bond returns along with other variables Zt.

The factors are extracted using principal component analysis.6The num-

ber of macro factors is determined using the IC2 criterion of Bai and Ng

(2002). The criterion suggests that the macro data is well described by 7

common factors, which explain about 44% of the variation in the data.

The optimal combination of estimated factors M̂t is determined using the

BIC criterion. Following Ludvigson and Ng (2009), I also consider squares

and cubes of the factors. Note that the optimal factors are generally different

for different maturity bonds. I control for past bond returns and the first

five principal components of yields, that is Zt = [rxnt ,pc
1
t ,pc

2
t ,pc

3
t ,pc

4
t ,pc

5
t ].

This is in contrast to Ludvigson and Ng (2009) who only control for the

Cochrane-Piazzesi factor. Note that as in Moench and Siavash (2022) my

macro panel also includes additional macroeconomic and financial variables.

The results are given in Table 9. The set of selected factors includes

the first, third and seventh principal components of the macro data. It

also containts the squares of the first and seventh principal components

as well as the cube of the fourth principal component. The chosen factors

6Missing observations are handled using the expectation maximization algorithm sug-

gested by Stock and Watson (2002).
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vary somewhat among the differerent maturities as can be seen from the

table. The past returns remain significant for maturities between 1 and 5

years though less so for the longer maturity bonds. Interestingly for short

maturities, the momentum slope coefficients are also larger than before.

I also examined a version of the algorithm where the set of possible macro

factors includes the lags of the first seven principal components of the macro

variables. For one year bonds, the algorithm includes the lags of the first

and second principal components but the coefficient and t-value on the past

return is similar to before. The lags are not selected for the longer maturities

so the results are exactly as before.

Principal components of macroeconomic variables lack an obvious eco-

nomic interpretation. Therefore I now also show results when instead con-

trolling for trend inflation and the activity index. I also include lags of these

macro variables and as well as the five principal components of yields.

The results are given in Table 10. The slope coefficients for past returns

are clearly significant and of similar magnitude than before. Trend inflation

and its lag is also significant. Moreover, the activity index is also significant

though its lag only weakly so.

I conclude that accounting for macro variables does not alter the main

results of this paper though these variables possibly represent additional

unspanned information useful for predicting returns. However, in some

specifications the predictive content of past returns of bonds with maturities

greater than five years appears weaker than before, while the predictive of

past returns of short maturity bonds can be higher.

4.4 Short Rate Forecast Errors

Forecast errors should be unpredictable under rational expectations. A large

literature has instead documented that survey forecasts exhibit systematic

biases. For example Coibion and Gorodnichenko (2015) associate these

biases to forecast revisions. Cieslak (2017), Schmeling et al. (2022) and

Granziera and Sihvonen (2021) further relate survey based short rate forecast
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Mat 1 2 3 4 5 6 7 8 9 10

const 0.06 0.13 0.20 0.26 0.26 0.17 0.04 -0.10 -0.14 -0.21

t-value 1.00 1.21 1.35 1.33 1.10 0.62 0.13 -0.30 -0.38 -0.49

rxt 0.23 0.26 0.18 0.12 0.11 0.09 0.08 0.07 0.07 0.07

t-value 2.34 3.14 2.58 2.09 2.09 1.61 1.52 1.44 1.44 1.40

pc1 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001

t-value 1.49 1.39 1.58 1.09 0.99 0.86 0.77 0.80 0.43 0.26

pc2 -0.01 -0.02 -0.03 -0.05 -0.06 -0.07 -0.09 -0.10 -0.11 -0.12

t-value -1.96 -2.56 -2.65 -3.09 -3.18 -3.28 -3.43 -3.62 -3.58 -3.62

pc3 -0.07 -0.18 -0.25 -0.31 -0.34 -0.33 -0.33 -0.34 -0.34 -0.35

t-value -3.45 -4.22 -4.24 -4.19 -3.99 -3.43 -3.11 -2.82 -2.53 -2.33

pc4 -0.08 -0.16 -0.17 -0.19 -0.22 -0.27 -0.43 -0.60 -0.72 -0.88

t-value -1.70 -1.92 -1.45 -1.23 -1.23 -1.32 -1.87 -2.31 -2.63 -2.85

pc5 -0.23 -0.32 -0.40 -0.55 -0.85 -1.21 -1.39 -1.36 -1.08 -0.83

t-value -2.05 -1.47 -1.36 -1.53 -1.94 -2.09 -2.23 -2.10 -1.67 -1.26

M̂1 -0.02 -0.05 -0.07 -0.09 -0.10 -0.11 -0.13 -0.14 -0.14 -0.15

t-value -3.95 -5.74 -6.18 -6.08 -5.67 -5.27 -5.17 -5.21 -5.07 -4.77

M̂3 -0.02 -0.05 -0.06 -0.07 -0.09 -0.11 -0.13 -0.14

t-value -3.18 -3.11 -3.52 -3.54 -3.60 -3.77 -3.82 -3.77

M̂7 -0.03 -0.06 -0.09 -0.12 -0.14 -0.15 -0.18 -0.21 -0.22

t-value -2.50 -2.47 -2.98 -3.31 -3.41 -3.54 -3.79 -3.91 -3.68

M̂2
1 0.00 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

t-value -2.85 -3.45 -3.77 -3.83 -3.89 -3.86 -3.60 -3.25

M̂2
7 -0.01 0.00

t-value -2.58 -3.08

M̂3
4 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003

t-value 3.20 3.20 3.28 3.29 3.12 2.91 2.67 2.53 2.57 2.74

R2 (%) 25.7 21.5 19.7 18.7 18.1 16.2 15.7 15.8 15.4 15.0

Table 9: shows the results of predicting returns of different maturity (years) bonds

on the past return of a same maturity bond, the first five principal components of

yields as well as the optimal set of macroecomic predictors M̂t. The t-values are

based on asymptotic standard errors (Bai and Ng, 2006) with the Newey and West

(1987) correction.
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Mat 1 2 3 4 5 6 7 8 9 10

cons 0.04 0.13 0.21 0.28 0.30 0.25 0.17 0.07 0.04 0.01

t-value 0.63 1.25 1.38 1.41 1.25 0.89 0.55 0.20 0.10 0.03

rxt 0.13 0.15 0.13 0.11 0.11 0.09 0.10 0.10 0.10 0.10

t-value 2.04 2.97 2.63 2.28 2.42 1.92 2.10 2.16 2.18 2.14

Inf -3.79 -6.44 -8.64 -10.73 -12.88 -15.66 -17.03 -18.51 -18.23 -18.41

t-value -2.97 -2.95 -2.94 -2.83 -2.88 -2.96 -2.94 -2.98 -2.74 -2.56

Inf lag 3.73 6.26 8.34 10.31 12.37 15.07 16.29 17.63 17.22 17.24

t-value 2.95 2.88 2.85 2.72 2.77 2.85 2.81 2.83 2.59 2.39

Act -0.38 -0.59 -0.78 -0.93 -1.04 -1.16 -1.23 -1.27 -1.37 -1.32

t-value -3.25 -3.38 -3.31 -3.13 -3.01 -2.63 -2.51 -2.36 -2.30 -1.94

Act lag 0.24 0.36 0.47 0.58 0.66 0.74 0.79 0.80 0.90 0.81

t-value 1.93 1.88 1.79 1.76 1.71 1.55 1.48 1.38 1.42 1.14

pc1 0.00 0.01 0.02 0.02 0.03 0.03 0.03 0.04 0.05 0.05

t-value 2.33 2.92 3.29 3.39 3.42 3.40 3.69 3.85 3.94 4.14

pc2 0.00 -0.01 -0.03 -0.05 -0.06 -0.07 -0.09 -0.11 -0.13 -0.15

t-value -0.02 -0.85 -1.50 -1.95 -2.08 -2.22 -2.69 -3.04 -3.27 -3.51

pc3 -0.03 -0.08 -0.11 -0.14 -0.15 -0.13 -0.12 -0.11 -0.09 -0.07

t-value -1.85 -2.51 -2.62 -2.67 -2.35 -1.76 -1.43 -1.13 -0.78 -0.58

pc4 -0.10 -0.17 -0.21 -0.25 -0.29 -0.33 -0.48 -0.66 -0.81 -0.99

t-value -1.83 -1.61 -1.51 -1.39 -1.38 -1.44 -1.91 -2.33 -2.66 -2.94

pc5 -0.32 -0.40 -0.49 -0.66 -0.97 -1.36 -1.51 -1.46 -1.12 -0.81

t-value -2.61 -1.77 -1.60 -1.72 -2.03 -2.16 -2.23 -2.11 -1.62 -1.15

R2 (%) 14.0 11.7 10.7 10.0 10.1 10.0 10.7 11.0 10.4 10.1

Table 10: shows the results of predicting the returns of different maturity (years)

bonds on the past return of the bond, trend inflation, the national activity index, the

past month values of these two macroeconomic variables and the first five principal

components of yields. The t-values are based on Newey and West (1987) standard

errors.
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errors to bond and money market predictability patterns. However, these

papers do not associate the results to those in the momentum literature nor

measure biases when empirically controlling for all the current information

in the term structure of interest rates.7

I measure short rate expectations using the three month Treasury-bill

forecast from Consensus economics. The forecast horizon is 3 months and

the data begins in October 1989. I calculate realized forecast errors as

y3
t+3 −E

S
t [y3

t+3], where E
S
t [y3

t+3] is the survey forecast. I explain these forecast

errors with the (time t) first 5 principal components of yields as well as the

lag of the first principal component of yields. The results are given in Table

11.

Both the first principal component of yields and its lag are significant pre-

dictors of forecast errors. The sign of the level factor is positive but that of its

lag is negative. Since these coefficients are of similar magnitude, the change

in the level factor is an important predictor of forecast errors. That is a recent

positive change in the level of interest rates is associated with forecaster

underpredicting future short rates relative to rational expectations.

These results also suggest that a variable unspanned by the information

in the current term structure of interest rates, namely the lag of the level

factor, is important to predicting short rate forecast errors. Later I show that

these observations are consistent with my theoretical pricing model.

5 Momentum and Post-FOMC Announcement Drift

Because especially the short end of the yield curve tends to be tightly con-

trolled by the Fed, yield curve momentum might be induced by policy rate

changes. This is also due to recent findings related to post-FOMC announce-

ment drift. Brooks et al. (2019) find that longer term bond yields respond

7While Cieslak (2017) does not control for yield curve principal components, her theo-

retical model in Cieslak (2017) does account for unspanned macroeconomic variables. Note

that Cieslak (2017) concentrates on explaining predictability on a quarterly and annual

horizon, unlike this paper which focuses on more short horizon monthly predictability.
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cons 0.28

t-value 2.46

pc1 0.03

t-value 2.84

pc2 -0.002

t-value -0.24

pc3 -0.16

t-value -3.75

pc4 -0.37

t-value -4.14

pc5 -0.24

t-value -1.56

pc1 lag -0.03

t-value -3.01

R2 (%) 35.1

Table 11: shows the results of explaining forecast errors concerning 3 month rates,

3 month ahead using the current first five principal components of yields as well as

the lag of the first principal component of yields. The t-values are based on Newey

and West (1987) standard errors.
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sluggishly to changes in the federal funds target rate.8

I now study this relationship using data on the federal funds target rate.

I also utilize data on federal funds futures and the FOMC announcement

dates to construct a series of surprise changes in the federal funds rate as in

Kuttner (2001). The data period for the federal funds target rate begins in

October 1982 and the data for monetary policy surprises in October 1988.

