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On Robustness of Average Inflation Targeting∗

Seppo Honkapohja, Aalto University School of Business

Nigel McClung, Bank of Finland

April 16, 2021

Abstract

This paper considers the performance of average inflation targeting

(AIT) policy in a New Keynesian model with adaptive learning agents.

Our analysis raises concerns regarding robustness of AIT when agents

have imperfect knowledge. In particular, the target steady state can

be locally unstable under learning if details about the policy are not

publicly available. Near the low steady state with interest rates at

the zero lower bound, AIT does not necessarily outperform a stan-

dard inflation targeting policy. Policymakers can improve outcomes

under AIT by (i) targeting a discounted average of inflation, or (ii)

communicating the data window for the target.

Keywords: Adaptive Learning, Inflation Targeting, Zero Interest

Rate Lower Bound.

JEL codes: E31, E52, E58

1 Introduction

The past 13 or so years have been a very challenging time for macroeconomic

policy-making and in particular for monetary policy. In most years since 2008

central banks have had to keep the policy interest rates at approximately

zero level, popularly called the zero lower bound (ZLB) or the liquidity trap.

∗We are grateful to Klaus Adam and Markus Haavio for comments. First author

acknowledges financial support from the Yrjö Jahnsson Foundation. The views expressed

in this paper are not necessarily the views of the Bank of Finland.
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The usual framework of inflation targeting became largely ineffective in the

ZLB regime which was the initial monetary policy response to the global

financial crisis. Once policy rates were effectively down to the ZLB level,

central banks had to revert to unconventional monetary policies which took

the form of liquidity operations, credit easing, large scale asset purchases

and forward guidance about future course of policy. A number of empirical

studies have shown that these new policies had qualitatively the right kind

of macroeconomic effects, but the estimated magnitudes have been variable.1

The ZLB regime after the financial crisis soon inspired discussions among

prominent central bankers and academics about possible reform of the mon-

etary policy framework. Alternatives to inflation targeting were explored.

Price level targeting (PLT) and the related concept of nominal GDP targeting

were perhaps the most widely discussed suggestions for a more appropriate

monetary policy framework. Evans (2012) and Carney (2012) were among

the first commentators and more recently, for example, Williams (2017),

Bernanke (2017) and Bullard (2018) suggested that PLT and more complex

“switching policies” should be studied further.

In 2019 the Federal Reserve initiated a review of its monetary policy

strategy. The review process culminated in August 2020 in the announcement

by Chairman Powell (2020) that the policy framework of the Fed is to be

based on Average Inflation Targeting (AIT).2

AIT has not been widely studied in the research literature. The paper

by Nessen and Vestin (2005) uses a simple average of finite number of lagged

inflation rates in a quadratic CB loss function in a standard model with

rational expectations (RE). Reifschneider and Williams (2000) suggested a

book-keeping device to keep track of deviations between the actual interest

rate and a reference rate based on the Taylor rule. Mertens and Williams

(2019) use the optimal policy rule under discretion and RE (when the ZLB

can be binding) as a reference rate which is combined with AIT. Budianto,

Nakato, and Schmidt (2020) propose that the central bank loss function

incorporates an exponential moving average of actual inflation rates and they

show how the outcome under RE is in welfare terms between the outcomes

1See Moessner, Jansen, and de Haan (2017), Dell’Ariccia, Rabanal, and Sandri (2018),

Kuttner (2018) and Bhattarai and Neely (2016) for reviews of the empirical literature on

unconventional monetary policy.
2See e.g. Svensson (2020) for a wide-ranging discussion of alternatives that were con-

sidered for the Fed.

2



from IT and PLT.3 Hebden, Herbst, Tang, Topa, and Winker (2020) and

Andrade, Gali, Le Bihan, and Matheron (2021) are two recent applied papers

that focus on alternative make-up strategies for monetary policy.4

In this paper we consider the performance of AIT in a standard New

Keynesian (NK) model when private agents have imperfect knowledge of

the economy and have to engage in learning to forecast its dynamics. It is

assumed that when forming expectations private agents statistically estimate

the laws of motion for the endogenous variables that they need to forecast.

In this setting private agents make in each period optimal decisions given

the current forecasts and the economy reaches a temporary equilibrium for

given forecasts and private decisions. As time progresses, new data leads to

updating of the forecast functions and a new temporary equilibrium. This ap-

proach is called adaptive learning, and it relies on much weaker and arguably

more realistic assumptions than rational or boundedly rational decision rules

under RE.

The induced learning behavior influences the actual dynamics of endoge-

nous variables. In benign circumstances the economy reaches a long-run RE

equilibrium, but this depends on the structure of the economy and in partic-

ular the policy rule used by the central bank. The convergence to long run

equilibrium does not necessarily take place and the form of monetary policy

can play a crucial role in guaranteeing long run convergence.5

Our analysis raises warning signals as regards robustness of economic per-

formance with AIT policy in conditions of imperfect knowledge and learning.

As a starting point it is assumed AIT is practiced under opacity of its details,

which is arguably the current framework of the Fed.6 In this setup the out-

come is precarious in that local convergence of learning to target steady state

depends on stickiness of prices. With full price flexibility there is typically

local instability while with price stickiness the steady state is locally stable

but only if the speed of learning is very low.

3They also allow for bounded rationality in the form of ad hoc deviations from optimal

private decision rules under RE.
4There are also other studies by the staff of the Federal Reserve System that were done

as part of the Fed strategy review.
5Evans and Honkapohja (2003) and Evans and Honkapohja (2006) showed how the form

of interest rate rule for implementing optimal policy can be crucial to ensure convergence

to REE. Bullard and Mitra (2002) studied convergence conditions when a Taylor rule is

applied.
6See e.g. the interview of John Williams in FT Live, November 13, 2020.
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Modifications to the AIT setup are considered next. It turns out that

exponential discounting of old data in a finite window can somewhat improve

the properties of AIT under opacity. Giving more information to private

agents about the structure of AIT is a superior way to improve the chance

of a stable outcome with AIT policy. With the latter assumption AIT can

sometimes initiate an escape from the ZLB/liquidity trap regime. However,

AIT may also induce deflationary spirals near the low steady state in cases

where even a standard inflation targeting Taylor rule would initiate escape

from the ZLB. Thus, AIT does not ensure a better outcome at the ZLB than

a standard inflation targeting policy.

In the next section we introduce the AIT formulation and the basic re-

sults using two simple models. The main model and results are developed

in Section 3. Sections 4 and 5 consider the alterations to the AIT frame-

work. Proofs of the results and various modelling details are in the several

appendices.

2 Introductory Examples

The basic idea behind average inflation targeting (AIT) is that, when com-

paring actual inflation against its long run target, the measure of actual

inflation is an average of past inflation rates. This average inflation rate is

the key indicator for policy decisions, so that policy is tightened vs. loosened

if the average of past inflation rates is above vs. below respectively its tar-

get value. There are of course different ways to measure average value and

there is also the issue of length of the data window in its computation. In

addition, major issues about communication of the AIT framework to the

private economy are relevant.

A natural starting point is that there is opacity about the details of

the AIT rule. We now develop two very simple examples to illustrate that

introducing AIT under opacity can create stability concerns in the resulting

economic dynamics.

2.1 Fisherian model

The first example is the simplest form of what is called the classical monetary

model7. The model includes flexible prices and perfect competition among

7See e.g. chapter 2 of Gali (2008).
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identical households. The latter optimize an intertemporal utility function

over streams of consumption and employment for an infinite horizon. There

are also identical perfectly competitive firms who produce a single good us-

ing labor as the only productive input. Prices are flexible, there is market

clearing and real variables are determined independently of monetary pol-

icy. Determination of nominal variables, inflation and nominal interest rates,

depends the conduct of monetary policy, where the latter is assumed to be

based on an interest rate rule.

The Fisher equation which follows from intertemporal consumption opti-

mality is the key relation to link the real interest rate to inflation and nominal

interest rate. We start with the form

 = −1 (1)

which comes from the consumption Euler equation (assuming, for exposi-

tion’s sake, constant income and no shocks to household preferences). Here

 is the gross nominal interest rate, 

 = (+1)

 is expected gross in-

flation rate +1 in period  + 1 and formed in period  (note the unusual

notation!).  is the subjective discount rate, so that −1 is the gross real
rate of interest. Equation (1) is taken to describe the interest rate desired

by private agents for given inflation expectations.8 Its linearization around

the target steady state is

̂ = −1̂ 

where hat notation, e.g. ̂, denotes a linearized variable as deviation from

target steady state.

The second equation of the model describes AIT monetary policy. The

nominal interest rate is set in response to an average of deviations from

inflation target ∗ in the past  − 1 periods.9 Its linearization around the
steady state with ∗ is

̂ =


∗
−1P
=0

̂− (2)

where ∗   is assumed. Derivation of (2) is discussed in more detail

in the beginning of Section 3.1. Combining the linearization of (1) and (2)

8This formulation corresponds to what is called Euler equation learning in which agents

have short decision horizon, see e.g. Honkapohja, Mitra, and Evans (2013) and Evans and

Honkapohja (2013).
9The inflation term could be divided by , but this would not change the result as 

can be incorporated into .
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yields the temporary equilibrium relation as an implicit equation that deter-

mines ̂ for given expectations ̂

 = ∗ ̂+1 and lags ̂−,  = 1   − 1,

where ∗ denotes (possibly) non-rational expectations. After combining the
linearization of (1) and (2) and rearranging, the system is

̂ =
∗


̂ −

−1P
=1

̂− (3)

As there is opacity about monetary policy, it is assumed that private

agents do not know anything about the interest rate rule (2) and therefore

the agents forecast inflation using a simple weighted average of past inflation,

called steady state learning with constant gain which formally is

̂ = ̂−1 + (̂−1 − ̂−1) (4)

where   0 is a small constant. Stability is taken to mean convergence for
all sufficiently small   0 (See Section 3.2 for more discussion of learning.)
We are interested in local convergence of the system (3)-(4) for different

lengths of the data window − 1. The result is:
Remark: Assume that ∗  . The steady state ∗ is locally stable

under the system (3)-(4) if  ≤ 3 but is explosive if  = 4 and for many
higher values of .

Figure 1 illustrates the instability with  = 5 and standard numerical
values for the parameters ∗ = 1005,  = 099,  = 15 and  = 0001.
The initial conditions are ̂0 = 002, ̂0 = 009, ̂−1 = 01, ̂−2 = 0001,
̂−3 = 003 and ̂−4 = 005. Divergence is very slow as the gain parameter
 is very small. Figure A.2 in the Appendix gives a very long simulation to

verify divergence.
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Figure 1: Unstable dynamics with AIT in Fisher model.

This remark can be proved by computing the characteristic polynomial to

see when its roots are inside the unit circle, see Appendix C.2. We will give

detailed proof using a more general model with flexible prices.

To get an intuition for this result we do the following operations to the

model. Start by lagging (3) one period and solve for ̂−1. Then combine the
result, equation (4) and (3) which yields the equation

̂ = (
∗


− 1)̂−1 − 

−1P
=2

̂− + (1− )̂− (5)

When the gain parameter is very small ( → 0), equation (5) becomes ̂ ≈
̂−. Under a simple inflation targeting rule ( = 1) equilibrium inflation

is a monotonic sequence that converges slowly to steady state if ∗  

and   0 is small. With AIT (  1), the sequence of inflation is no
longer monotone. For example, the AIT rule may aim to overshoot the

target (̂  0) after an initial undershooting (̂0  0), which can trigger a
subsequent tightening of policy and undershooting of inflation as incoming

high inflation data replaces the low initial inflation data in the measure of

average inflation.

The resulting oscillatory dynamics are unstable if (1) long run inflation

expectations ̂ drift up (down) in periods of high (low) inflation because

agents do not understand the temporary nature of these oscillations (policy

is set under opacity); (2)  is large, such that the periods of over- and under-

shooting are long. Thus, for   3, (5) is an unstable process for any   0.
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We note in Section 3.1 that as →∞, the AIT rule becomes a Wicksel-
lian price level targeting (PLT) rule which is a stable process for inflation,

provided ∗  . Thus, unstable dynamics emerge under AIT with opacity

for sufficiently high , but not under IT or PLT.

2.2 Simple Model with Sticky Prices

To illustrate the role of price stickiness, we consider a log-linearized New

Keynesian (NK) model with Euler equation learning.10 The standard IS

equation for household decision making is

̂ = ̂ − (̂ − ̂) (6)

where ̂ is the output gap, ̂ is inflation, ̂ is the nominal interest rate,

̂ = ∗ ̂+1 and ̂ = ∗ ̂+1. ̂ and ̂ variables are log-deviations from the

target steady state. The central bank is assumed to set interest rates using

the log-linearized AIT rule

̂ = 
−1P
=0

̂− (7)

Inflation expectations ̂ evolve according to (4). The Phillips curve equation

is of standard form

̂ = ̂ + ̂ (8)

and we assume output expectations are based on (8) and given as11

̂ =
1− 


̂  (9)

If we substitute (9), (8), and (7) into (6) we have

̂ =
−1 + 

−1 + 
̂ −



−1 + 

−1P
=1

̂− (10)

Note that in the NK model  is decreasing in price rigidity and in the limit

 = 0 implies constant inflation rate while prices become totally flexible as

10For references on the concept of Euler equation learning, see footnote 6.
11Alternatively, we could assume that ̂ is based on a steady state learning scheme akin

to (4), but this would not affect the qualititate results in this section.
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→∞. In the limit →∞ (10) has nearly the same form as (3) so ̂ will

oscillate and diverge for large  as was illustrated in the preceding example

in Section 2.1.

By lagging (10) one period and solving for ̂−1, then substituting this
expression for ̂−1 and (4) into (10) we obtain for any 

̂ =
1− ( − 1)

 + 1
̂−1 − 

1 + 

−1P
=2

̂− +
(1− )

 + 1
̂−(11)

̂ = ̂−1 + (1− )̂−1 (12)

When prices are very sticky (i.e.  is small), inflation ̂ is not very respon-

sive to higher lags of inflation. For very small  we then have ̂ ≈ ̂−1
with  slightly smaller than 1 which suggests slowly convergent dynamics.
Proposition 1 below shows that the learning dynamics under AIT and opac-

ity are locally convergent in a standard New Keynesian model with price

stickiness.

The contrasting results of the two examples suggest that AIT yields sta-

bility when there is price stickiness (provided that speed of convergence under

learning, , is low), but is problematic if the economy has flexible prices.

3 New Keynesian Model

A standard New Keynesian model is employed as the analytical framework

which uses the assumption that price stickiness arises from price adjustment

costs. See e.g. Benhabib, Evans, and Honkapohja (2014) and Honkapohja

and Mitra (2020) for more details.

A continuum of household-firms produce a differentiated consumption

good under monopolistic competition and price adjustment costs in the spirit

of Rotemberg (1982). The utility and production functions are assumed to

be identical and agents have homogenous point expectations, so that there

is a representative agent. Government uses monetary policy, buys a fixed

amount of output and finances spending by taxes and issues of public debt.

For simplicity, consumers are assumed to be Ricardian and monetary policy

is conducted in terms of an interest rate rule in the cashless limit. Formal

details of the model are in Appendix A.

The analysis relies on two behavioral rules of private agents: the Phillips

curve and the consumption function. Starting with the former, the Phillips
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curve takes the form

 = ̃( 

+1 


+2) ≡





(1+)
 −  − 1





( − (̄ + ̃))
+ (13)





∞P
=1

−1
¡
+

¢(1+) −  − 1


∞P
=1


+

(+ − (̄ +  ̃))


where

 = ( − 1) (14)

while  denotes output and ̄, ̃ are the mean and random parts of govern-

ment spending and , ,  and  are parameters for substitution elasticity,

labor input exponent in production, price adjustment costs and subjective

discount rate, respectively. Prices are fully flexible if  → 0, and otherwise
prices are sticky if   0, see Appendix A.6. Superscript  indicates expecta-
tions while subscripts indicate the periods + ,  = 0 1 2  See Appendix
A.2 for details.

Expectations in (13) are formed at time  and based on parameter esti-

mates of the forecast function that uses information about endogenous vari-

ables at the end of period −1. Actual variables and the observable exogenous
random shock at time  are assumed to be known when agents make current

decisions. Equation (13) is treated as one of temporary equilibrium equations

that determine  given expectations {+}∞=1.12
To derive the consumption function it is assumed for simplicity that con-

sumers are Ricardian in the sense that they amalgamate their own intertem-

poral budget constraint and that of the government (where the latter is

evaluated at price expectations of the consumer). It can be shown that the

consumption function takes the form


∞P
=1

(
+)

(1−) =
∞P
=1

(
+)

−1(+ − (̄ +  ̃)) (15)

where ,  = −1 and  denote private consumption, (gross) inflation

rate and (gross) interest rate for loan from period  to  + 1. The discount

12Note that in the representative agents case expected future inflation rate does not

directly affect current inflation. There is an indirect effect via current output in the

Phillip’s curve (13). Using (39) in the first-order conditions to eliminate relative prices

and the representative agent assumption, each firm’s output equals average output in every

period. Since firms can be assumed to have learned this to be the case, we obtain (13).
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factor is


+ =



+1

Y
=2


+−1
+

 (16)

See Appendix A.3 for details. In practice central banks do not make their

policy instrument rules known. This is reflected in (16) as private agents

form expectations about future interest rates.

It can be noted that if there are no adjustment costs in price setting (i.e.

 = 0 in (38) in the appendix), then the Phillips curve is replaced by a
static first order condition for consumption and labor supply. We continue

to analyze the case of price flexibility below.

3.1 Average Inflation Targeting (AIT)

It is initially assumed that there is opacity about the details of monetary

policy, so that agents do not know the interest rate rule and they need to

forecast future interest rates. The central bank uses an interest rate rule that

depends on average inflation targeting

 = 1 +max[̄− 1 + [( − ̄)̄] + [( − ∗)∗] 0](17)

̄ = (∗)− and (18)

 = −1 (19)

Here ̄ denotes the target price level. It is formulated with a target level

for inflation ∗ and ̄ is computed by compounding the actual price level

 periods ago using target inflation rate ∗. Notice that (17) becomes a
simple inflation targeting rule when  = 1. As  → ∞, (17) becomes a
Wicksellian price level targeting (PLT) rule with inflation target path given

by ̄∞ = (∗)0 for all .
The rule (18) implies that



̄

=


−1


−(−1)
(∗)−

= (∗)−
−1Y
=0

−

so the basic AIT rule with the ZLB constraint can be written as

 = (   +1−) (20)

≡ 1 +max[̄− 1 + 

"
(∗)−

−1Y
=0

− − 1
#
+ [



∗
− 1] 0]
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Rule (20) is the starting point of our analysis of average inflation targeting,

but other variants will also be considered.

3.2 Temporary Equilibrium and Learning

Following the literature on adaptive learning, it is assumed that each agent

has a model for perceived dynamics of state variables, also called the per-

ceived law of motion (PLM). In any period the PLM parameters are es-

timated by recursive least squares using available data and the estimated

model is used for forecasting. The PLM parameters are re-estimated when

new data becomes available in the next period. In linearized models, a com-

mon formulation is to postulate that the PLM is a linear regression model

where endogenous variables depend on intercepts, observed exogenous vari-

ables and (possibly) lags of endogenous variables.13 The estimation is based

on least squares or related methods.14

Under opacity about the monetary policy framework agents must forecast

the interest rate as well as output and inflation rate without any knowledge of

the variables and their lags in the policy rule. In this situation agents’ learn-

ing is about how to forecast future inflation, output and interest rate and, as

a starting point, agents are assumed to exclude lagged endogenous variables

from their PLM. Note that the only lags in the model are lagged inflation

rates in the policy rule and private agents have no knowledge of the form

(20). With this assumption the equilibrium involves imperfect knowledge

and is thus a restricted perceptions equilibrium.15 Details of the formulation

are discussed in Appendix A.5.