Figure 5 shows the correlation between changes in yields and changes

in the federal funds target rate. It does so in two samples: the full sample

starting in 1982 and a subsample of months with a non-zero change in this

policy rate. Excluding months with no rate changes, this correlation is close

to 0.8 at the short end of the yield curve but only around 0.3 at the long

end. The decline in correlation for longer maturity bonds is natural since the

federal funds rate is an overnight rate. All of these correlations are somewhat

smaller in the full sample; overall roughly 30% of months included changes

in the policy rate.

I now consider the following regressions

rxnt+1 = α + β∆FFTRt + ϵt+1 (12)

rxnt+1 = α + β∆UEFFTRt + ϵt+1. (13)

That is I explain the returns of different maturity bonds on the raw

change of the past month federal funds target rate as well the unexpected

change in this rate. These regressions are related to those considered by

Cook and Hahn (1989) and Kuttner (2001) except that I consider the past

rather than the contemporaneous change in the policy rate.9

The results are given in Table 12. Here I also show the results from

regressing bond returns on the change in the previous month change in the

corresponding yield for the same period when the target rate is available.

8There is a similar drift pattern in equity markets after rate changes, see Neuhierl and

Weber (2018).
9Cook and Hahn (1989) and Kuttner (2001) also look at yield changes rather than excess

returns.
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Figure 5: shows the correlation between the change in the federal funds target rate

(FFTR) and the change in the yield of different maturity (in months) bonds in two

subsamples: full and months with non-zero FFTR changes.
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FFTR change ycn

Mat. α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.08 6.23 -0.21 -3.08 3.80 0.08 6.33 -0.17 -3.02 5.38

2 0.13 4.58 -0.33 -2.47 1.87 0.08 6.25 -0.16 -3.36 4.99

3 0.19 4.31 -0.39 -1.92 1.02 0.08 6.07 -0.14 -3.24 3.94

4 0.23 3.97 -0.42 -1.57 0.64 0.08 5.96 -0.12 -3.16 3.15

5 0.27 3.71 -0.43 -1.28 0.43 0.08 5.90 -0.11 -3.02 2.45

6 0.31 3.60 -0.32 -0.82 0.17 0.08 5.80 -0.10 -2.61 1.98

7 0.34 3.39 -0.12 -0.27 0.02 0.08 5.75 -0.09 -2.50 1.58

8 0.38 3.34 -0.15 -0.28 0.02 0.08 5.71 -0.09 -2.30 1.37

9 0.39 3.12 -0.11 -0.19 0.01 0.08 5.69 -0.09 -2.28 1.21

10 0.43 3.09 -0.11 -0.17 0.01 0.08 5.69 -0.09 -2.21 1.07

Unexpected FFTR change

1 0.09 4.27 -0.26 -1.32 2.04

2 0.14 2.49 -0.49 -1.54 1.08

3 0.19 2.23 -0.96 -1.87 1.73

4 0.22 1.99 -1.45 -2.08 2.20

5 0.25 1.86 -1.84 -2.11 2.41

6 0.28 1.83 -2.28 -2.16 2.76

7 0.31 1.81 -2.52 -2.02 2.60

8 0.34 1.78 -2.76 -1.95 2.54

9 0.35 1.72 -3.02 -1.95 2.55

10 0.39 1.78 -3.43 -2.05 2.85

Table 12: shows the results from regressing the returns of different maturity (years)

bonds on the previous change in federal funds target rate, change in the previous

yield for the same maturity bond and the previous month unexpected change in

the federal funds target rate (Kuttner, 2001). The t-values are based on Newey and

West (1987) standard errors.
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Results when using the federal funds target rate and bond yield are similar

for shorter maturities, which is perhaps not surprising since these yields are

highly correlated with the target rate. However, for longer maturities the

target rate change is not significant while the yield change is. Therefore it

seems that yield curve momentum is closely related but still separate from

post-FOMC announcement drift.

Table 12 also shows the results when the independent variable is the

past surprise change in the federal funds rate. Interestingly the results are

not significant for 1 and 2 year bonds but become significant for longer

maturities. Therefore long maturity bonds seem to have a stronger drift

pattern after surprise changes in the federal funds rate. The sample period

for these regressions is somewhat shorter though.

We can also analyze the contribution of target rate changes to yield curve

momentum using a decomposition. I project bond returns on contemporane-

ous changes in the federal funds rate as follows:

rxnt = a+ b∆FFTRt + et. (14)

Using this projection, I can then decompose bond return autocovariance

into an effect caused by changes in the federal funds target rate and a residual

component:

Cov(rxnt+1, rx
n
t ) = βV ar(∆FFTRt)b︸               ︷︷               ︸

FFR effect

+Cov(rxnt+1, et)︸          ︷︷          ︸
Other

, (15)

where β is the slope coefficient from a regression of bond returns on past

month change in the target rate. The results are given in table 13. This simple

decomposition suggests that target rate changes are an important contributor

to momentum for shorter maturities but less so for longer maturities.

Overall, yield curve momentum is therefore connected with, but not

identical to, post-FOMC announcement drift. Past month yield hikes predict

low returns in the following month. These yield changes can be partly but

not fully explained with same month movements in the policy rate. For
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Maturity FFTR effect Other

1 47.3 % 52.7 %

2 31.0 % 69.0 %

3 20.3 % 79.8 %

4 21.3 % 78.8 %

5 17.1 % 82.9 %

6 13.6 % 86.4 %

7 5.3 % 94.7 %

8 7.4 % 92.6 %

9 4.8 % 95.2 %

10 4.8 % 95.2 %

Table 13: shows the decomposition of covariance between the return of different

maturity (years) bonds and their past value into a part explained by change in the

federal funds target rate and a residual component.

example the momentum coefficients are still significant in the subsample

of months with no policy rate changes. The appendix contains additional

results concerning the post-FOMC announcement drift.

Finally, note that the above discussion is unlikely to fully capture the

broad relationship between monetary policy and yield curve momentum.

Yields tend to fluctuate also in periods without any formal monetary policy

decisions. However, this does not imply that such changes are unrelated to

monetary policy. These fluctuations might for example still reflect changes

in the market participants’ views about future monetary policy actions.

6 Momentum and Affine Term Structure Models

How to account for the above empirical findings in a term structure model?

I start by introducing a baseline affine term structure model and discussing

minimal requirements implied by the data. It is seen that the violation of

the spanning condition implies strong restrictions for such a model.

For generality, and similarly to Piazzesi et al. (2015), consider three prob-

ability measures. P represents objective probabilities as viewed by a rational
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econometrician. For simplicity I omit this P symbol from expectations taken

under rational beliefs. S expresses subjective beliefs of a representative

agent. Finally, Q is a pricing measure defined below.

Assume that the state perceived important for determining bond prices

is an m× 1 dimensional factor Xs
t . This may generally be different from the

me × 1 true state vector in the economy Xt, which can in particular include

additional factors Xs
t ⊂ Xt, m ≤me. Under the subjective measure the factor

Xs
t follows:

Xs
t = µs +φsXs

t−1 + vt, (16)

where vt is multivariate Gaussian vt ∼ N (0,V ). I assume that under the

objective measure, the true state of the economy also follows a Gaussian

VAR-model with coefficients µ and φ.

The log nominal discount factor, expressed under the subjective measure,

is a linear function of the subjective factors

Mt+1 = exp
(
−δ0 − δ′1X

s
t −

1
2
λ′tVλt −λ′tvt+1

)

λt = λ0 +λ1X
s
t

(17)

I can then solve bond prices recursively using

p1
t = logES

t (Mt+1) (18)

pnt = logES
t (Mt+1 exp(pn−1

t+1 )). (19)

In this model prices and yields take a standard affine form.

pnt = An +B′nX
s
t (20)
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here

A0 = 0, B0 = 0

Bn+1 = −δ1 +B′nφ
∗

An+1 = −δ0 +An +B′nµ
∗ +

1
2
B′nVBn.

Here the risk neutral parameters are given by

φ∗ = φs −Vλ1 (21)

µ∗ = µs −Vλ0 (22)

These risk neutral parameters define the pricing measure Q under which

the factor Xs
t follows a VAR-process with modified parameters. This pricing

measure is equivalent to the subjective measure S.

General Model Restrictions What type of affine term structure model

can generate momentum? I first discuss the general restrictions imposed by

the empirical findings. To begin note that in order to generate yield curve

momentum, one either needs a model with a time-varying subjective risk

premium, a model with non-rational beliefs S , P or a model with both

channels.

Remark 1. The momentum slope coefficient is zero in a model with a constant

(but possibly maturity specific) risk premium λ1 = 0 and rational beliefs S = P.

If λ1 = 0, all subjective risk premia are constant. When beliefs are

rational, so is the objective risk premium i.e. there is no return predictability.

Now also the best forecast of future excess returns is a constant so the slope

coefficient in the momentum regression would be zero.

However, this argument does not hold once we relax full information

rational expectations, S , P. Now subjective risk premia can be zero yet
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variables such as past returns predict bond returns under the true measure

due to expectational errors. My theoretical pricing models feature both

channels. Here expectational errors is the primary cause of momentum

consistently with forecast biases documented in surveys. However, risk

premia explain the average slope of the yield curve as well as the predictive

performance of the levels of standard yield curve factors.

Table 1 shows that the regression slope coefficient is decreasing in bond

maturity. This effectively rules out models in which the coefficient is constant

across maturities. In particular we have the following remark:

Remark 2. The momentum slope coefficient is constant across maturities in a

one factor model m = 1.

Proof: see appendix.

This result is related to the fact that in one factor interest rate models all

bond yields are perfectly correlated (Vasicek, 1977).

In the empirical part I established that yield curve momentum is pri-

marily driven by the change in the first principal component of yields. But

does this imply that one could capture most of momentum using a single

factor term structure model? This reasoning is incorrect as this finding

rather suggests that the model should include information about both the

first principal component and its past value rather suggesting a minimum of

two factors.

To build intuition, in the theoretical part, I first consider a single factor

model, which explains momentum but does not generate the downward

sloping pattern for momentum betas. However, I then consider a more

general multi-factor model which also accounts for this pattern.

My empirical results suggest that momentum should be explained by

a model in which past returns are not spanned by information in current

yields. This observation implies strong restrictions for term structure models.

These models tend to imply that the same model factors that forecast bond

returns also drive variation in yields. Therefore controlling for sufficiently
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many yields is equivalent to controlling for the factors and no other variable

should contain additional information for forecasting bond returns.

However, this spanning condition can be violated in cases in which

an invertibility condition fails. Denote by Bn,e the yield loadings on the

true state variable Xt, that is extend Bn by zeros for all state variables not

considered by the agents, Bn,e = [Bn,0′]. Formally, we have the following

result

Remark 3. Past bond returns can predict future returns conditional on the

information in the term structure today only if the following condition holds:

[Bn(1),e,Bn(2),e, ...,Bn(me),e] is not invertible for any n(1),n(2) . . . ,n(me).

Proof: see appendix.

Intuitively if we pick any combination of yields, we cannot back out the

true state variable Xt. If such an invertibility condition fails, controlling

for the yields is generally not equivalent to controlling for the factors. In

standard unspanned models invertibilty fails because some state variable

relevant for forecasting takes a zero yield loading. Now some factors can

predict returns and yield changes but not be priced in the current term

structure of yields. In the theoretical pricing models of this paper P , S

and the spanning condition fails because agents ignore longer lags of a state

variable important for determining bond prices.

6.1 Spanning Puzzle and Problem with Standard Models

The finding that past returns can predict future returns controlling for

information in the yield curve today poses difficulties for standard models.

While reduced form no-arbitrage models can in principle be parametrized

to knife-edge cases in which the invertibility condition in Remark 3 fails,

standard theoretically motivated models tend to assume full spanning.10 I

next discuss some of these models:
10While the theoretical models are generically spanned, one could also parametrize them

to imply a violation of the spanning condition. However, I am not aware of any such
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Macrofinance Models I first consider the three main macrofinance models

used to explain asset returns: the long run risk model, the habit model

and the disasters model. In the long-run risk model (see e.g. Bansal and

Shaliastovich, 2012) bond yields take an affine form in the true economic

state variable. Therefore this model is of the form discussed in the previ-

ous section and for standard parametrizations cannot generate momentum

conditional on information in the term structure today.

In the habit model, bond yields are a generally non-linear function of

habit (Wachter, 2006). Therefore the argument of the previous section is

strictly valid only up to a first order approximation of the underlying model.

However, as discussed in the appendix one can generalize Remark 3 to any

well-defined function yt = g(Xt) so that there is no conditional momentum

after controlling for the generally non-linear relationship between past

yields and returns. The results obtained in the appendix also suggest that

controlling for non-linearities also does not alter the key conclusions.11

Also the disasters model of Gabaix (2012) implies that yields are of the

form yt = g(Xt) for state variables Xt. This is also true for any Markovian

model such as standard DSGE models. For example Rudebusch and Swanson

(2012) offer a macroeconomic interpretation of term premia using a DSGE

model with Epstein-Zin preferences. Therefore the general results apply to

this model subject to excluding knife-edge cases in which an invertibility

condition fails.

Models with Financial Frictions Vayanos and Woolley (2013) posit that

momentum might be explained by frictions in delegated asset management.

Because the equilibrium is linear in state variables, the model can only

generate unconditional momentum. Similarly the preferred habitat term

exercise. Here one would have to give an explanation for such knife-edge restrictions on

model parameters.
11There are also some non-linear reduced form term structure models such as Feldhütter

et al. (2018). Here my argument remains valid when controlling for the non-linear relation-

ships between future returns and yields.
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structure model of Vayanos and Vila (2020) takes a standard affine form and

hence is unable to generate conditional momentum.

Behavioral Models I now turn to behavioral models and models with

heterogenous beliefs. Granziera and Sihvonen (2021) assume that agents

have sticky rather than perfectly rational expectations concerning short

rates. This slow updating creates a drift pattern in bond returns following

short rates changes.12 Hence the model naturally generates unconditional

momentum. In this model biased beliefs enter as new state variables but

again bond prices are affine in the true state variable, which is inconsistent

with conditional momentum.

In Xiong and Yan (2010) yields are a generally non-linear function of

the beliefs of different types of investors. Again this model cannot generate

conditional momentum controlling for non-linear dependencies between

returns and past yields.

The classic momentum model of Hong and Stein (1999) features only one

asset. The authors solve for an linear equilibrium. It is not obvious how to

extend the model to multiple assets but assuming such an extended model

were still linear the problems discussed above apply.

6.2 Accounting for Momentum in a Term Structure Model

I next discuss how to account for momentum in a term structure model.

I initially consider a reduced form no-arbitrage setting but later offer a

theoretical interpretation for the approach in Section 6.4. For intuition I

start with a simplified example and then move to a more realistic estimated

multi-factor term structure model.

Simple Example

Consider a one factor model as in for example Vasicek (1977). However,

12Brooks et al. (2019) also argue that a similar model can explain the post FOMC an-

nouncement drift.
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make the following twist. First, instead of the standard AR(1) dynamics

assume the factor follows an AR(2)-process. In such a model bond prices

generally depend on both the current value of the state variable xt and its

lag xt−1 that is the true state variable is Xt = [xt,xt−1].

However, assume the second lag is not priced that is under the risk

neutral pricing measure the factor follows an AR(1) process. This occurs

if the process is considered to be AR(1) under the subjective measure S so

that XS
t = xt. However, it can also happen when P = S under knife-edge

restrictions on model parameters, though I later argue in favor of the first

interpretation.

A finite factor term structure model typically cannot price all yields

perfectly. A common approach to estimating such models is to assume that

only some of the yields are priced or observed without error (Hamilton

and Wu, 2012b). I estimate the risk parameters by assuming that 5 year

yields are priced perfectly. Moreover, I estimate (δ0,δ1) directly using OLS.

The key predictability results hinge on a single parameter, the risk neutral

persistence of the factor. I obtain ρQ ≈ 0.9999. The corresponding market

price of risk parameters could be solved from equations (22) and (21) but

are not relevant for the exercise.

I estimate the true factor dynamics and find significant persistence pa-

rameters of 1.077 for the first lag and −0.088 for the second. For comparison

fitting AR(1) factor dynamics would result in a persistence parameter of

0.989 under the real measure.

Now consider regressing the past excess return of a 5-year bond on the

previous month return of a 5 year bond. Using simulations I obtain a slope

coefficient of 0.11, that is the model is able to generate momentum and

this coefficient is of similar magnitude to that in the data (0.12). However,

because this is effectively a one factor model, this coefficient is actually

constant across maturities, whereas in the data it is decreasing.

But then I repeat this exercise but now explain the return using the past

month return and the beginning of period yield of the bond. The coeffient

on the past return is still positive at roughly 0.10. That is the model is able
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to generate momentum conditional on the information in the term structure

today.

Why is this model able to generate conditional momentum? In the data,

yields effectively follow an AR(2)-process. However, agents price bonds

as if the process is AR(1). The higher lag is not priced. Still this second

lag is useful for predicting future yields and returns. Because past returns

incorporate information about this second lag, including them into the

regression increases the model’s predictive power. Note that if the second

lag were priced, one could effectively back it out from the current yield curve

for example using principal component analysis.

A Modified ACM Model

I next consider a more realistic term structure model with five principal

component factors similar to that in Adrian et al. (2013). That is let Xs
t =

[pc1
t ,pc

2
t ,pc

3
t ,pc

4
t ,pc

5
t ]. Since the model features a large set of parameters I

estimate it using linear regressions as proposed by Adrian et al. (2013).

Now consider the following twist. Assume that under P, and as suggested

by the data13, the first principal component of yields pc1 depends also on its

second lag. That is the true state variable is Xt = [pc1
t ,pc

2
t ,pc

3
t ,pc

4
t ,pc

5
t ,pc

1
t−1].

These factor dynamics can be represented in a VAR(1) model in companion

form with a coefficient matrix

φ =



φ11 φ12 φ13 φ14 φ15 φ16

φ21 φ22 φ23 φ24 φ25 0

φ31 φ32 φ33 φ34 φ25 0

φ41 φ42 φ43 φ44 φ25 0

φ51 φ52 φ53 φ54 φ55 0

1 0 0 0 0 0


(23)

I solve for the momentum betas and conditional momentum betas when

controlling for the first five principal components of yields by simulating

13See the appendix for the he estimation results when controlling for all the five principal

components.
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the model under the above P dynamics, that is when the first principal

component depends also on its second lag. Figure 6 shows the resulting

momentum betas along with those measured from the data. Overall one can

see that the model is able to replicate yield curve momentum in the data

fairly accurately. The model also matches variation in yields reasonably well.

Here it implies a root mean squared error of 1.8bps in annual terms. As

documented in the appendix, the model additionally captures the predictive

ability of the levels of the yield curve factors.

Figure 6 also shows the momentum betas implied by the standard ACM

model, where the true factor dynamics are simulated assuming the level

factor does not depend on its second lag. This model implies only mild

autocorrelation in returns. Moreover, the conditional momentum betas are

exactly zero since the model satisfies full spanning.

Adrian et al. (2013) also generalize their estimation approach to cover

unspanned variables though do not apply the method to unspanned lags.

As in Joslin et al. (2014), here the violation of full spanning occurs due to

knife-edge restrictions on model parameters. Note that I instead estimate

my model as if the standard ACM model is correct but simulate the model

under different, more general and realistic dynamics for the state variables.

This is consistent with my bounded rationality interpretation of the model

P , S, discussed later, whereas in the approach of Adrian et al. (2013) the

agent effectively understands the true dynamics, P = S .

Alternatively, in the standard approach to unspanned variables, the

change to the risk neutral measure Q is done from the true dynamics P

whereas I instead make the change from the subjective measure S , P. These

two approaches lead to a different covariance matrix of shocks. Accounting

for the lag in the level factor leads to a smaller estimate of level factor

residual variance.

The two approaches, however, lead to the same yield loadings Bn and

therefore have identical predictions for momentum betas. The constant

terms of bond prices An are instead generally different though in my case

this difference is numerically small.
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Figure 6: shows the plain (left) and conditional (right) momentum coefficients

observed in the data and those implied by a modified ACM model (M-ACM), where

the model is simulated under a true model in which the level factor also depends on

its second lag. It also shows the coefficients implied by the standard ACM simulated

ignoring this second lag. Maturity is measured in years.
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Note that the model presented above is different from previous non-

Markovian term structure models. In particular Feunou and Fontaine (2014)

construct a model in which only the expected future values of factors are

spanned by yields but their actual values are not. On the other hand, the

above model features a factor, whose current value is spanned but its expec-

tation is not.14

6.3 Spanning Puzzle and Measurement Error

Cochrane and Piazzesi (2005) find that taking lags of a factor computed

from forward rates can help forecast returns. They suggest that this could

be explained in a model where yields are observed with error. However, in

the appendix I show that their results are largely unrelated to mine.

Duffee (2011), Joslin et al. (2014) and Cieslak and Povala (2015) find

evidence that measures of inflation and real activity can help forecast bond

returns on top of yields. That is some macro variables appear to be un-

spanned by yields. However, Cieslak and Povala (2015) argue that the

evidence is rather consistent with measurement error in yields and inflation.

Similarly, Bauer and Rudebusch (2017) argue that the results of Joslin et al.

(2014) are due to measurement error. Feunou and Fontaine (2014) postulate

that measurement error can explain why expected inflation is not spanned

by yields but not why current inflation is unspanned.

I next argue that while measurement error can possibly explain why

macro variables are unspanned by yields, it does not explain why past

returns are unspanned. I estimate the standard 5-factor ACM model and

simulate it under the assumption that the postulated dynamics are correct.

Similarly to Duffee (2011), Cieslak (2017) and Bauer and Rudebusch (2017),

I introduce a normally distributed noise term to yields that is independent

across maturities. I set the volatility of the error to a conservative value

of 10bps annually. This is higher than the value employed by Bauer and

14Apparent failures of the Markov property appear also in models with slow updating as

in Granziera and Sihvonen (2021). However, these models can be recast in Markov form.
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Rudebusch (2017) (5.8bps) and also higher than the yield measurement error

found by Liu and Wu (2021).

The results are given in Figure 7, which shows the simulated 5% (two-

sided) critical values for the conditional betas. While the model implies

full spanning and hence zero conditional betas, measurement error can in

principle explain positive observed betas. However, the betas measured

from the data are clearly above the critical values so that the momentum in

the data is larger than can reasonably be accounted by measurement error.

In the appendix I further show that introducing noise to the term structure

model of Cieslak and Povala (2015) does not explain my findings.

6.4 A Bounded Rationality Interpretation

I have argued that the empirical results of this paper are problematic for

standard theories that do not naturally generate a violation of the spanning

condition. But what is the economic reason that the spanning condition is

not satisfied? Why are past returns important for predicting future returns

but not be priced in the term structure of interest rates today? I next argue

that my results are consistent with the form of bounded rationality discussed

by Molavi (2019) and Molavi et al. (2021)15.