As discussed in Appendix A.5, stability of a steady state can be validly

assessed using the simplifying assumption that the random part of govern-

ment spending ̃ is identically zero. Agents estimate the long run mean

values of state variables, called “steady state learning” which is formalized

as

+ =  for all  ≥ 1 and  = −1 + (−1 − −1) (21)

13The assumption of a linear PLM is often used as an approximation also in nonlinear

models as the true nonlinear functional form of the model would involve expectations of

complicated nonlinear functions.
14For discussions of adaptive learning, see e.g. Evans and Honkapohja (2001), Sargent

(2008) and Evans and Honkapohja (2009a).
15See e.g. Evans and Honkapohja (2001) and Branch (2006). The term self-confirming

equilibrium is also used in in the literature, see e.g. Sargent (1999).
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where  = , , . It should also be noted that in this notation expectations

 refer to future periods (and not the current one) formed in period . When

forming  the newest available data point is −1, i.e. expectations are formed
in the beginning of the current period. ‘Constant gain’ learning is assumed,

so that the gain parameter is  = , for 0   ≤ 1 and assumed to be small.
Note that the agents in the simple models of section 2 updated their inflation

expectations using a steady state learning scheme with constant gain (see (4)

and (12)).

3.3 AIT Monetary Policy under Opacity and Learning

The temporary equilibrium equations of the model with steady-state learning

consists of

(i) the infinite horizon Phillips curve (14) with equation (22) below,

(ii) the aggregate demand function coupled with market clearing, equation

(23) below, and

(iii) the interest rate rule (20) including the definition of inflation.

Agents form expectations +, 

+ and 

+−1 for  = 1 2  We initially
consider the nonstochastic case where agents do steady-state learning16 given

by equation (21) and the model equations become

(i) Phillips curve

( − 1) = ̃( 

 ) ≡





(1+)
 −  − 1





( − ̄)
+





∞P
=1

−1 ( )
(1+) −  − 1



∞P
=1




( − ̄)
or

 = Π( 

 ) ≡ −1[̃(  )] (22)

(ii) aggregate demand function

 =  (  

   


 ) (23)

≡ ̄ +

"µ




¶−1Ã
1− 1

µ





¶(1−)!#
( − ̄)

µ




 − 

¶

(iii) interest rate rule (20).

16Note the timing convention for  above.
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The system is

 −  (  

   


 ) = 0

 −Π( 

 ) = 0

 −(   +1−) = 0

and to analyze E-stability of steady states the system is written in abstract

form

 (

  −1  −(−1)) = 0 (24)

where  consists of the aggregate demand function, the Phillips curve and the

interest rate rule. The vector of current state variables is  = (  )


while (−1  +1−) contains the lagged endogenous variables. The rule
of steady state learning for the components of  can be written in vector

form as


 = (1− )

−1 + −1 (25)

Local stability properties of steady states under the rule (25) is now an-

alyzed. Linearizing around the target steady state we obtain the system

̂ = (1− )̂
−1 + ( +1)̂−1 +

−1P
=2

̂−, where (26)

 = (−)
−1() and  = (−)

−1(−) (27)

where the matrices1  −1 are given in the Appendix, ̂ = (̂ ̂ ̂ )
 ,

and the hat denotes a linearized variable. For brevity, unchanged notation

for the deviations from the steady state is used. Recall also that 
 refers

to all expected future values of  and not the current one.

The focus is on “small gain” results, i.e. whether stability obtains for all

 sufficiently close to zero.

Definition. The steady state is said to be expectationally stable or

(locally) stable under learning if it is a locally stable fixed point of the

system (26) and (25) for all 0 ≤   ̄ for some ̄  0

Conditions for this can be directly obtained by analyzing (25)-(26) in a stan-

dard way as a system of linear difference equations. Alternatively, so-called

expectational stability (E-stability) techniques based on an associated differ-

ential equation in virtual time can be applied, e.g. see Evans and Honkapohja

(2001).
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The key result is that there is local stability of constant gain learning if

there is price stickiness because of adjustment costs:17

Proposition 1 Assume that there is price stickiness (  0) and  

−1∗,   1 and  ≥ 1. For small , the target steady state is locally stable
under constant gain learning under the rule (17) for all .

However, the preceding stability result is overturned when there is full

price flexibility. Appendix A.6 sketches how the model changes when there

is price flexibility (adjustment costs are 0). For that model we have:

Proposition 2 Assume that there is full price flexibility ( = 0) and  

−1∗. For small , the target steady state is locally stable under constant
gain learning under the rule (17) for  ≤ 3 but is unstable for many higher
values of 

The proposition can be proved using the Schur-Cohn formulae which are,

however, cumbersome to use for high values of . We remark that an alterna-

tive method of proof based on complex analysis is developed in the Appendix.

This method is convenient for high values of .

Propositions 1 and 2 raise questions about applicability of the results. As

stability is overturned in the limit  → 0 to price flexibility, it is imperative
to study whether the AIT rule ensures a stable equilibrium for empirically

plausible values of the gain parameters when there are positive adjustment

costs   0. An interest rate rule is said to be “robustly stable" if it leads
to stable outcomes across a wide range of empirically plausible values of the

gain parameter, .18 As will be seen in the first row of Table 1 in Section

4.3, the basic AIT rule does not lead to robust stability as problems can arise

even for very small positive values of the gain parameter .

An obvious response to this problem is to use discounting of older data

in the AIT rule and we study the extension in Section 4.

17Proofs are given in the Appendices.
18The idea of using the range of values for gain parameter as a criterion for robustness

was first suggested in Evans and Honkapohja (2009b).
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4 Using Exponential Weighting in AIT

In this section we consider whether use of weighted measures of average

inflation that discount past inflation relative to current inflation in computing

AIT can improve stability properties of AIT policy.

4.1 Exponentially Declining Weights

Here we introduce exponentially declining weights over the finite past horizon

when computing average inflation for the interest rate rule. Thus the rule

(20) is adjusted to

 ≡ 1 +max[̄− 1 + 

∙
1− 

1− 

−1P
=0

(
−
∗
− 1)

¸
+ [



∗
− 1] 0] (28)

where 0    1. The length of the past horizon is −1 as before. Note that
the weights in the rule sum to 1. The framework is otherwise unchanged:
the aggregate demand function (23), the Phillips curve (22) and steady state

learning.

The economy is stable under learning with exponentially declining weights,

i.e. interest rule (28) under opacity:

Proposition 3 (i) Assume that there is full price flexibility ( = 0) and
  −1∗ and 0    1. For all small , the target steady state is locally
stable under constant gain learning under the rule (28) for all .

(ii) Assume that there is price stickiness (  0) and   −1∗,   1,
 ≥ 1, and 0    1. For small , the target steady state is locally stable
under constant gain learning under the rule (28) for all .

Robustness of stability in Proposition 3 (ii) is examined using a calibrated

model in Section 4.3.

4.2 Exponential Moving Average Rule

A different way to discount old data is to assume that an exponential moving

average specification is used in the interest rate rule. Consider an interest
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rate rule that responds to an exponential moving average of inflation:19

 = 1 +max[̄− 1 + 

µ
 (


 )

1−

∗
− 1
¶
 0] (29)

 = −1(

−1)

1− (30)

where 0    1. The framework is otherwise unchanged: the aggregate
demand function (23), the Phillips curve (22) and steady state learning.

The dynamic model is now given by

 (

  


 ) = 0 (31)

where  consists of the Phillips curve, the aggregate demand function and in-

terest rate rule (29). The vector of current state variables is = (  )
 .

The law of motion for 
 is the same as before, and the law of motion for

 is given by (30). Linearizing around the target steady state we obtain

the system

̂ = (−)
−1(̂

 +̂

 ) (32)

≡ ̂
 +̂ (33)

where  and  are given in the appendix, and ̂ again collects linearized

 . In a model with sticky prices and an exponential moving average

rule, the Taylor Principle is now sufficient for stability under constant gain

learning:

Proposition 4 (i) Assume that there is price stickiness (  0) and  

−1∗, 0    1,   1,  ≥ 1. For small , the target steady state is
locally stable under constant gain learning under the rule (29).

(ii) Assume full price flexibility ( = 0) and   max[
∗()(1−)

(1−)  −1∗].
For small , the target steady state is locally stable under constant gain learn-

ing under the rule (29).

When there is full price flexibility, however, the stability conditions de-

pend on  and the ratio of  to , and the situation can ultimately be

more stringent than the preceding proposition indicates. If  and  are

19Budianto, Nakato, and Schmidt (2020) study AIT with exponential MA in a model

with rational expectations.
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both very small and  ≈ , then the condition for stability is far more

demanding than the Taylor Principle. Eusepi and Preston (2018), section 4

study a related model that assumes  =  and obtain similar results.

The fact that stability may depend on the private sector gain parameter

suggests that the exponential moving average formulation of average infla-

tion targeting can be a risky alternative to the weighted average formulation

discussed in Section 4.1. For reasons of space we exclude this specification

from further analysis.

4.3 Stability in Calibrated Model

Stability properties of the basic AIT rule (20) and the AIT rule with expo-

nentially declining weights (28) are now examined further using a calibrated

version of the model.

In the literature suggested calibrations for price adjustment costs in the

NKmodel vary a great deal as they depend on estimates of frequency of price

adjustment and markup and there are different estimates for both. For recent

discussion see Honkapohja and Mitra (2020) who use the alternative values

 = 42, 12821 or 350 for price adjustment cost parameter. For brevity, only
a single standard calibration is adopted for other parameters. For a quarterly

framework we set ∗ = 1005,  = 099,  = 07,  = 21,  =  = 1, and
 = 02. Policy parameters for the AIT rule are set at  = 12,  = 1 and
 = 6 (i.e. five lags).
For the three calibrations of  we compute the (approximate) least upper

bound for the gain parameter 0, so that values   0 lead to instability of

the target steady state in the calibrated model. The results are as follows:

 42 12821 350
0 ( = 1) 000597 000986 002006
0 ( = 9) 000684 001128 002301
0 ( = 7) 000998 001643 003369
0 ( = 5) 001743 002868 003889

Note: the first row gives the results with no discounting

Table 1: Least upper bounds 0 for instability

It is seen that discounting old data in the AIT rule contributes robustness of

stability but a significant degree of discounting is needed.
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These results can be compared to values for the gain parameter used in

other calibrated and empirical macro models with adaptive learning.20 There

is no agreed range for gain parameters but the range could be something like

[0002 004], where smaller values are used in models of infinite horizon (IH)
learning.21

The results in Table 1 can also be compared to least upper bound 0
for convergence with inflation (IT) and price level targeting (PLT). Table 2

makes the comparison.