Molavi (2019) considers a form of model misspecification in which an

agent can only entertain factor models with at most d factors, where d

represents the agent’s sophistication. On the other hand, the agent can

consider any cross-sectional relationship between model variables. Therefore

the approach captures the difficulty in dealing with time-series complexity.

More formally, the agent can only hold beliefs over the set of d-factor

models:
15Molavi et al. (2021) study the asset pricing implications of this mechanism and also

discuss an application to equity, but not yield curve momentum.
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Figure 7: shows the 5% (two-sided) critical values for the conditional momentum

betas obtained by introducing measurement error to the yields obtained by simulat-

ing a standard 5-factor ACM model. It also shows betas measured from the data.

Maturity is expressed in years.
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Ft = µ̄+ φ̄Ft−1 + ϵt

Xs
t = C′Ft

Here µ̄ ∈ Rd,1,C ∈ Rd,m and φ̄ ∈ Rd,d .16 The factor might represent for

example a deep macroeconomic state that is not directly observed by the

econometrician. How does the agent choose the parameters θ = (µ̄, φ̄)?

Define the Kullback–Leibler (KL) divergence of model as:

KL(θ) = E[− logf θ(Xs
t+1|X

s
t , . . .)]−E[− logf (Xs

t+1|X
s
t , . . .)] (24)

Here f is the true density, f θ is the agent’s misspecified density and the

expectations are taken under the true measure. Molavi et al. (2021) show

that, among the d-factor models with a positive prior probability, the agent’s

posterior beliefs concentrate on the subset of models that have minimum KL

divergence relative to the true data-generating process. This result is in line

with the literature on learning under model mispecification (Berk, 1966).

Similarly to Molavi et al. (2021), I focus on the case where the agent can

only entertain single factor models, d = 1. I next argue that this model gives

an economic justification to our previous 1-factor term structure model.

Assume the agent can observe the factor without error and has monitored

a long history.17 Minimization of the KL-divergence amounts to a popula-

tion maximum likelihood estimate of the factor dynamics, which further

coincides with a population OLS estimate. Effectively, our agent learns the

factor dynamics that best represent the true dynamics under a mispecified

model.

Assume the representative agent’s risk preference is represented by

stochastic discount factor of the form 17. The bond prices are then solved

using the standard price recursions. Here the state variable is one dimen-

sional since the agent puts zero probability on models of higher dimension.

16Molavi (2019) defines the model without a constant and using a scaling matrix on the

error term but this formulation is equivalent.
17Without loss of generality c = I .
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However, in the appendix I explain that the key results do not rest on the

form of the stochastic discount, and could also be derived for example in the

case when the agent possesses mean-variance preferences.

This framework and the assumption that the true factor dynamics are

AR(2) gives an exact justification for the one factor unspanned term structure

model discussed in Section 6.2. Effectively the agent cannot consider the

second lag of the factor as a state variable and views the process as an AR(1).

Estimation of the model can now proceed as before.

The argument could be generalized to higher dimensions for example

to justify the multifactor unspanned term structure model in this paper.

Assume the agent is constrained to entertain models with at most d factors.

On the other hand assume an econometrician observes that yield levels must

be described by at least d factors. Since the representative agent correctly

understands all cross-sectional relationships between variables, these factors

must also be taken into account in pricing. Now as the agent has exhausted

its available sophistication, it cannot consider lagged values of any of these

factors as a state variable, that is m = d and these lags must be ignored in

pricing.

This explanation, when applied to yield dynamics, has similarities with

the narrative discussed by Cieslak (2017). She argues that full spanning

might be violated because some variables available to the econometrician

are missing from the agents’ information set. Here the narrative should

be modified so that the agents’ information set is missing higher lags of

variables important for determining bond yields.

As explained by Duffee (2011) unspanned macroeconomic variables can

in some cases be consistent with rational expectations S = P. This can occur

for example if some macroeconomic variable has opposing effects for short

rate expectations and risk premia and these two effects happen to net out

exactly. However, it is unclear why such netting would occur for the lag of

interest rate levels but not for their contemporaneous value. Such rational

expectations explanations of unspanned variables are also inconsistent with

the expectational errors documented in interest rate surveys. I next argue
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that my interpretation is instead coherent with the errors observed in the

data.

Matching Short Rate Forecast Errors

Section 4.4 showed that forecast errors concerning short rates are pre-

dictable. This is inconsistent with rational expectations explanations of yield

dynamics S = P. Moreover, the lag of the level factor predicts these errors

conditional on the current information in the yield curve. This is incoherent

with standard behavioral models (see e.g, Granziera and Sihvonen, 2021),

which predict that the forecast error predictability could be captured using

current information in the yield curve.

I next show that the observed errors are instead consistent with the

unspanned term structure models presented in this paper and the inter-

pretation that S , P. First, consider the simple modified Vasicek model.

Assume the agents perceive the single factor dynamics to be correct that

is they use a distorted process to forecast the state variable. I simulate the

implied forecast errors by assuming that under the true measure P the factor

depends also on its second lag.

I replicate the predictability regression in Table 11. Here the simple

model predicts a value of 0.012 for the first principal component and -0.13

for its lag. The emprical values are 0.030 and -0.032. The model captures

the fact that these coefficients are of similar magnitude but opposite in sign.

However, the coefficients are of smaller absolute size than those in the data.

However since this is effectively a one factor model, we cannot control for

higher principal components so the exercise is not directly comparable to

that in Table 11.

Now repeat the exercise but using the general modified ACM model.

Now I can also control for all the five principal components of yields. The

model implies a value of 0.029 for the first principal component and -0.030

for its lag. Comparing these to the empirical values of 0.030 and -0.032, this

model replicates the short rate forecasts errors quite accurately. Note that

this survey data has not been in any way targeted in model estimation.
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7 Conclusion

Yield curve momentum cannot be explained by yield curve factors, as pre-

dicted by standard models. Moreover, it cannot be captured by unspanned

macroeconomic variables and therefore represents an independent source

of predictability. However, I show that the data is consistent with a term

structure model in which agents ignore longer term dependencies in model

factors.

This paper bears important implications to three strands of literatures.

First, by showing that past returns are an economically important yet un-

spanned source of predictability, it contributes to the literature on bond

return predictability and risk premia. Second, it shows how momentum can

be incorporated to a standard no-arbitrage setting, a useful addition to the

term structure modelling literature.

Finally, the paper contributes to the literature attempting to provide

a theoretical explanation for momentum. When applied to government

bonds, the standard theories tend to make predictions clearly violated in the

data. My results indicate that momentum is best explained by the form of

bounded rationality discussed by Molavi (2019) and Molavi et al. (2021).

8 Internet Appendix

8.1 Controlling for More Yield Curve Information

The main text shows the results from predicting bond returns using past

bond returns and the first five principal components of yields. I now extend

these results using the following regression:

rxnt+1 = α + β1rx
n
t +

∑
i∈S

βiy
i
t + ϵt+1, (25)

where the selected yields are the 1 month and 1 to 10 year rates. Note that

this is equivalent to controlling for the 1 month rate and the corresponding

10 forward rates and spans the tent-shaped factor discussed by Cochrane

49



and Piazzesi (2005). The results are shown in table 14. The coefficient on the

past return is statistically significant for shorter maturities though less so

for longer maturities. This suggests that at least for shorter maturities yield

curve momentum exists after controlling for the information in the yield

curve today.

In some models, for example in the habit model of Wachter (2006), yields

affect future returns non-linearly. I now test this possibility by considering

the more general partially linear regression

rxnt+1 = β1rx
n
t + f (yt) + ϵt+1. (26)

As explained later, assuming an invertibility condition, any Markovian

model of yields implies that

rxnt+1 = f (yt) + ϵt+1. (27)

Therefore these models imply that β1 = 0. However, the challenge is that

f is generally unknown. I tackle this using two approaches. The first method

is to estimate the model using the semiparametric approach described by

Wood (2011). Here the standard errors are calculated using quasi-maximum

likelihood.18 The second approach is to simply add the squared yields, on

top of the yields, to the regression. The results are given in table 15, which

shows the results for the β1 parameter. For the first approach β1 is always

significant. However, the model produces a high in sample fit and might

achieve low standard errors by overfitting. For the second approach, the

slope coefficient is significant for shorter but not for longer maturity bonds.

These exercises suggest that accounting for non-linearities does not strongly

alter the main conclusions of this paper.

8.2 Predicting Bonds Returns with Carry and Yield Change

Section 4 concluded that autocovariance in bond returns is primarily due

to autocovariance in yield changes. I now test these relationships using
18To avoid problems with overfitting I only include yields of every second year.
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Mat. (y) 1 2 3 4 5 6 7 8 9 10

α -0.02 -0.01 -0.05 -0.10 -0.22 -0.27 -0.39 -0.59 -0.77 -0.99

t-value -0.42 -0.10 -0.32 -0.49 -0.86 -0.89 -1.15 -1.49 -1.70 -2.01

β1 (rx1
t ) 0.16 0.16 0.13 0.12 0.11 0.08 0.07 0.08 0.07 0.06

t-value 2.41 2.97 2.64 2.30 2.24 1.54 1.56 1.60 1.52 1.42

β2 (y1
t ) -0.23 -0.41 -0.63 -0.92 -1.11 -1.19 -1.38 -1.61 -1.72 -1.91

t-value -4.42 -3.94 -4.27 -4.52 -4.66 -4.51 -4.70 -4.70 -4.62 -4.70

β3 (y12
t ) 0.51 0.64 1.32 1.95 2.33 2.53 2.88 3.35 3.60 3.95

t-value 2.68 1.74 2.59 2.85 2.96 2.84 3.06 3.22 3.30 3.37

β4 (y24
t ) -0.44 -0.18 -1.40 -1.33 -1.25 -1.46 -1.76 -2.14 -2.56 -3.08

t-value -0.92 -0.22 -1.24 -0.94 -0.75 -0.77 -0.86 -0.99 -1.16 -1.33

β5 (y36
t ) 0.46 0.01 0.53 -1.74 -1.67 -0.95 -0.57 -0.50 0.38 1.15

t-value 0.51 0.01 0.28 -0.83 -0.69 -0.34 -0.19 -0.16 0.11 0.32

β6 (y48
t ) -0.22 0.49 1.51 3.90 1.56 1.10 1.30 1.79 0.31 -0.00

t-value -0.18 0.23 0.57 1.28 0.43 0.28 0.30 0.36 0.05 -0.00

β7 (y60
t ) -1.19 -2.39 -3.71 -4.14 -2.37 -5.23 -6.47 -7.15 -5.49 -5.67

t-value -1.64 -1.95 -2.17 -1.86 -0.89 -1.43 -1.45 -1.39 -0.94 -0.91

β8 (y72
t ) 1.39 2.84 4.04 4.59 5.71 9.15 9.01 9.79 9.93 11.31

t-value 1.83 2.00 2.05 1.80 1.88 2.31 1.93 1.89 1.78 1.94

β9 (y84
t ) -0.05 -0.83 -1.57 -2.23 -2.34 -2.88 -1.71 -3.35 -4.43 -6.18

t-value -0.11 -1.02 -1.29 -1.28 -1.06 -1.06 -0.46 -0.78 -0.95 -1.23

β10 (y96
t ) 0.01 0.22 0.41 0.33 -0.80 -0.04 0.02 0.89 -0.97 -1.36

t-value 0.03 0.26 0.32 0.18 -0.36 -0.01 0.00 0.20 -0.20 -0.26

β11 (y108
t ) -0.28 -0.81 -1.26 -1.32 -0.89 -2.21 -2.52 -2.56 -1.04 -1.80

t-value -0.52 -0.89 -0.96 -0.79 -0.43 -0.76 -0.66 -0.57 -0.21 -0.35

β12 (y120
t ) 0.02 0.41 0.76 0.87 0.81 1.15 1.17 1.47 1.97 3.60

t-value 0.08 0.83 1.11 1.02 0.77 0.86 0.65 0.69 0.85 1.44

R2 (%) 11.2 9.4 9.2 8.8 8.5 9.1 9.1 9.3 9.0 9.3

Table 14: shows the results of predicting returns of different maturity (years) bonds

on the past return of the bond and the yields of 1 month bill and 1 to 10 year bonds.

The t-values are based on Newey and West (1987) standard errors.
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Semipar. Squares

Mat β1 t-value β1 t-value

1 0.22 4.51 0.20 2.23

2 0.25 5.09 0.22 2.62

3 0.23 4.63 0.18 2.40

4 0.20 4.12 0.16 2.02

5 0.19 3.98 0.14 1.90

6 0.16 3.27 0.10 1.42

7 0.14 2.87 0.09 1.42

8 0.12 2.65 0.08 1.25

9 0.11 2.42 0.06 1.02

10 0.11 2.40 0.06 0.93

Table 15: shows the slope coefficient on past return when explaining excess bond

returns on past excess bond returns on an arbitrary non-linear function of yields,

estimated using a semiparametric method, as well as a linear regression with yields

and squared yields. The t-values for the first regression are obtained using quasi-

maximum likelihood (Wood, 2011). The t-values for the second regression are based

on Newey and West (1987) standard errors. Maturity is expressed in years.

52



regressions. Consider the following specifications.

cnt = α + βcnt−1 + ϵt+1 (28)

cnt = α + βycn−1
t + ϵt+1 (29)

ycnt+1 = α + βcn−1
t + ϵt+1 (30)

ycnt+1 = α + βycn−1
t + ϵt+1 (31)

The results are given in Table 16. The coefficient for the past carry in

the carry prediction regression and the coefficient for past yield change in

the yield change prediction regression are statistically significant. On the

other hand, I do not find evidence of significant cross carry-yield change

predictability. Note that even though there is a statistically robust relation-

ship between past carry and future carry, because carry does that vary much

its contribution to the covariance between future and past returns is small.

Autocorrelation between yields appears to be strongest for shorter maturity

bonds, which explains why the relationship between past and future returns

is also strongest for these maturities.

These results suggest that including information about both past carry

and yield change might be beneficial to predicting bond returns. I now test

this prediction by including both variables separately into the predictability

regression.

rxnt+1 = α + β1c
n
t + β2yc

n
t + ϵt+1 (32)

Note that because period t carry is observable I include this rather than

the previous period carry into the regression. The results are given in Table

17. For most maturities both carry and past yield change are significant.

There is a small increase in R2 relative to a regression with past return.
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cnt on cnt−1 cnt on ycnt
Mat. α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.01 3.76 0.85 28.79 72.59 0.07 10.38 -0.00 -0.14 0.01

2 0.01 2.59 0.92 42.82 83.68 0.09 9.77 0.00 0.33 0.04

3 0.01 2.43 0.90 27.50 81.06 0.13 12.01 0.00 0.61 0.13

4 0.01 2.57 0.93 44.80 85.66 0.14 11.89 0.00 0.58 0.11

5 0.01 2.42 0.93 48.49 87.18 0.16 12.05 0.01 1.21 0.41

6 0.01 2.48 0.94 52.78 88.38 0.18 12.52 0.01 1.45 0.53

7 0.01 2.57 0.93 48.16 87.18 0.17 11.92 0.00 0.34 0.03

8 0.01 2.40 0.94 55.93 89.14 0.19 12.02 0.00 1.44 0.59

9 0.01 2.37 0.94 51.06 88.21 0.18 11.19 0.00 1.38 0.39

10 0.01 2.28 0.95 57.19 89.75 0.19 10.97 0.00 0.08 0.00

ycnt+1 on cnt−1 ycnt+1 on ycnt

1 0.01 0.23 -0.07 -0.03 0.00 0.00 0.23 0.16 2.38 2.72

2 -0.02 -0.25 0.55 0.32 0.15 0.01 0.30 0.16 3.13 2.64

3 -0.00 -0.04 0.23 0.20 0.04 0.02 0.35 0.14 2.70 1.84

4 -0.06 -0.45 0.80 0.59 0.25 0.02 0.40 0.11 2.28 1.19

5 -0.10 -0.69 1.15 0.82 0.40 0.03 0.44 0.11 2.38 1.12

6 -0.16 -0.97 1.49 1.13 0.64 0.04 0.47 0.08 1.71 0.68

7 -0.05 -0.30 0.74 0.59 0.15 0.04 0.47 0.09 1.84 0.78

8 -0.22 -1.15 1.73 1.44 0.82 0.05 0.48 0.09 1.82 0.74

9 -0.26 -1.32 2.00 1.78 1.09 0.05 0.49 0.08 1.85 0.72

10 -0.06 -0.25 0.74 0.66 0.15 0.06 0.48 0.08 1.82 0.70

Table 16: shows the results of regressing carry cnt and yield change ycnt+1 on their

past values. The t-values are based on Newey and West (1987) standard errors.

Maturity is expressed in years.
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Maturity α t-value β1 (cnt ) t-value β2 (ycnt ) t-value R2 (%)

1 0.01 0.19 0.97 2.50 0.16 2.39 5.17

2 -0.02 -0.29 1.29 2.40 0.16 3.06 5.02

3 -0.00 -0.03 1.15 1.40 0.14 2.63 3.18

4 -0.06 -0.46 1.54 2.19 0.11 2.19 2.95

5 -0.09 -0.66 1.74 2.51 0.10 2.23 2.98

6 -0.15 -0.95 2.06 2.75 0.08 1.56 2.84

7 -0.06 -0.34 1.58 2.05 0.09 1.81 1.83

8 -0.21 -1.15 2.35 2.94 0.08 1.66 2.97

9 -0.25 -1.33 2.71 3.13 0.08 1.69 3.23

10 -0.07 -0.30 1.66 1.97 0.08 1.80 1.63

Table 17: shows the results of predicting returns of different maturity (years) bonds

on carry and past yield change. The t-values are based on Newey and West (1987)

standard errors.

8.3 Changes in Higher Order Principal Components

Table 6 shows the results from predicting bond returns using changes in

the first principal component of yields. I now present additional results

for the predictive power of changes in higher order principal components.

Table 18 considers the predictive power of the changes in 2nd, 3rd, 4th and

5th principal component separately. Table 19 jointly includes the first five

principal components to a predictability regression.

On top of changes in the level factor, changes in the fifth principal

component contain additional predictive information for bond returns. This

component is also known to be correlated with the predictability factor

proposed by Cochrane and Piazzesi (2005). However, since it is only weakly

correlated with contemporaneous bond returns, it cannot explain much of

yield curve momentum. The results also suggest that changes in the 3rd

principal components have some weak additional predictive content for

bond returns.

These results are loosely related to those in Hoogteijling et al. (2021),

which is contemporaneous work to this paper. Motivated by Crump and

Gospodinov (2021), they consider the predictive content of changes in the
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∆pc2 ∆pc3

Mat α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.07 3.63 -0.02 -0.85 0.27 0.07 3.55 0.06 0.99 0.74

2 0.10 2.75 -0.01 -0.23 0.019 0.10 2.76 0.12 1.17 0.71

3 0.15 2.85 -0.01 -0.11 0.004 0.15 2.88 0.16 1.32 0.70

4 0.17 2.60 0.01 0.10 0.003 0.17 2.63 0.17 1.21 0.49

5 0.19 2.48 0.02 0.31 0.02 0.19 2.51 0.23 1.34 0.59

6 0.22 2.41 0.02 0.27 0.02 0.22 2.45 0.37 1.85 1.2

7 0.22 2.21 -0.01 -0.15 0.01 0.22 2.23 0.38 1.71 0.98

8 0.24 2.15 -0.04 -0.40 0.04 0.24 2.17 0.40 1.61 0.87

9 0.24 1.94 -0.02 -0.21 0.01 0.24 1.96 0.45 1.68 0.93

10 0.26 1.93 -0.03 -0.23 0.01 0.26 1.95 0.45 1.55 0.76

∆pc4 ∆pc5

Mat α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.07 3.56 0.08 0.86 0.39 0.07 3.54 -0.42 -2.37 3.7

2 0.10 2.76 0.21 1.41 0.69 0.10 2.75 -0.65 -2.09 2.4

3 0.15 2.86 0.29 1.52 0.66 0.15 2.86 -0.84 -2.14 2.0

4 0.17 2.61 0.35 1.42 0.58 0.17 2.61 -1.12 -2.56 2.2

5 0.19 2.49 0.42 1.42 0.59 0.19 2.48 -1.54 -2.82 2.9

6 0.22 2.43 0.51 1.26 0.65 0.22 2.42 -2.00 -2.85 3.6

7 0.22 2.21 0.35 0.73 0.24 0.22 2.20 -2.24 -3.05 3.6

8 0.24 2.15 0.15 0.29 0.03 0.24 2.15 -2.20 -2.82 2.8

9 0.24 1.94 0.10 0.21 0.01 0.24 1.94 -1.98 -2.44 1.9

10 0.26 1.94 -0.01 -0.03 0.0001 0.26 1.94 -1.80 -2.03 1.3

Table 18: shows the results of predicting returns of different maturity (years) bonds

on changes in the 2nd, 3rd, 4th and 5th principal components separately. The

t-values are based on Newey and West (1987) standard errors.
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Mat 1 2 3 4 5 6 7 8 9 10

const. 0.07 0.10 0.14 0.17 0.19 0.21 0.22 0.24 0.23 0.25

t-value 4.05 3.07 3.16 2.82 2.67 2.62 2.39 2.32 2.08 2.06

∆pc1 -0.02 -0.04 -0.05 -0.05 -0.06 -0.07 -0.08 -0.08 -0.08 -0.08

t-value -2.90 -3.00 -2.54 -2.26 -2.32 -2.29 -2.31 -2.23 -2.07 -1.94

∆pc2 0.00 0.01 0.02 0.03 0.05 0.05 0.03 0.00 0.01 0.01

t-value -0.20 0.24 0.25 0.39 0.58 0.52 0.26 0.03 0.11 0.08

∆pc3 0.01 0.02 0.05 0.04 0.06 0.18 0.20 0.24 0.30 0.31

t-value 0.25 0.25 0.39 0.24 0.35 0.90 0.89 0.92 1.03 0.97

∆pc4 0.05 0.14 0.21 0.27 0.32 0.36 0.18 -0.04 -0.12 -0.25

t-value 0.72 1.18 1.20 1.10 1.12 1.05 0.46 -0.10 -0.27 -0.53

∆pc5 -0.50 -0.79 -1.01 -1.31 -1.76 -2.25 -2.50 -2.45 -2.21 -2.03

t-value -2.82 -2.63 -2.66 -3.13 -3.46 -3.43 -3.51 -3.21 -2.84 -2.38

R2 (%) 8.7 6.4 5.1 4.4 5.1 6.5 6.1 5.0 3.8 3.0

Table 19: shows the results of predicting returns of different maturity (years) bonds

on changes in the first five principal components jointly. The t-values are based on

Newey and West (1987) standard errors.

first three principal components of yields. However, since they focus on an

annual rather than monthly horizon, they exclude most of the short horizon

autocorrelation in bond returns, which is the focus of this paper. Moreover,

they do not relate their results to the term structure modelling literature.