 42 12821 350
0 ( ) 002935 003679 004172
0 ( ) 000805 000590 000413
0 ( ) 000404 000581 000809

Table 2: Least upper bounds in AIT, IT and PLT

It is seen that inflation targeting is clearly more robust than AIT or PLT.

The latter two are fairly similar in terms of robustness.22

Looking at the results so far it is apparent that instability and lack of

robustness under AIT monetary policy with opacity can be a major concern,

though some mitigation of the problem is achieved by using discounting of

older data when computing the average inflation target.

5 Learning When Policy Structure is Known

The analysis so far has focused on the consequences of opacity about policy,

so that private agents do not know any details of the interest rate rule (20).

Agents forecast using a misspecified time series model that does not nest the

true structure of the economy which, apart from the policy rule, is forward-

looking and does not have any lags of endogenous variables. Above it was

20For the AIT results in Table 2 we assume the interest rate rule is set according to

(20). The AIT results in Table 2 and the  = 1 results in Table 1 are slightly different
because (28) includes the normalizing constant: (1−)(1−) = 1(1++ +−1).
21For empirical papers see e.g. Orphanides and Williams (2005), Branch and Evans

(2006), Milani (2007) and the discussion in Section 4.2 in Eusepi, Giannoni, and Preston

(2018).
22It may be recalled that according to Honkapohja and Mitra (2020) performance of

PLT is much improved if private agents use more information about the policy framework.
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shown that under opacity the economy may encounter instability under pri-

vate agents’ learning. Therefore it is important to consider situations where

agents are more informed about aspects of the monetary policy framework.

5.1 Stability of the Target Steady State

Opacity is now replaced with the assumption that agents’ forecasting model is

based on the correct functional form of the stochastic process of endogenous

variables, so that the agents’  has the same functional form as the

economy.23 Nevertheless, knowledge is imperfect as agents do not know the

values of the structural parameters. More specifically, as concerns policy the

agents know  but not the values of the policy coefficients  and . The

 or forecasting model thus has the  (− 1) form.
For the analysis it is necessary to compute the general form of agents’

linearized infinite-horizon (IH) decision rules. If agents are identical, the

linearized IH Phillips curve obtained in Appendix A.4 is

̂ = ̂ + 
∞P
=1

 ̂+ (34)

where ̂ denotes a linearized variable, and  is a complicated function of

deep structural parameters. In Appendix A.4 it is shown that the linearized

consumption function takes the form

̂ = − ∗
∗

̂ +
∞P
=1


µ
1− 


̂+ −

∗



³
̂

+
∗ − ̂+(

∗)
´¶

 (35)

The linearized expression for the interest rate rule (28) outside the ZLB

region is

̂ = 

1− 

1− 

−1P
=0

̂−∗ + ̂
∗ (36)

where 0    1.24 When needed, the rule (36) is modified to have the ZLB
constraint.

Define ̂ = (̂ ̂ ̂). The temporary equilibrium ̂ is given by (34),

(35), and (36) given expectations ̂
+. Stacking the model into first order

23More precisely, agents’ PLM has the same functional form as the minimal state variable

(MSV) solution of the linearized model.
24Note that 1−

1− =
1P−1

=0

.
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form and using the general formulation developed in Appendix B, the actual

law of motion () for the economy is

̃ = ̃ +
P∞

=1 
̃ ̃

+ + ̃̃−1

and the  is of the form

̃ = ̃0 + ̃̃−1, where ̃ = (̂  ̂−(−2)) 

The mapping  →  can be simplified to

̃ → P∞
=1 

̃̃+1 + ̃

̃0 → ̃ +
P∞

=1 
̃( + ̃+ + ̃)̃0

E-stability analysis and stability conditions are given in Appendix B.

Here our interest is in robustness of stability under learning when agents’

PLM is assumed to match the MSV functional form of temporary equilibrium

as there is more information about the AIT policy framework. To keep things

tractable, assume that agents know the VAR coefficients in the REE law of

motion ̄.25 Agents’ PLM is:

̂ = ̄̂−1 + ̃0 (37)

where

̃0 = 
³
̂−1 − ̄̂−2 − ̃0−1

´
+ ̃0−1

Given the mapping from PLM to ALM, (63)-(64) in the Appendix B, the

actual law of motion for  is

̂ = ̄̂−1 + ̃ + ̃
¡
 − ̄

¢−1µ 

1− 
 − ̄2

¡
 − ̄

¢−1¶
̃0

= ̄̂−1 + ̃ + (̃0)̃0

This implies

̂−1 − ̄̂−2 = ̃ + (̃0)̃0−1

25In this exercise, we numerically verify that the REE is E-stable, i.e., agents can learn

̄. We assume ̄ is known so that we may express the law of motion for agents’ beliefs

as a VAR, as shown in the text, and then appeal to standard linear difference equations

techniques to identify the highest gain parameter (0) above which instability under con-
stant gain learning obtains. Note that 0 is likely lower if agents do not know ̄ and must
learn it over time.
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and so

̃0 = 
³
̃ + (̃0)̃0−1 − ̃0−1

´
+ ̃0−1

=
³
 (̃0)) + (1− )

´
̃0−1 + ̃

Therefore, ̃0 → ̄0 if and only if the eigenvalues of

 (̃0)) + (1− )

are inside the unit circle.

This formulation is now applied to assess robustness of learning. The

calibrated model is the same as in Section 4.3. For the three calibrations of

 the (approximate) least upper bound for the gain parameter 0, such that

values   0 lead to instability of the target steady state in the calibrated

model is computed numerically. The results are as follows:

 42 12821 350
0 ( = 1) 002811 003431 003954
0 ( = 9) 002826 003458 003979
0 ( = 5) 002895 003593 004100

Table 3: Least upper bounds 0 for instability for AIT under structural

information

Comparing Tables 1 and 3 it is evident that in an AIT policy framework

learning with correct functional form is quite a bit more robust than learning

under opacity about policy. The values of 0 are close to the highest values of

the gain parameter that are used in empirical models with adaptive learning

(see Section 4.3).

5.2 Escape from the ZLB Regime with AIT?

One reason for introducing AIT policy has been its potential in providing a

framework that facilitates return from the regime of very low interest rates

to a normal regime with the economy operating near the inflation target

equilibrium.

At the outset it can be noted that AIT under opacity is not a mechanism

for escape from the ZLB. Formally, if the economy is at or very near the low
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steady state   ∗,   ∗ and  = 1, dynamics with learning under the
AIT interest rate rule (20) may not yield convergence back to the target ∗,
∗. If the interest rate is at zero ( = 1), then the dynamics are the same
as those with inflation targeting, so the corresponding earlier result for IT

monetary policy can be applied.26

Will this result change if monetary policy uses AIT with known general

structure, called AIT(gs)? We consider this issue using the nonlinear NK

model with (20) and agents’ PLM taking the form (37) but with general

coefficients

 = ̃−1 + ̃0

As a first example consider the case where the economy is very near the

low steady state such that 0 = (0) = (−1) =    = (− + 1) ≈ ,

0 = 0 ≈ , 0 = 
0 ≈ 127. We assume ̃0 is a zero matrix and ̃00 is

set in accordance with 
0, 


0, and 0. Our assumption about ̃0 may be

a reasonable description of beliefs at the beginning of a transition from a

standard IT policy regime to a well-communicated AIT regime. The basic

calibration is the same as earlier in Section 4.3 with  = 12821 and gain
equal to 0005. Policy parameters are set as  = 12 and  = 1. We select
 = 6, so that the AIT policy computes the average using a five-quarter

window of past inflation data. The economy escapes the liquidity trap in

this case, as shown by the blue curves in Figure 2 A-C.

AIT(gs) is also compared with IT policy frameworks in Figure 2 A-C.

The dynamics under IT are shown in red. The time paths of AIT(gs) are

more oscillatory than paths under IT. Further, the dynamic properties of

the economy under AIT(gs) and AIT opacity are sensitive to the value of

the gain parameter. For example, we do not observe convergence to target

steady state under AIT with opacity for gain values at 001 or higher, even
though we observe convergence to target steady state under IT for gain values

that exceed 006 (see Table 4). AIT(gs) is somewhat more robust than AIT
with opacity but it can lead to divergence for high values of the gain. Speed

of convergence of IT policy vs. AIT(gs) depends on the gain parameter.

AIT(gs) converges faster if the gain value is small, but for higher gain values

IT induces a much faster convergence than AIT(gs) and without generating

26See e.g. Evans, Guse, and Honkapohja (2008) and Benhabib, Evans, and Honkapohja

(2014).
27In fact to facilitate the numerics we set 0 and  slightly above 1
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large swings in inflation and output and recurring ZLB events.28 It is thus

clear that AIT does not necessarily outperform IT when the economy is

initially near the low steady state.

28These results are available on request.
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Figure 2 A-C: Escape of inflation, output and interest rate from liquidity

trap under AIT with gs (blue) and IT (red).

It’s well known that deflationary spirals occur under IT if expected infla-

tion and output are somewhat below their low steady state values (see e.g.

Benhabib, Evans, and Honkapohja (2014)). Will deflationary spirals also

occur under AIT(gs) if expected inflation and output are significantly below

the low steady state? The domain of escape29 from the liquidity trap for

different initial conditions 0 ≈ (0) = (−1) =    = (− + 1), 0 ≈ 0,

and 0 = 
0 ≈ 1, with  = 6 and  = 002 is shown below in Figure 3.30

29Domain of escape from the liquidity trap consists of points near the low steady state

that lead to convergence to target steady state. It is part of domain of attraction of

(∗ ∗).
30See Appendix B.1 for the domain of escape under IT.
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Figure 3: Domain of escape to target steady state

It is seen that there is a domain of escape from the liquidity trap, but it covers

only a small area around the low steady state. In particular, if 0 is below 
and 0 is approximately at level , the economy does not escape from the

liquidity trap.31 By this measure both AIT and IT are less robust than PLT

under similar information settings (see Honkapohja and Mitra (2020) for the

corresponding results under PLT).