However, using an annual horizon, they find evidence that changes in the

second principal component of yields contain additional information for

predicting returns, which does not occur at the monthly horizon.

8.4 Post Announcement Drift: Further Analysis

This section provides some further results related to the post-FOMC an-

nouncement drift. Figure 8 shows the changes in different maturity yields

per one basis point change in the federal funds target rate. Shorter maturity

yields show a clear drift pattern after target rate changes.

In this particular sample long maturity yields do not exhibit similar drifts.

However, as explained by Brooks et al. (2019) results for long maturities are
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stronger when considering unexpected target rate changes. This can explain

why the regression results are stronger for long maturity bonds when using

unexpected rather than plain changes in the target rate.

Figure 9 plots the historical development of different maturity yields

along with that for the target rate. One can see that all the yields share

the same broad developments. However, the contemporaneous correlation

between yield changes and changes in the federal funds target rate is far

from perfect. Post-FOMC announcement drift seems to contribute to this

correlation being fairly low. However, this is likely not the only reason.

For example theoretically longer maturity yields should reflect expectations

about the long run path of future short rates and also anticipate target rate

changes.19

8.5 ACM Model: Further Results

Table 20, Panel A shows the estimated φs matrix. Panel B shows the first row

of the estimated φ matrix, that is the results for the first principal component

of yields. The rest of the coefficients are as in Panel A. We can see that the

second lag of the first principal component is clearly significant.

Table 21 shows the full estimation results for the conditional beta regres-

sion depicted in Figure 6. Comparing the results to those in Table 8, the

model also captures the predictive performance of the yield curve factors.

8.6 Robustness with Respect to Gürkaynak et al. (2007) data

Liu and Wu (2021) construct the yield curve using a novel procedure that

results in lower pricing errors compared to standard procedures such as the

Svensson (1994) method applied by Gürkaynak et al. (2007). How does this

affect the key results of this paper?

Table 22 replicates the results in Table 2 for the 1 month lookup using

the Gürkaynak et al. (2007) data updated on the Federal reserve webpage.

19Also yield levels reflect the cumulative effect of yield changes and hence tend to be

more correlated.
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Figure 8: shows the change in different maturity yields after a change in the federal

funds target rate (FFTR). Changes are measured per one basis point change in the

FFTR. Days after announcement are measured using trading days.
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Figure 9: shows the historical development of 1,5 and 10 year yields along with

the federal funds target rate. 60



Panel A: φs

Ind: pc1 Ind: pc2 Ind: pc3 Ind: pc4 Ind: pc5

Dep: pc1 0.995 0.030 0.155 0.761 1.854

t-value 221.22 0.80 1.13 2.37 2.69

Dep: pc2ˆ2 -0.001 0.955 -0.144 -0.184 0.051

t-value -0.94 77.04 -3.22 -1.75 0.22

Dep: pc3ˆ3 0.0004 0.003 0.862 -0.098 -0.001

t-value 0.59 0.43 41.28 -1.99 -0.01

Dep: pc4 0.000 0.000 -0.012 0.784 -0.040

t-value 0.04 0.03 -1.11 30.50 -0.72

Dep: pc5 0.00002 -0.001 0.001 -0.003 0.631

t-value 0.11 -0.58 0.19 -0.19 19.65

Panel B: φ1

Ind: pc1 Ind: pc2 Ind: pc3 Ind: pc4 Ind: pc5 Ind: lag pc1

Dep: pc1 1.14 0.02 0.20 0.79 1.89 -0.15

t-value 27.78 0.52 1.45 2.46 2.75 -3.64

Table 20: Panel A shows the estimated φs matrix from the ACM model. Panel B

shows the first row of the estimated φ matrix. The rest of the coefficients are as in

Panel A.
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Mat 1 2 3 4 5 6 7 8 9 10

const -0.04 -0.04 -0.03 -0.05 -0.11 -0.22 -0.36 -0.51 -0.67 -0.82

rxt 0.19 0.16 0.14 0.12 0.11 0.11 0.10 0.10 0.10 0.09

pc1 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001

pc2 -0.003 -0.01 -0.02 -0.03 -0.04 -0.05 -0.07 -0.08 -0.09 -0.09

pc3 -0.03 -0.08 -0.12 -0.15 -0.17 -0.17 -0.16 -0.15 -0.14 -0.13

pc4 -0.12 -0.23 -0.28 -0.33 -0.40 -0.50 -0.63 -0.80 -1.00 -1.22

pc5 -0.29 -0.33 -0.45 -0.70 -0.99 -1.24 -1.38 -1.40 -1.27 -1.02

Table 21: shows the results from simulated predictability regressions when returns

of different maturity bonds are explained by the past return of a same maturity

bond as well as the first five principal component of yields. The results are based on

the estimated ACM model simulated under the assumption that the first principal

component of yields depends also on its second lag. Maturity is expressed in years.

The sample period is as before. While this alternative data yields somewhat

smaller coefficients for long maturity bonds, overall the results are fairly

similar across the two datasets.

8.7 Robustness with Respect to German Data

Are the results robust to data from other developed countries? Next I study

this using data on the German government yield curve available on the

Bundesbank webpage. These curves are constructed using the interpolation

procedure of Svensson (1994). Because standard interpolation procedures

often have large pricing errors for short maturity yields (Liu and Wu, 2021),

I focus on actual rather than excess returns that do not require specifying a

1 month risk-free rate.

I replicate the exercise of explaining the return of different maturity

bonds on their return in the prior month. The results are given in Table

23 and are fairly similar for both countries. The R2 is quite high for short

maturity bonds in both countries as their returns are strongly related to

short-term yields that are highly autocorrelated. This suggests that the

results are robust to the German yield curve though this curve might be
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Mat α t-value β t-value R2 (%)

1 0.06 3.31 0.19 3.12 3.77

2 0.09 2.86 0.17 3.39 2.83

3 0.12 2.70 0.14 3.12 2.02

4 0.15 2.59 0.12 2.78 1.46

5 0.18 2.49 0.10 2.47 1.08

6 0.20 2.38 0.09 2.19 0.83

7 0.22 2.28 0.08 1.94 0.65

8 0.23 2.17 0.07 1.69 0.51

9 0.25 2.08 0.06 1.46 0.39

10 0.26 1.99 0.05 1.23 0.29

Table 22: shows the results from regressing the excess returns of different maturity

(years) bonds on their past returns using the atlernative data from Gürkaynak et al.

(2007). The t-values are based on Newey and West (1987) standard errors.

measured with larger pricing errors.

8.8 Time Series vs Cross-Sectional Momentum

The literature on equity momentum (e.g. Chan et al. (1996)) has focused

on a cross sectional strategy that goes long stocks with relatively high past

returns and short stocks with relatively low past returns. Could a similar

strategy be applied with different maturity government bonds?

The finding that time series momentum is largely associated with a single

factor suggests that such a strategy is unlikely to provide high returns. I now

demostrate this further by considering a simple cross-sectional momentum

strategy. I consider the returns of bonds with maturities from 1 to 10 years.

As in Lewellen (2002) assume the weight of each bond is given by wi =

(ri,t − rp,t)/10, where ri,t is the return of the bond and rp,t is the return of

an equal weighted portfolio of all the ten bonds. The mean return of this

strategy can be decomposed as follows:

E[rs,t] =
1

10

10∑
i=1

(ρi +E[ri,t]
2)− (ρp +µ2

p).
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Germany USA
Mat. α t-value β t-value R2 (%) α t-value β t-value R2 (%)

1 0.23 5.10 0.40 3.86 15.65 0.26 7.55 0.42 7.31 17.28

2 0.28 7.76 0.35 5.47 12.59 0.37 9.53 0.24 4.46 5.82

3 0.35 8.22 0.27 4.56 7.68 0.43 9.12 0.18 3.27 3.16

4 0.39 8.22 0.25 4.66 6.17 0.48 8.18 0.13 2.67 1.77

5 0.43 7.88 0.22 4.52 5.01 0.50 7.32 0.12 2.59 1.46

6 0.47 7.44 0.20 4.13 3.92 0.54 6.58 0.09 1.91 0.90

7 0.50 7.01 0.17 3.60 2.95 0.55 6.01 0.09 1.88 0.85

8 0.54 6.61 0.15 3.02 2.14 0.56 5.52 0.10 1.95 0.91

9 0.57 6.26 0.12 2.45 1.45 0.56 5.04 0.09 1.94 0.81

10 0.61 5.93 0.09 1.86 0.87 0.59 4.80 0.08 1.78 0.68

Table 23: shows the results from regressing returns of different maturity (years)

bonds on their past returns in both Germany and US. The regressions concern plain

bond returns rather than excess returns. The t-values are based on Newey and West

(1987) standard errors.

Here ρi and ρp are the autocovariances of the individual bonds and the

equally weighted portfolio of bonds respectively. Moreover, µi and µp are

the corresponding unconditional mean returns.

The results from this decomposition are given in Table 24. The strategy

yields a 0.0003 per cent monthly return with a modest annualized Sharpe

ratio of 0.087. This is largely because the mean autocovariance of the bonds

is close to the autocovariance of an equally weighted portfolio of the bonds.

This zero net investment strategy cannot benefit from time series momentum

related to shifts in a single factor that manifests itself somewhat similarly

for all the different maturity bonds.20

20However, Asness et al. (2013) and Goyal and Jegadeesh (2018) provide evidence that

cross-sectional strategies between sovereign bonds issued by different countries can generate

reasonably high profits. This is because the term structures between different countries

have lower correlations.
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E[rs,t]
1

10
∑10

i=1ρi
1

10
∑10

i=1E[ri,t]2 −ρp −µ2
p

0.0003 0.0044 0.0033 -0.0041 -0.0032

Table 24: shows a decomposition of the mean return from a cross sectional momen-

tum strategy (%)

8.9 Investment Performance

The results of this paper suggest that an investor could gain using momen-

tum strategies in Treasury bonds. But how big are these gains? Answering

this question is complicated because such momentum strategies can be imple-

mented in multiple ways. While more sophisticated strategies might provide

higher returns, for transparency I focus on a particularly simple strategy. In

particular assume an investor buys a bond assuming its past month excess

return was positive. On the other hand, if this past return was negative,

assume the investor instead chooses to hold short term bills earning her zero

excess returns. Note that this simple strategy naturally also constitutes an

”out-of-sample” evaluation for the relevant trading performance.

Figure 10 shows the Sharpe ratios from this simple momentum strategy

along with those for a buy and hold strategy that passively holds given

maturity bonds. One can see that the momentum strategy earns higher

Sharpe ratios for all maturities. The average Sharpe ratio of the momentum

strategy is 0.51 compared to 0.38 for the buy and hold strategy. The Sharpe

ratios for an equally weighted portfolio of simple momentum strategies

would be 0.50 compared to 0.36 for an equally weighted buy and hold

strategy. Here the improvement in Sharpe ratio is therefore 39%.

This momentum stategy also enjoys a positive skewness of 1.16 compared

to 0.08 for the buy and hold strategy. It has a higher excess kurtosis of 8.8

compared to 3.4 for buy and hold strategy. However, due to positive skewness

and higher mean returns the momentum strategy exhibits lower tail risk.

In particular the 1% sample quantile is −3.3% for the momentum strategy

compared to −5.0% for the buy and hold strategy.