Robustness of the result about escape from ZLB with AIT(gs) was also

studied. Five calibrations of the data window ( = 1 4 6 12 20) and two
calibrations of  for each  ( = 12 and  = 12) were considered.
For each calibration of  and  we computed an upper bound for the gain

parameter 0, such that values   0 lead to deflationary spirals under

learning when actual and expected inflation and output are initially near the

unintended steady state. For   0 the economy eventually escapes the

31The figure also includes a line indicating the boundary of the ZLB region.
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ZLB and returns to the intended steady state equilibrium, provided agents

have correctly specified PLM and initialize the estimates of the PLM para-

meters as in the description of Figure 2. The results were not sensitive with

respect to initial conditions for past inflation and initial values of the PLM

parameters.32

It is seen that small values of  and  contribute robustness of the

possibility of escape. In particular, we observe escape from the ZLB under

IT ( = 1) for higher values of the gain parameter than under AIT (  1).
We conclude that the performance of AIT policy in the nonlinear model with

the ZLB is quite sensitive to the speed of learning, just as the success of AIT

near the target steady state hinges on the magnitude of the gain parameter.

Further, AIT does not clearly outperform IT when expectations are near the

low steady state.

 1 (IT) 4 6 12 20
0 ( = 12) 006495 002175 001262 000582 000349
0 ( = 12) 006495 003519 002107 000950 000549

Table 4: Critical lower bounds 0 for instability

6 Conclusion

Recent monetary policy challenges sparked interest in alternative policy frame-

works, including AIT. The Federal Reserve adopted an AIT framework in

2020, but it did not communicate details about the structure of the pol-

icy, including the extent to which policy is history-dependent. This paper

explored some implications of imperfect knowledge in an average inflation

targeting regime with significant history dependence. For reasons of space,

attention was limited to AIT interest rate rules that are symmetric (apart

from the ZLB constraint).

Our results suggest that policymakers should be cautious when imple-

menting AIT. An AIT policy practiced under opacity of its details can fail

to anchor expectations around the target steady state if prices are flexible

or the speed of learning is anything but very slow. Moreover, an AIT pol-

icy practiced under opacity will typically fail to instigate an escape from a

liquidity trap.

32Detailed results are available on request.
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AIT is, however, more robust if agents know that the current policy stance

depends on a specific number of lags of the inflation rate. If agents incorpo-

rate information about the history-dependence of policy into learning, then

the target steady state is fairly robustly stable, and AIT can even succeed in

guiding the economy out of a liquidity trap. Policymakers may also mitigate

the potential for instability under AIT by discounting past inflation data in

their measure of the average inflation target.

There is plenty of room for future research. As a starting point for our

analysis, we assume AIT is either conducted under opacity, or in an en-

vironment in which agents fully incorporate knowledge of the structure of

policy into learning. Future work should examine whether AIT can ensure

a locally stable target steady state, or initiate an escape from the liquidity

trap, when communication from the central bank is imperfectly credible. As

was already mentioned, performance of asymmetric rules, including switch-

ing rules under imperfect knowledge is another area worth exploring. We

also focused on simple policy rules as a natural point of departure, though

imperfect knowledge may have implications for optimal policy that have not

yet been explored.

Appendices

A The Model

The objective for agent  is to maximize expected, discounted isoelastic cum

quadratic utility subject to a standard flow budget constraint (in real terms)

over the infinite horizon. The utility function for each period is standard

except there is disutility from changing prices and no utility of real balances

is displayed because of the cashless limit.

 0
∞P
=0



"
1−

1− 
− 1+

1 + 
− 

2

µ


−1
− 1
¶2#

(38)

  +  +Υ = −1−1 −1 +






The final term in the utility function parameterizes the cost of adjusting

prices in the spirit of Rotemberg (1982). The Rotemberg formulation is used

rather than the Calvo (1983) model of price stickiness because it enables us
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to study global dynamics in the nonlinear system. The household decision

problem is also subject to the usual “no Ponzi game” (NPG) condition.

In (38) the expectations 0() are in general subjective and may not be
rational.

Production function for good  is standard

 = , where 0    1

There is no capital. Output is differentiated and firms operate under mo-

nopolistic competition. Each firm faces a downward-sloping demand curve

 =

µ




¶−1
 (39)

Here  is the profit maximizing price set by firm  consistent with its

production . The parameter  is the elasticity of substitution between

two goods and is assumed to be greater than one.  is aggregate output,

which is exogenous to the firm.

The market clearing condition is

 +  = 

The government consumes amount  of the aggregate good, collects the real

lump-sum tax Υ from each consumer and issues bonds  to cover financing

needs. Fiscal policy is assumed to follow a linear tax rule for lump-sum

taxes Υ = 0 + −1, where −1 − 1    1, so fiscal policy is “passive”
using terminology of Leeper (1991). Government purchases  is taken to be

stochastic, so that  = ̄ + ̃ where the random part ̃ is an observable

exogenous AR process

̃ = ̃−1 +  (40)

with zero mean.33

A.1 Private sector optimization

With inclusion of the utility of real balances to the utility function in each

period, the utility function household-producer 

 =
1−1

1− 1
+



1− 2

µ
−1


¶1−2
− 1+

1 + 
− 

2

µ


−1
− 1
¶2

(41)

33For simplicity, it is assumed  is known (if not it could be estimated during learning).
Only one shock is introduced in order to have a simple exposition.
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and the constraints

  +  +Υ = −1−1 −1 +






 = 
1
 

We compute the derivatives with respect to (− 1)-dated variables


−1
= −1 −1 + (−1−1 )

−2



−1
= −1 −1−1 

and with respect to -dated variables





=



= −−1 





= −1 (1− )

µ




¶−
1



+



1+

1





The Euler equations are





+ 

+1



= 0




+ 

+1


= 0





+ 

+1



= 0

The second equation is just the consumption Euler equation, while combining

the first and second equations yields the money demand function. The third

equation is the condition for optimal price setting .

Applying the above conditions, in period  each household  is assumed to

maximize its anticipated utility (41) under given expectations. As in Evans,

Guse, and Honkapohja (2008), the first-order conditions for an optimum yield

0 = − +



( − 1) 1


(42)

+

µ
1− 1



¶

1



(1−1)



− −





1


(+1 − 1)+1
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− = 

¡
−1+1

−
+1

¢
 (43)

where +1 = +1 and () denotes the (not necessarily rational)
expectations of agents  formed in period .

Equation (42) is one form of the nonlinear New Keynesian Phillips curve

describing the optimal price-setting by firms. The term ( − 1) arises
from the quadratic form of the adjustment costs, and this expression is in-

creasing in  over the allowable range  ≥ 12 Equation (43) is the
standard Euler equation giving the intertemporal first-order condition for

the consumption path.

We now write the decision rules for consumption and inflation so that

they depend on forecasts of key variables over the infinite horizon (IH).

A.2 The Infinite-horizon Phillips Curve

Starting with (42), let

 = ( − 1) (44)

The appropriate root for given  is  ≥ 1
2
and so  ≥ −1

4
must be imposed

to have a meaningful model. Using the production function  = 
1
 one

can rewrite (42) as

 =




(1+)
 −  − 1



1
 

(−1)
 − + +1 (45)

and using the demand curve  = ()
− gives

 =



()

−(1+)(1+) −  − 1


()
−(−1)− ++1

Defining

 ≡ 


()

−(1+) (1+)
 −  − 1


()

−(−1)− (46)

and iterating the Euler equation34 yields

 =  +
∞P
=1

+ (47)

34It is assumed that expectations satisfy the law of iterated expectations.

31



provided that the transversality condition

+ → 0 as  →∞ (48)

holds. It can be shown that (48) is an implication of the necessary transver-

sality condition for optimal price setting. For further details see Benhabib,

Evans, and Honkapohja (2014).

The variable + is a mixture of aggregate variables and the agent’s own

future decisions. Thus it provides only a “conditional decision rule”.35 This

equation for  can be the basis for decision-making as follows. So far only

the agent’s price-setting Euler equation and the above limiting condition (48)

have been used. Some further assumptions are now made.

Agents are assumed to have point expectations, so that their decisions

depend only on the mean of their subjective forecasts. The model outlined

above stipulates that all agents  have the same utility and production func-

tions. Initial money and debt holdings, and prices are assumed to be identi-

cal.

The assumption of representative agents includes private agents’ forecast-

ing, so that the agents have homogenous forecasts of the relevant variables.

Thus all agents make the same decisions at each point in time. It is also as-

sumed that from the past agents have learned the market clearing relation in

temporary equilibrium, i.e.  = −  in per capita terms and thus agents

impose in their forecasts that + = +− +, where 

+ = ̄+ ̃. In

the case of constant fiscal policy this becomes + = + − ̄.

The assumption of representative agents implies that in temporary equi-

librium for all periods including the current one  = 0 =  for all

agents  and 0, see p. 224 in Benhabib, Evans, and Honkapohja (2014). In
that paper it was additionally assumed that agents’ expectations also satisfy

 
+ =  

+ for future periods  = 1 2  This assumption is not necessary
and is adopted here purely as a simplification.36

35Conditional demand and supply functions are well known concepts in microeconomic

theory.
36More extensive discussion of the generalization is available in Evans, Honkapohja, and

Mitra (2020).
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A.3 The Consumption Function

To derive the consumption function from (43), use the flow budget constraint

and the NPG condition to obtain an intertemporal budget constraint.37

Cashless limit is now assumed. First, define the asset wealth

 = 

as the holdings of real bonds and write the flow budget constraint as

 +  =  −Υ + −1 (49)

where  = −1. Note that () =  is assumed, i.e. the represen-

tative agent assumption is invoked. Iterating (49) forward and imposing

lim
→∞

(
+)

−1+ = 0 (50)

where


+ =



+1

Y
=2


+−1
+

with + = 
+−1


+, one obtains the life-time budget constraint of the

household

0 = −1 + Φ +
∞P
=1

(
+)

−1Φ
+ (51)

= −1 +  −  +
∞P
=1

(
+)

−1(+ − +) (52)

where

Φ
+ = + −Υ

+ − + (53)

+ = Φ
+ + + = + −Υ

+

Here all expectations are formed in period , which is indicated in the notation

for 
+ but is omitted from the other expectational variables.