Figure 3 conveys an interesting additional point. The mean excess re-
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Figure 10: shows the annualized Sharpe ratios for different maturity (years) bonds

for a simple momentum strategy and a buy and hold strategy.
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turns are fairly close to zero following months with negative past month

returns. Hence it is not clear that an investor could benefit from twisting

our momentum strategy by also going short bonds after such months. This

long short strategy would improve mean returns for some maturity bonds

but not all. Moreover, because this improvement in mean returns is fairly

small but such a strategy involves higher volatility, the Sharpe ratios for this

long-short strategy are lower for all maturities.21

Finally note that a more comprehensive analysis of the investment per-

formance of yield curve momentum strategies should take into account the

broader constitution of the investor’s portfolio and other signals used. For

example Hurst et al. (2017) notes that trend followers can clearly improve

Sharpe ratios by diversifying exposures to momentum strategies for different

asset classes. They also show that momentum returns tend to survive after

controlling for reasonable estimates of transaction costs.

8.10 Out-of-Sample Significance

The investment strategy results above constituted an out-of-sample evalu-

ation for the performance of yield curve momentum strategies. However,

since the focus was on economic rather than statistical significance, I now

show show out-of-sample counterparts to the baseline regression results in

Table 2.

As in Huang et al. (2020) I choose a 15 year in-sample training period

used for model estimation. The rest of the sample is used for out-of-sample

forecast evaluation. I compare two predictive models. In the first case, the

forecast is given by a constant estimated as the sample mean return. In the

second model, the forecast is obtained using our baseline regression in which

future returns are explained by the past return and a constant. Note that the

second model nests the first model as a special case.

21This point is somewhat nuanced though. If the unconditional bond risk premium

represents rational compensation for risk, going short following months with negative

returns might hedge macroeconomic risk and is not necessarily suboptimal.
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Mat MSPEavg Adj. MSPEmom P(E(MSPEavg) = E(MSPEmom))

1 0.044 0.040 0.001

2 0.26 0.24 0.001

3 0.67 0.64 0.002

4 1.26 1.22 0.006

5 1.95 1.90 0.008

6 2.70 2.62 0.014

7 3.63 3.55 0.034

8 4.63 4.54 0.062

9 5.79 5.67 0.103

10 7.02 6.90 0.139

Table 25: shows the mean square prediction errors when forecasting bond excess

returns (in per cent) using the past mean excess return and the baseline momentum

regression. It also shows the results from a test of equal predictive accuracy against

the alternative that the momentum regression shows more accurate results (Clark

and West, 2007).

Table 25 shows the mean square prediction errors (MSPE) for the two

models. For the momentum regression the sample prediction error is ad-

justed to correct for estimation error as suggested by Clark and West (2007).

One can see that the momentum regression yields more accurate results for

all maturities.

The table also shows results from a test of equal predictive accuracy

against the alternative that the momentum regression produces more accu-

rate results. The testing procedure is described in Clark and West (2007). For

maturities between 1 and 5 years, we can reject the null of equal accuracy at

the 1% level. The significance is below 5% for maturities of 6 and 7 years

and below 10% for the 8 year maturity. For the 9 and 10 year maturities

the results are not significant at the 10% level. We can conclude that, with

the possible exception of the very longest maturities, the key results of this

paper also hold out-of-sample. Note that here some reduction in statistical

significance is mechanically expected since we have 15 years less data for

the significance test.
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Using Treasury futures data Huang et al. (2020) find significant out-of-

sample results only for the 2 year maturity. However, they apply a lookback

horizon of 12 months. For this horizon momentum is weaker and, as can be

seen from Table 2, the results are mainly not significant even in-sample.

8.11 Results for a Bond Index

The key results of this paper are based on a yield curve constructed using

a numerical approximation scheme. A possible concern is that these errors

contribute to the key findings regarding yield curve momentum.22 I next

demonstrate that these errors are unlikely to invalidate the main regression

results of this paper.

In particular, I use the excess returns on the Bloomberg Aggregate Trea-

sury bond index, available from 1973, that is a few years before the start

of our main data. This index is calculated directly using Treasury bonds

and hence represents tradable returns. It serves as perhaps the most widely

followed benchmark index for Treasuries. However, the results obtained

with this index are not fully comparable with our main results because of

two reasons. First, this index is based on coupon paying bonds, while our

main results are for zero coupon bonds. Second, this index represents a

broad portfolio of different maturity Treasury bonds.

I replicate the key regression of this paper by explaining one month

excess return on this index by its past value. The slope coefficient is 0.11,

which is close to the slope coefficients for longer maturity bonds in table

1. The corresponding t-value is 2.67 and hence the results are strongly

significant.

I also replicated the investment strategy that holds bonds only in months

following positive past month excess returns. The Sharpe ratio for this

strategy is 0.55 compared to 0.44 for a buy and hold strategy. Note that

22Zero coupon Treasury bonds are traded as Treasury STRIPS introduced in 1985. Before

that the Treasury issued some zero-coupon bonds. However, overall there are not enough

such bonds to create long histories of zero coupon curves.

69



because the strategy is effectively implemented for a portfolio of bonds, it

cannot benefit from any individual time series predictability for different

maturity bonds.

8.12 Stability Analysis

Is yield curve momentum stronger during some periods than others? I now

analyze potential structural breaks in the relationship between current and

past returns. I first consider a simple 10 year rolling regression. Figure 11

plots the results when one month return is explained with the one month

return in the past month. One can see that the slope coefficients are fairly

stable overall but seem to fall somewhat after the financial crisis.

I test for structural breaks in the slope coefficients using the supremum

test of Andrews (1993). The test does not identify significant break points

after the financial crisis.

For shorter maturities we cannot reject the null of no structural breaks.

Interestingly for bonds with maturities greater than 7 years, the test suggests

a breakpoint in the fall of 1981, when for example 10 year bonds saw two

consecutive months with excess returns over 10 per cent.

This break point, however, does not appear robust. First, the test does

not indentify statistically significant breakpoints if we cut the sample to two

parts just before or after the suggested break point month. Second, the break

point is significant under a standard Chow (1960) test but not if I modify

this with Newey and West (1987) standard errors. Similarly a standard Chow

(1960) test gives insignificant results if I allow for the constant term to be

different during the two sample periods.

Hanson et al. (2018) argue that the sensitivity of long rates to short rate

changes increased since 2000. However, note that I find no evidence of

structural breaks in momentum betas around that year.

As discussed in the section on investment performance, bond excess

returns tend to be close to zero following months with negative returns.

Effectively the negative momentum effect is offset by a substantial uncondi-
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Figure 11: Momentum slope coefficient in a rolling 10 year sample for different

maturity (years) bonds. 71



tional bond risk premium. On the other hand, following positive months

the positive momentum effect increases expected bond returns on top of

the unconditional risk premium. Because high bond returns are associated

with increasing interest rates, momentum strategy returns tend to be higher

during subperiods with declining rather than increasing interest rates. This

is true even absent any structural breaks in the data generating process.

8.13 Predicting Yield Changes: the Longer Run

In this section I study the longer run effects of a shock to bond yields. I

consider a regression of the form

∆ynt+h = α + β∆ynt + ϵt+h (33)

for different horizons h. That is I predict yield changes between t + h and

t + h− 1 by the change in the same maturity bond yield between t and t − 1.

As in the local projection method of Jordà (2005), the slope coefficients can

be interpreted as a type of impulse response function.

The resulting slope coefficients along with the 95% confidence intervals

are shown in Figure 12. The coefficients are high for the horizon of one month

and then again high for the 11 month horizon. Many of the coefficients in

between are negative though not statistically different from zero. These

results can explain why the 1 month horizon works best in the regressions

reported in Table 1.

The slope coefficients for different horizons sum to a numbers slightly

smaller than the coefficient for the first year. Therefore the total effect to

yields after a year is positive but fairly small. Put alternatively, assume

there is an increase in bond yields at period t. Because of short horizon

autocorrelation in yields, this predicts a further increase in yields in the next

month. The longer horizon autocorrelations largely offset each other so that

on average yields after a year remain sligthly below but close to the level

after a month following the yield change (t + 1).

In concurrent work Hillenbrand (2021) finds that a 3 day window around

72



2 4 6 8 10 12

-0.2
0

0.2

1 Year

2 4 6 8 10 12

-0.2
0

0.2

2 Year

2 4 6 8 10 12

-0.2
0

0.2

3 Year

2 4 6 8 10 12

-0.2
0

0.2
4 Year

2 4 6 8 10 12
-0.2
0

0.2
5 Year

2 4 6 8 10 12
-0.2
0

0.2
6 Year

2 4 6 8 10 12

0
0.2

7 Year

2 4 6 8 10 12

0
0.2

8 Year

2 4 6 8 10 12
-0.2
0

0.2

9 Year

2 4 6 8 10 12
-0.2
0

0.2

10 Year

Figure 12: shows the slope coefficients on a regression of bond yield change on

future bond yield changes for a horizon of up to one year.73



Fed meetings fully captures the secular decline in interest rates, which

started in the 80s. That is he argues that yield changes outside of this window

are transitory. In this later sample period considered by Hillenbrand (2021)

there is also a clearer reversion for the slope coefficients so that momentum

effectively has smaller long run effects. However, full reversion does not

occur for the longer sample period of this paper. This longer run view is also

preferable, at least for the purposes of this paper, since it also includes a

period of rising interest rates.

8.14 On the Cochrane-Piazzesi-Factor (CP)

Cochrane and Piazzesi (2005) find that a single tent shaped factor of forward

rates can forecast annual excess returns for bonds with maturities between

2 and 5 years. This factor is weakly correlated with the standard level,

slope and curvature factors and is rather connected to the fourth and fifth

principal component of yields. Cochrane and Piazzesi (2005) also argue that

including lags of this factor can improve forecasting performance. They

postulate that this might be related to measurement error in yields, though

do not investigate the issue formally.

Are the results in this paper related to those in Cochrane and Piazzesi

(2005)? First note that the spanning results when controlling 11 yields are

effectively also accounting for the CP-factor, which can be expressed as a

function of these yields. Second, we found that momentum can be largely

captured by the change in the first principal component of yields (PC1). This

is simply because bond returns have a high contemporaneous correlation

with changes in PC1. On the other hand the average contemporaneous

correlation between changes in the CP-factor and bond excess returns is

merely −0.12.23 While this factor can forecast returns, it cannot explain a

high share of return autocorrelation.

However, in theory the finding that a lagged CP-factor can help forecast

returns might help explain why past bond returns can predict returns con-

23Here I construct the factor as in Cochrane and Piazzesi (2005).
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Maturity β1 (rxt−1) t-value β2 (CPt−1) t-value

1 0.26 2.70 0.16 1.54

2 0.21 3.03 0.20 1.13

3 0.17 2.87 0.17 0.84

4 0.13 2.50 0.16 0.69

5 0.12 2.53 0.23 0.90

6 0.10 2.00 0.30 1.06

7 0.10 2.02 0.21 0.68

8 0.10 2.04 0.16 0.45

9 0.095 1.99 0.21 0.54

10 0.089 1.87 0.19 0.45

Table 26: shows the slope coefficients from a regression of bond excess returns

on past bond excess returns and a lagged Cochrane-Piazzesi factor. The regression

also controls for the first five principal components of yields. The t-values for the

second regression are based on Newey and West (1987) standard errors. Maturity is

expressed in years.

ditional on the information in the yield curve today. This is not the case

empirically. Table 26 shows the results from a spanning regression that

explains bond returns on their lag, the lagged CP-factor and five principal

components of yields. The results are similar to before and past returns are

clearly significant. Here the lagged CP-factor does not appear to improve

forecasting performance at a monthly frequency.