Invoking the relations

+ = (


+)
1 (54)

37Recall that the model is a cashless limit of the corresponding models in the cited

earlier literature.
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which are an implication of the consumption Euler equation (43), yields

(1−)−1 = −1+−Υ+
∞P
=1

(
+)

−1+−
∞P
=1

(
+)

−1(
+)

1

(55)

As we have + = + −Υ
+, we have

 =

Ã
1 +

∞P
=1

(
+)

(1−)
!−1Ã

−1 +
∞P
=0

(
+)

−1+

!


So far it is not assumed that households act in a Ricardian way, i.e.

they have not imposed the intertemporal budget constraint (IBC) of the

government. To simplify the analysis, it is assumed that consumers are

Ricardian, which allows to modify the consumption function as in Evans and

Honkapohja (2010). See Evans, Honkapohja, and Mitra (2012) for discussion

of the assumptions under which Ricardian Equivalence holds along a path of

temporary equilibria with learning if agents have an infinite decision horizon.

The government flow constraint is

 +Υ = ̄ + ̃ + −1 or  = ∆ + −1 where ∆ = ̄ + ̃ −Υ

By forward substitution, and assuming

lim
→∞

+ + = 0 (56)

one gets

0 = −1 +∆ +
∞P
=1

−1
+∆+ (57)

Note that ∆+ is the primary government deficit in + , measured as gov-

ernment purchases less lump-sum taxes. Under the Ricardian assumption,

agents at each time  expect this constraint to be satisfied, i.e.

0 = −1 +∆ +
∞P
=1

(
+)

−1∆
+ where

∆
+ = ̄ +  ̃ −Υ

+ for  = 1 2 3    

A Ricardian consumer assumes that (56) holds. His flow budget con-

straint (49) can then be written as:

 = −1 + , where  =  −Υ − 
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The relevant transversality condition is now (56). Iterating forward and using

(54) together with (56) yields the consumption function (5) in the main text.

The aggregate demand function takes the form

 =  +

Ã
∞P
=1

(
+)

(1−)
!−1 ∞P

=1

(
+)

−1(+ − (̄ +  ̃)) (58)

where the discount factor is given by (16).

A.4 Linearized IH Behavioral Rules

Linearizing (13) and (47) around the intended steady state and rearranging

gives the following linearized expression for the Phillips curve:

̂ = ̂ + 
∞P
=1

 ̂+

where ̂ denotes a linearized variable, and  is a complicated function of deep

structural parameters.

The consumption function (15) is linearized as follows. For the sake of

brevity, assume ̃ = 0. The discount factor 

+ has the linearization

̂
+ = 1−

P
=1

³
̂
+−1

∗ − ̂+(
∗)
´


Linearizing the left-hand-side of (15) gives



1− 
̂ + ∗

1− 



P
≥1


¡
−

¢(1−)−1
̂

+

=


1− 
̂ + ∗

1− 



P
≥1

2̂
+

=


1− 
̂ + ∗

1− 



P
≥1

+1
P

=1

³
̂
+−1

∗ − ̂+(
∗)
´


Linearizing the right-hand-side of (15) givesP
≥1

 ̂+ − ∗
P
≥1

2̂
+

=
P
≥1

 ̂+ − ∗
P
≥1

+1
P

=1

³
̂
+−1

∗ − ̂+(
∗)
´

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Equating the two sides of (15) and rearranging gives

̂ = − ∗
∗

̂ +
∞P
=1


µ
1− 


̂+ −

∗



³
̂

+
∗ − ̂+(

∗)
´¶

 (59)

A.5 Formulation of Learning

The basic model apart from the AIT rule is purely forward-looking while the

observable exogenous shock ̃ is an AR(1) process. Assuming opacity about

AIT rule, then the appropriate PLM is a linear projection of (+1 +1 +1)
onto an intercept and the exogenous shock and agents estimate the regres-

sions

 =  + ̃−1 + 

where  = , ,  by using a version of least squares and data for periods

 = 1   − 1. The latter is a common timing assumption in the learning
literature; at the end of period  − 1 the parameters are estimated using
data through to period −1. This gives estimates −1, −1, −1, −1,
−1, −1 and using these estimates and data at time  the forecasts are
given by

+ = −1 + −1 ̃

for future periods + . These forecasts are then substituted into the system

to determine a temporary equilibrium of the economy in periods + . With

the new data point the estimates are updated and the process continues.

It turns out that the technical analysis of convergence and computation

of domains of attraction can be carried out using a simplification. Apart

from the unknown policy rule the model is purely forward-looking while ̃
is an AR(1) process. Under opacity the PLM is a linear projection of the

state variables (+1 +1 +1) onto an intercept and the exogenous shock
and in this case convergence of learning to a fixed point is fully governed by

the dynamics of intercepts.

Thus, stability of a steady state can be validly assessed using the sim-

plifying assumption that ̃ is identically zero. The agents are thought to

estimate the long run mean values of state variables, called “steady state

learning”. The latter is used here as a technical tool. In simulations of the

stochastic model agents are assumed to do least squares learning.
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A.6 Model with Flexible Prices

In the special case of the NK model with flexible prices there is no Phillips

curve and the first order condition (42) is replaced by the static condition





= −1 (1− )

µ




¶−
1



+



1+

1



= 0

Under symmetry it yields

−1 
1− 


+ 1+− = 0 (60)

Steady-state learning with point expectations is formalized as before in

Section 3.2. The temporary equilibrium equations with steady state learning

are as follows.

1. With Ricardian consumers the market clearing equation is  = + ,

yields

 = ̄ + (1− )

∙
 − ̄ + ( − ̄)

µ



¶µ




 − 

¶¸
(61)

as the aggregate demand relation.

2. A static labor-consumption optimality condition (60) can be combined

with market clearing to obtain

 =

µ

 − 1


( − )
−1
¶(1+−)

 (62)

Looking at (62) it is evident that output in temporary equilibrium is

exogenous.38

3. Interest rate rule (17) discussed below.

If one substitutes the interest rate rule (17) and also an exogenous value

of output into (61), the model effectively says that the nominal interest rate

 (and  via the policy rule) is the variable that establishes equality of

aggregate demand and supply in temporary equilibrium. Using the interest

rate rule (17) this yields the temporary equilibrium value for inflation .

The system has three expectational variables: output  , inflation 

 , and

interest rate 
 . The evolution of expectations is in accordance with steady

state learning. Proposition 2 gives the instability result.

38Exogeneity of output holds in the classical monetary model, see e.g. Gali (2008),

chapter 1.
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B E-Stability for LinearMultivariate IHMod-

els

Consider a linearized multivariate model in which agents are forward-looking

with infinite horizon and there are  − 1 lags of endogenous variables. Its
general form is

̃ = ( −(−1))

 =  +
P∞

=1 

+ +

P

=1−

Stacking the system into first order form gives

̃ = ̃ +
P∞

=1 ̃ ̃

+ + ̃̃−1

which written out is⎛⎜⎜⎜⎝


−1
...

−(−1)

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝


0
...

0

⎞⎟⎟⎟⎠+P∞
=1

⎛⎜⎜⎜⎝
 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝


+

0
...

0

⎞⎟⎟⎟⎠

+

⎛⎜⎜⎜⎝
1 2 · · · 

 0 · · · 0
...

. . . · · · ...

0 0  0

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

−1
−2
...

−

⎞⎟⎟⎟⎠ 

and so

̃ =

⎛⎜⎜⎜⎝


−1
...

−(−1)

⎞⎟⎟⎟⎠ , ̃ =

⎛⎜⎜⎜⎝
 0 · · · 0
0 0 · · · 0
...

...
... 0

0 0 · · · 0

⎞⎟⎟⎟⎠

̃
+ =

⎛⎜⎜⎜⎝


+

0
...

0

⎞⎟⎟⎟⎠ , ̃ =

⎛⎜⎜⎜⎝
1 2 · · · 

 0 · · · 0
...

. . . · · · ...

0 0  0

⎞⎟⎟⎟⎠ 

The PLM is

 = 0 +
P

=1−
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so

̃ = ̃0 + ̃̃−1

where

̃ =

⎛⎜⎜⎜⎝
1 2 · · · 

 0 · · · 0
...

. . . · · · ...

0 0  0

⎞⎟⎟⎟⎠ and ̃0 =

⎛⎜⎜⎜⎝
0
0
...

0

⎞⎟⎟⎟⎠ 

The ALM is

̃ = ̃ +
P∞

=1 ̃[( + ̃+ + ̃)̃0 + ̃+1
−1̃−1] + ̃̃−1

= ̃ +
P∞

=1 ̃( + ̃+ + ̃)̃0 +
P∞

=1 ̃̃
+1̃−1 + ̃̃−1

and the mapping  →  is

̃ → P∞
=1 ̃̃

+1 + ̃

̃0 → ̃ +
P∞

=1 ̃( + ̃+ + ̃)̃0

In models with infinite decision horizons it is often the case that

̃ = ̃

where  is the subjective discount factor. In this case the mapping  →
 simplifies to

̃ → P∞
=1 

̃̃+1 + ̃

̃0 → ̃ +
P∞

=1 
̃( + ̃+ + ̃)̃0

or

̃ → ̃
³
 − ̃

´−1
̃2 + ̃ (63)

̃0 → ̃ + ̃
³
 − ̃

´−1µ 

1− 
 − ̃2

³
 − ̃

´−1¶
̃0 (64)

In this case it is straight-forward to obtain the E-stability conditions.