8.15 On Macro- vs. Yield-Based Factors

Joslin et al. (2014) assume the spanned variables possess VAR(1)-dynamics.

Hence their framework does not nest the setting discussed in this paper. Be-

cause of such differences we now discuss the relation between deep macroe-

conomic factors and principal component based factors.

Consider a spanned macroeconomic factor Zt. Under the risk neutral

measure it follows a VAR(2) process (demeaned and written in companion

form):
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 Zt

Zt−1

 =

φ∗1,Z φ∗2,Z
I 0

Zt−1

Zt−2

+

ϵt,Z0


On the other hand I assumed the principal components of yields follow. P Ct

P Ct−1

 =

φ∗1 0

I 0

P Ct−1

P Ct−2

+

ϵt0


These representations are equivalent assuming φ∗2,Z = 0. That is we are de

facto assuming the longer lags of the macro factors are not priced. This and

the assumption that Zt is spanned implies (demeaned) yields of the form

yt(n) = B̂(n)Zt. Given the spanning assumption, there is a direct rotation

between factors and yields Zt = R×P Ct. Now we also have φ∗1,Z = Rφ∗1. If the

deep factors are unobservable we do not have to solve for Zt and R but can

rather employ principal components as factors. The mapping between the

physical law of motion for the deep and principal component based factors

is similar. Here the coefficient matrices for principal components can be

transformed to those for the deep factors by multiplying by R.

Above I effectively assumed the factors Zt are spanned by yields, merely

their lags are not. Unspanned factors do not affect the risk neutral process,

here only spanned variables are included. However, such unspanned factors

occur in the physical factor law of motion.

Note that yield levels, and especially their higher frequency changes,

cannot be fully explained by observable macroeconomic variables. Therefore

a full macroeconomic model of the yield curve must assume that some

macroeconomic information, important for explaining yields, is hidden from

the econometrician.

8.16 Relation to Crump and Gospodinov (2021)

In a recent contribution Crump and Gospodinov (2021) criticize standard

practices of characterizing the factor structure of interest rates. They propose

i) modelling the factor structure of bond returns rather than that of yield

levels, ii) being cautious with standard goodness of fit measures.
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Following their advice, my spanning decomposition applies more prin-

cipal components than would be required to simply produce a high fit to

yield levels. However, I use principal components of yield levels rather than

those of bond returns. Using principal components of past returns would

make the decomposition meaningless as these are mechanically related to

past returns.

The form for my decomposition is also implied by standard term struc-

ture models. Crump and Gospodinov (2021), on the other hand, do not

offer a theoretical or no-arbitrage explanation for their findings. However,

a theoretical model that could generate their results might also help in ex-

plaining yield curve momentum. On the other hand, since they focus on

a quarterly rather than monthly horizon, their empirical results are not

directly comparable to those in this paper.

8.17 Measurement Error in the Cieslak-Povala-Model

Cieslak and Povala (2015) build a three factor macro-finance term structure

model. They apply the model to argue that measurement error can explain

why trend inflation appears unspanned by yields. This model is different

from the model I use to study the effects of measurement error. Therefore as

a robustness check I now argue that combining measurement error with the

Cieslak-Povala model does not explain my findings.

The estimation of the model follows Cieslak and Povala (2015) with three

exceptions. First, my sample includes nine years of additional more recent

data. Second, I apply only bonds with maturities less than 10 years. Third, I

cast the model in monthly form even though I also calibrate the model to

match annual coefficients.

The model features three factors: trend inflation, cycle (real rate) and a

return forecasting factor. Trend inflation and real rate persistence as well as

the market price of risk parameters are calibrated to match reduced form

yield loadings. The rest of the parameters are estimated directly using

regressions.
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I first use the model to simulate momentum betas obtained by regressing

monthly excess returns on their past values. The population coefficients

decline in maturity and range between 0.026 and -0.017. The empirical

counterparts for the momentum coefficients range between 0.19 and 0.09.

Therefore the model generates momentum only for shorter maturity bonds

and even there the magnitude is much smaller than in the data.

Cieslak and Povala (2015) consider the effects of different values for mea-

surement error. Again I use a conservative 10 basis point independent error

on all yields. I then simulate five percentage point (two sided) confidence

intervals for the momentum betas when controlling for three principal com-

ponents of yields. The critical values range between 0.02 at the short end of

the curve to 0.096 at the long end. The empirical values for the momentum

betas are below the critical values only for 10 year bonds.

Therefore again measurement error does not appear to explain my results

with the exception of perhaps the very longest maturities.

8.18 Mean-Variance Prefererences

Our example concerning model misspecification assumed that the represen-

tative agent’s risk preference is given by a stochastic discount factor of the

form 17. Here I note that similar results can be derived under the alternative

assumption that the agent possesses mean-variance preferences.

In particular assume a representative investor maximizes a mean variance

objective over the return of its portfolio rt+1:

E
S
t [rt+1]− 1

2
γV arSt [rt+1]

The expectation is naturally taken under the agent’s subjective measure.

The portfolio return is given by

rt+1 =
N∑
n=1

znr
n
t+1,
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where zn is the number of n maturity bonds held by the investor and rnt+1

is the return of the corresponding bond. As is standard in mean-variance

models, assume short rate dynamics are given exogenously. However, instead

of the standard AR(1) specification, let these be given by an AR(2) process:

y1
t+1 = c+ ρ1y

1
t + ρ2y

1
t−1 + ϵt+1

Here the natural state variable is then the short rate. As before assume

our agent can only entertain single factor models, that is she puts zero

probability on short rate dynamics other than AR(1). The estimation of

these subjective dynamics proceeds as before. Assume the supplies of each

maturity bond are given by sn.

Conjecture pnt = An +Bny
1
t . Similarly to Hamilton and Wu (2012a) then

approximate:

E
S
t [rt+1] ≈ −z1ty

1
t +

N∑
n=2

ztn

[
An−1 +Bn−1(c+ ρyt + ρ2)−An −Bny

1
t − y1

t +
1
2
B(n− 1)2σ2

ϵ

]
and

V arSt [rt+1] ≈

 N∑
n=2

ztnBn−1


2

σ2
ϵ

Maximizing the investor’s objective for an maturity n bond gives:

An−1 −An +Bn−1[c+ ρy1
t ]−Bny

1
t − y1

t = γBn−1σ
2
ϵ

 N∑
n=2

ztnBn−1


Plugging in the market clearing condition ztn = −sn

An−1 −An +Bn−1[c+ ρy1
t ]−Bny

1
t − y1

t = −γBn−1σ
2
ϵ

 N∑
n=2

snBn−1


We can solve
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Bn = −1 +Bn−1ρ, An = An−1 +Bn−1c+γBn−1σ
2
ϵ

 N∑
n=2

snBn−1


The interest rate sensitivity parameters Bn are identical to our previous

one factor model that was able to generate both unconditional and condi-

tional momentum. However, here I do not have a free risk parameter to

calibrate the persistence separately from its objective counterpart. More-

over, I naturally assume the short rate process rather than 5 year yields are

observed without arror.

Similarly to before the agent estimates the AR(1) dynamics using the

population OLS estimators. I approximate this with sample OLS estimation.

Fitting AR(1) factor dynamics results in a persistence parameter of 0.989. In

comparison estimating AR(2) dynamics results in persistence parameters of

1.077 for the first lag and −0.088 for the second.

Using the estimated AR(2)-process for short rates, I can now simulate

a plain momentum slope coefficient of 0.26 and a conditional one of 0.15.

While this model generates a sligthly stronger momentum pattern than in

the data, given its simplicity it does surprisingly well.

My results would also hold under the assumption of risk neutrality.

However, this would have the counterfactual implication that the yield curve

is flat on average.

8.19 Proof of Remark 2

Due to normality, the standard pricing formula applies:

pnt = −y1
t +E

S
t [pn−1

t+1 ] +
1
2
V arSt (pn−1

t+1 ) +CovSt (logMt+1,p
n−1
t+1 )

Hence

rxnt+1 = pn−1
t+1 − p

n
t − y1

t = pn−1
t+1 −E

S
t [pn−1

t+1 ]−CovSt (log(Mt+1),pn−1
t+1 )− 1

2
V arSt (pn−1

t+1 )
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rxnt+1 = Bn−1vt+1 +Bn−1Vλt −
1
2
B′n−1VBn−1

Therefore

V ar(rxnt+1) = B2
n−1V ar(vt+1 +Vλt)

and

Cov(rxnt+1, rx
n
t ) = B2

n−1Cov(vt+1 +Vλt,vt +Vλt−1)

and the slope coefficient in the momentum regression (this is given n ≥ 2, if

n = 1, excess returns are always zero and the coefficient undefined) is

Cov(rxnt+1, rx
n
t )

V ar(rxnt+1)
=
Cov(vt+1 +Vλt,vt +Vλt−1)

V ar(vt+1 +Vλt)

which is independent of bond maturity.

8.20 Proof of Remark 3

Excess return of an n maturity bond is given by

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t =

−(n− 1)(An−1 +B′n−1,eXt+1) +n(An +B′n,eXt)− (A1 +B′1,eXt).

This implies the expected excess return is of the form

Et[rx
n
t,t+1] = Ãn + B̃′n,eXt,

where

Ãn = −(n− 1)An−1 +nAn −A1
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and

B̃n,e = −(n− 1)Bn−1,eφ+nBn,e −B1,e.

Now consider an m dimensional collection of yields ŷt. Note that we have

ŷt = Â+ B̂Xt,

where Â are B̂ simply collect the relevant An and Bn,e for the correspond-

ing maturities. If B̂ is invertible:

Xt = B̂−1(ŷt − Â)ŷt.

Therefore we have

Et[rx
n
t,t+1] = Ãn + B̃nB̂

−1(ŷt − Â)ŷt,

now we can write the conditional expectation for the excess return as a

linear (affine) function of the yields ŷt. Therefore we can write the excess

returns as

rxnt+1 = Ãn + B̃nB̂
−1(ŷt − Â)ŷt + εt+1,

where εt+1 is independent white noise. Now conditional on the yields ŷt,

no other variable like past returns or previous period returns should forecast

excess returns.

However, the argument fails if B̂ is not invertible. Then controlling

for current yields is not generally equivalent to controlling for the factors.

Then past bond returns can also predict future returns conditional on the

information in the yield curve today.

Remark 3: The Effect of Nonlinearities Remark 3 assumes that yields

are an affine function of state variables. However, it can be generalized to

arbitrary functions. Now assume yields are of the form
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ynt = gn(Xt).

and that

Xt+1 = ξ(Xt) + ϵt+1

for some gn and ξ. We can view this as a generalized Markovian model.

Now pick any m yields stacked into a vector ỹt. Moreover, define g̃ as

ỹ = g̃(Xt),

where this function simply collects the relevant elements using gn. As-

suming the inverse exists, we can solve

Xt = g̃−1(ỹ).

Now note that we have

rxnt,t+1 = −(n− 1)yn−1
t+1 +nynt − y1

t =

−(n− 1)gn−1(Xt+1) +ngn(Xt)− g1(Xt) =

−(n− 1)gn−1(ξ(Xt) + ϵt+1) +ngn(Xt)− g1(Xt)

By the definition of a state variable

Et[rx
n
t,t+1] = E[rxnt,t+1|Xt] ≡Πn(Xt) = Πn(g̃−1(ỹ)).

Now no other variable should predict excess returns controlling for

Πn(g̃−1(ỹ)).
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