E-stability Conditions: Let (̃ ̃0) = (̄ ̄0) denote a rational ex-
pectations equilibrium. The REE, (̄ ̄0), is E-stable if the real parts of the
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eigenvalues of

 (̃) =
³¡
 − ̄

¢−1
̄2

´
⊗
³
̃
¡
 − ̄

¢−1

´
+

 ⊗
³
̃
¡
 − ̄

¢−1
̄
´
+ ̄ ⊗

³
̃
¡
 − ̄

¢−1

´

 (̃0) = ̃
³
 − ̃

´−1µ 

1− 
 − ̃2

³
 − ̃

´−1¶
are less than one.

B.1 Domain of Escape for Inflation Targeting

The figure shows the domain of escape under IT. The basic parameter settings

are as given earlier.

Figure A.1: Domain of escape for IT.
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It should be noted that the result about escape from low steady state

  differs from that in Figure 1 of Honkapohja and Mitra (2020). There

are some differences in parameter values and most importantly in initial

conditions for 0 and 
0. In computing conditional domain of attraction it

is natural to assume that 0 and 
0 are approximately equal to the steady

state value ∗, whereas computation of domain of escape Figure A.1 assumes
that 0 and 

0 are approximately 1.

C Proofs

C.1 Proof of Proposition 1

In the linearization (26)-(27) we get

 =

⎛⎜⎝ 1 0 (∗−)
∗− 1 0

−
∗ −


∗ 1

⎞⎟⎠

 =

⎛⎜⎝ −1 −(−∗)
∗(−1)

2(−∗)
∗(−1)



−1 0 0

0 0 0

⎞⎟⎠
− =

⎛⎝ 0 0 0
0 0 0
0 −

∗ 0

⎞⎠ ,  = 1  − 1
where

 =



µ
(−1)∗(∗−̄)−−1


− (−1)(∗−̄)−


+ (+1)∗ +1 −1

2

¶
(2∗ − 1) ≥ 0
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if   (∗ − ̄)∗. It follows that

 = −()
−1 =⎛⎜⎜⎝

∗(2(∗−̄)+(−1)∗2)


∗∗(̄−∗)


2∗∗(∗−̄)


(−∗)(2(∗−̄)+∗∗)


∗∗(̄−∗)


2∗∗(∗−̄)


∗((−1)∗−∗)


(̄−∗)(∗+∗)


2(∗−̄)(∗+∗)


⎞⎟⎟⎠ 

 = −()
−1 =⎛⎜⎜⎝

0


∗(̄−∗)
∗(∗−̄)+∗(∗−̄)+(∗)2∗ 0

0


∗(̄−∗)
∗(∗−̄)+∗(∗−̄)+(∗)2∗ 0

0
∗∗

∗(∗−̄)+∗(∗−̄)+(∗)2∗ 0

⎞⎟⎟⎠ ,  = 1  − 1
where

 = ( − 1) ¡∗(
∗ − ̄) + 

∗(∗ − ̄) + (∗)2∗
¢
 0

Introduce the notation  = (  ) etc. Modifying the system (25),

(26)

 = −1, where (65)

 = ( 

  −1 −2 · · · −(−2) )

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(1− )3 3 0 · · · 0 0
(1− )  +1 2 · · · −2 −1

0 3 0 · · · 0 0
0 0 3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠


For stability, the roots of  () = [ − 3] must be inside the unit
circle. One can show that

 () = 2−2(1 +  − )̃ ()

Thus, the roots of  () are inside the unit circle if and only if the roots of
̃ () are inside the unit circle. In the limit  → 0, we have

̃ () = (1− )2(−1 + 
−2P
=0

)
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where

 =


∗(∗ − ̄)

∗(
∗ − ̄) + 

∗(∗ − ̄) + (∗)2∗
∈ (0 1)

if   0. Using the stability criterion in Jury (1961), the roots of (−1 +

P−2

=0 
) are inside the unit circle if and only if39

1− 2

1 + ( − 1)  0  = 1     

which is satisfied for all . Therefore, the roots of  () are inside the unit
circle if   0 evaluated at  = 0 and  = 1. To evaluate the derivative,
we consider the Taylor series expansion of ̃ () up to second order at point
(0 0). Let ( ) = ( )− (0 0). Then

̃ ( ) = ̃ (0 0) + ̃(0 0)+ ̃(0 0) +

̃(0 0)
2

2
+ ̃(0 0) + ̃(0 0)

2

2
+

where subscripts denote partial derivatives and  is a remainder.

Now

̃(0 0) = 0

̃(0 0) = 0

so we get the approximation

̃ ( ) = ̃ (0 0) + ̃(0 0)
2

2
+ ̃(0 0) + ̃(0 0)

2

2


Now impose

̃ ( )− ̃ (0 0) = 0

to compute the derivative of the implicit function. So we have

̃(0 0) + ̃(0 0)
2

2
+ ̃(0 0)

2

2
= 0

or



=
−1
2

Ã
̃(0 0)

̃(0 0)
+

̃(0 0)

̃(0 0)

µ




¶2!
39Proof in Mathematica available on request.
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Evaluating the partial derivatives at (0 0) = (1 0) we have

̃(1 0) = (−1) 2(∗ − ̄)((1− )∗ + ∗( − ∗))

( − 1)2 ¡∗(
∗ − ̄) + 

∗(∗ − ̄) + (∗)2∗
¢

̃(1 0) = (−1)2
¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

̃(1 0) = (−1)
∗(∗ − ̄)(∗ − 2) + (2− )∗(̄ − ∗)− (1− )(∗)2∗

( − 1) ¡∗(
∗ − ̄) + 

∗(∗ − ̄) + (∗)2∗
¢

One can show that (1 0)  0, (1 0)  0, (1 0)  0 if  is even and
(1 0)  0, (1 0)  0, (1 0)  0 if  is odd. Therefore,   0
and we have stability for small  and   0.

C.2 Proof of Proposition 2

In the case  = 0 the dynamics of output expectations do not depend on the
rest of the system and can be shown to be locally convergent. Introducing

the notation ̃ = ( )
  the linearization (26)-(27) becomes

̃ ≡ −(̃)
−1̃ =

Ã
∗

(1−) −
∗

(1−)
1

(1−) − 

(1−)

!
and

̃ ≡ −(̃)
−1̃ =

µ −1 0
0 0

¶
,  = 1  − 1

The system becomes

̃ = ̃̃−1, where (66)

̃ = ( ̃

 ̃ ̃−1 ̃−2 · · · ̃−(−2) )

̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(1− )2 2 0 · · · 0 0

(1− )̃ ̃ + ̃1 ̃2 · · · ̃−2 ̃−1
0 2 0 · · · 0 0
0 0 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠


Note that in ̃ we have ̃ = ̃ for all  and ̃ is zero except for element

̃11. In the determinant eliminate the second column from each block ≥ 3
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and also corresponding row. We get

det[̃− 2] = (−)−2 det[̃+2], (67)

where

̃+2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− )2 − 2 2 0 0 · · · 0 0

(1− )̃ ̃ + ̃1 − 2 1 1 · · · 1 1
0 (1 0) − 0 · · · 0 0
0 0 1 − · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0
. . . − 0

0 0 0 0 · · · 1 −

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(+2)(+2)



Consider first the case  = 1, so there are no lags. We can focus on the
learning dynamics of  and , i.e. the matrixµ

(1− ) 

(1− )̃ ̃

¶
, where ̃ =

Ã −∗
(−1)

∗
(−1)

−1
(−1)



−1

!


Assume   −1∗ = ̄. When  = 1 the system is four dimensional

and two of the eigenvalues are those of ̃ . Clearly (̃ − )  0 and
det(̃ − )  0. The other two eigenvalues are a repeated root equal to
1−   1 for all small . So E-stability holds in this case.
The characteristic polynomial of +2 has the following structure:

40

det[+2] = (− 1 + ) (  )

where  =  and

 (  ) =  + −1 + −2 + +  + , where (68)

 =


1− 
1 with 1 = (1− ∗



),

 =


1− 
and  = − 1.

Concerning the roots of the polynomial det[+2] = 0, there is one root equal
to 0 and one equal to 1−  which contribute to stability. The remaining 

roots satisfy the equation

 (  ) = 0

40The Mathematica routine is available on request.
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With  small local dynamics near the target steady state can be examined

by looking at what happens to the roots of (68) as  → 0. In the limit the
polynomial equation becomes

 = 1 (69)

so the roots of the limit polynomial are given by the  roots of unity. If  is

odd, 1 is the only real root of unity while if  is even, then both 1 and −1
are real roots. There are also complex roots. All roots are given by the list

cos(2) +  ∗ sin(2)  = 0 1  − 1 (70)

Note that  = 0 corresponds to real root 1 and in case  is even, the root
−1 obtains for  = 2.  (  ) is now treated as a function of complex
variables ( ), where in fact  is a small positive real. If  is real, then
resorting to complex values is not needed.

Consider first the simpler cases of a real root 1 or −1 (if  is even).



= (1− )−1(1−1 + −2 + + + 1)

where 0  1  1. If  is real




= −1 + (1− )−1[(− 1)1−2 + (− 2)−3 + + 2+ ]

At  = 0 and  = 1 we have




= (1− )−1(1 + (− 1))  0




=   0

Then taking the differential of  (  ) = 0 and requiring




 +




 = 0 =⇒ 


 0

So for small   0 the real root corresponding to limit 1 is inside the unit
circle. At real root  = −1 (now  is necessarily even) and  → 0, so


= (1− )−1(1− 1)  0, and



= −  0 and so 


 0, i.e. for small

  0 the real root approximate to −1 is inside the unit circle.
Consider now the case of complex roots and set  =  +  and so

 (  ) =  + −1 + −2 + +  +  (71)
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and




= −1 + (− 1)−2 + (− 2)−3 + + 2 + 




=

£
−1 + (− 1)−2 + (− 2)−3 + + 2 + 

¤
.

Thus

 0 =
µ
1

2

¶µ



− 





¶
= −1+(−1)−2+(−2)−3+ +2+

while the Cauchy-Riemann equation holds




+ 




= 0

as  is holomorphic.41 Also compute




= (1− )−1(1−1 + −2 + +  + 1)

Introduce the notation  0 = 2(+) and 

= (+ ). The differential

is

 =

µ
1

2

¶
 0 +




 = (+ )(+ ) + (+ )

Requiring  = 0 is equivalent to (+ )(+ )+ (+ ) = 0 which
holds iff

−  + = 0

+  +  = 0

In matrix form µ
 −
 

¶µ




¶
+

µ




¶
 = 0 so (72)

µ




¶
+ (2 + 2)−1

µ
 

− 

¶µ




¶
 = 0

41See Rudin (1970), Chapters 10 and 11 for the complex analysis used here.
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We get




= −(2 + 2)−1(+ )




= −(2 + 2)−1(−+ )

A complex root  = +  is inside the unit circle when 2 = 2+2  1.
So if  is varied from 0 to a small positive number correspondingly the
complex root moves root of unity to inside unit circle if

2


= 




+ 




 0

Consider now the ’th root in (70) for a general . Then  = cos(2),
 = sin(2),  =  cos[2(− 1)] and  =  sin[2(− 1)] in the
above formulae. Also −(2 + 2)−1 = −−2 and

 =
¡
1 cos[2(− 1)] +P−1

=2 cos[2(− )] + 1
¢
(1− )

 =
¡
1 sin[2(− 1)] +P−1

=2 sin[2(− )]
¢
(1− )

In the case  =  = 3

 = (+ )3 +


1− 
(1(+ )2 + +  + 1)− 1

At  = 0  0 = 3(2−2+2) and 

= (1−)−1(1(2−2+2)+++

1). For (72) we get  = 3(2+2),  = 6,  = (1−)−1(1(2−2)++1)
and  = (1− )−1(21 + ). Using polar coordinates at complex roots of
unity we have for  = 1 and 2 that  = cos(23),  = sin(23) which
yields

2


= −1(1− 1)

3(1− )
 0 when  = 1 and 2

implying that these roots contribute to stability. Using above arguments for

real roots, stability also obtains at the real root that is approximate to 1.
Next consider the case  =  = 4. There are two real roots 1 and −1

and also two complex roots  and −. It is easy to see that the real roots
contribute to stability. At point  =  +  we have  0 = 4( + )3 and
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

= (1 − )−1(1( + )3 + ( + )2 +  +  + 1)So when  = 0 at the

complex roots

 0 = −4 and 


= (1− )−1(1− 1) at root  =  and

 0 = 4 and



= (1− )−1(1 − 1) at root  = −

It follows that for  =  

= (1−1)

4(1−) ≡ 0  0, at  = − 

= 0  0 and




= 0 for both roots. At root  =  we have mod() = 1, If  becomes

slightly positive, then the root changes to ̃ = 0 +  with mod(̃) =p
1 + (0)2  1 implying instability. Analogous argument holds for  =
−.
Now consider the case  =  = 5. At point  =  +  we have  0 =

5(+ )4 and 

= (1−)−1(1(+ )4+(+ )3+(+ )2++ +1)

So when  = 0 at the root  = cos(25) +  ∗  sin(25), one gets

2


=
(
√
5− 1)(1− 1)

10(1− )
 0

which implies that the root contributes to instability.

Now consider the case  =  = 6. At point  = + we have  0 = 6(+
)5 and 


= (1−)−1(1(+)5+(+)4+(+)3+(+)2+++1)

When  = 0 at the root  = cos(26) +  ∗ sin(26), one gets
2


=
(1− 1)

6(1− )
 0

which implies that the root contributes to instability.

Following our approach, one can show instability for higher values of

  6.
Proof of the Remark in Section 2: Lag (3) and solve for ̂−1 which

gives

̂−1 =−1̂−1 +−1 P
=2

̂−, where  =
∗


. (73)
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Assume   1. Then combine (4) and (73) into (3)

̂ = 
¡
̂−1 + (̂−1 − ̂−1)

¢− −1P
=1

̂−

= (1− )

µ
−1̂−1 +−1 P

=2

̂−

¶
+̂−1 −

−1P
=1

̂−

= ( − 1)̂−1 − 
−1P
=2

̂− + (1− )̂−

The characteristic polynomial is

 (  ) =  + (1−)−1 + −2 + +  + ( − 1)
where  = . In the limit  → 0 the polynomial becomes

 =  − 1
so there are  − 1 roots of unity. Now at  = 0 we get 


= −1 and



= (1−)−1 + −2 + +  + 1.
Following the proof of Proposition 2 (i), we can show that  =

−


 0 evaluated at  = 1, so the real root of 1 contributes to stability.
Similarly,  = 


 0 evaluated at  = −1, so the real root of −1

contributes to stability (if  is even). A complex root  = +  is inside the

unit circle when 2 = 2 + 2  1
Consider now the case  =  = 3. There are two complex roots, and

following the approach in the proof of Proposition 2(i), we can show

2


= −

3
 0

evaluated at either complex root, implying that these roots contribute to

stability. From above, stability obtains at the real root that is approximate

to 1.
Consider now the case  =  = 4. There are two complex roots,  = 

and  = −, and following the approach in the proof of Proposition 2(i), we
can show




=



4
≡ 0  0 (74)




= 0 (75)
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evaluated at  =  or  = −. At root  =  we have mod() = 1, If
 becomes slightly positive, then the root changes to ̃ = 0 +  with

mod(̃) =
p
1 + (0)2  1 implying instability. Analogous argument holds

for  = −.
We could consider also cases  = 5 6 or higher. Figure A.2 gives a very

long simulation for 50000 periods in the example of Figure 1. Divergence is
apparent.

Figure A.2: Divergence in the Fisherian model for  = 5.

C.3 Proof of Proposition 3

The dynamic model is still given by the linearized system (25) and (26).

Again in the limit  → 0 the first equation is independent from the rest

of the system and output expectations  are convergent. Separating the

equation for  , the state variables are ̃ = ( )
 and the linearized
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system is of the form (66) but the coefficient matrices ̃ and ̃ change to

̃ = −(̃)
−1̃ =

⎛⎝ ∗
P−1

=0



(1−) −
∗

P−1
=0




(1−)
−1

(−1)


−1

⎞⎠ 

̃ = −(̃)
−1̃ =

µ − 0
0 0

¶
,  = 1  − 1

and the system is now

̃ = ̃2̃−1 (76)

where ̃ is defined in the proof of Proposition 2, but ̃2 incorporates the

new forms of ̃ and ̃ in ̃. Consider the characteristic polynomial of ̃2

of (76)

det[̃2 − 2] = 0 (77)

Given that the second columns of ̃ are zero vectors, the determinant in

(77) has  − 2 roots equal to zero. Then analyzing the remaining ( + 2)
dimensional determinant, again it turns out that there is one more zero root

and one root equal to 1−. Factoring out these, we are left with a polynomial
of degree . Introducing more familiar notation  = , the polynomial is

2(  ) = +()−1+()[−2+−2]+(()−1−) (78)
where  is the weight parameter in (28),

() =


1− 
+ − 1 () = ()− 

1− 
1 with 1 =

∗
¡P−1

=0 

¢



and where ∗   and  ≥ 2 are assumed. We again consider how any
root varies as  varies from 0 to small values   0 and require that in this
variation the root is continuously a root of the characteristic polynomial. If

 → 0we have  →  − 1 and  →  − 1, so the characteristic equation
becomes

(1− )(−1 + −2 + 2−3 + + −2+ −1) (79)

There is one root of unity. For the other roots one can apply a generaliza-

tion of the classic Enerstrom-Kakeya theorem in Gardner and N.K. (2014),

Theorem 36, stating that the other roots of the polynomial in (79) satisfy
||    1.
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Then consider the root of 1. Assume now a small perturbation  

0. By continuity of eigenvalues the  − 1 roots that are approximate to
the roots of the latter polynomial in (79) remain inside the unit circle. To

determine whether the unit root contributes to stability we compute the

partial derivatives

2


= −1 + (− 1)()−2 + ()[(− 2)−3+ −2]

2


= +0()−1 + 0()[−2 + + −2] + 0()−1

At  = 0 and  = 1 we have

2


=

1− 

1− 
 0

2


=

1

1− 

Ã
1− ∗

P−1
=0 





+ 
1− −1

1− 

!
 0

since 0(0) = (1 − )−1 and 0(0) = (1 − )−1(1 − 1). Then taking the
differential of (78) and requiring

2


 +

2


 = 0 =⇒ 


 0

So for small   0 the real root corresponding to limit 1 is inside the unit
circle.

Next consider part (ii) of the proposition. In the linearization we get

 =

⎛⎜⎜⎝
1 0 (∗−)

∗− 1 0

−
∗ −



∗
P−1

=0

 1

⎞⎟⎟⎠

 =

⎛⎜⎝ −1 −(−∗)
∗(−1)

2(−∗)
∗(−1)



−1 0 0

0 0 0

⎞⎟⎠

− =

⎛⎜⎜⎝
0 0 0
0 0 0

0 − 

∗
P−1

=0

 0

⎞⎟⎟⎠ ,  = 1  − 1
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where

 =



µ
(−1)∗(∗−̄)−−1


− (−1)(∗−̄)−


+ (+1)∗ +1 −1

2

¶
(2∗ − 1) ≥ 0

It follows that

 = −()
−1 =⎛⎜⎜⎜⎜⎝

∗

2(

∗−̄)
P−1

=0


+(−1)(∗)2




∗∗(̄−∗)


2∗∗(∗−̄)


(−∗)(2(∗−̄)+∗∗)


∗∗(̄−∗)


2∗∗(∗−̄)


∗((−1)∗−∗
P−1

=0


)



(̄−∗)(∗+∗)


2(∗−̄)(∗+∗)


⎞⎟⎟⎟⎟⎠ 

 = −()
−1 =⎛⎜⎜⎜⎜⎜⎜⎜⎝

0


∗(̄−∗)(−1)P−1
=0





0

0


∗(̄−∗)(−1)P−1
=0





0

0
∗∗(−1)P−1

=0




0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,  = 1  − 1

where

 = ( − 1)
³
∗((

∗ − ̄) + ∗∗) + 
∗(∗ − ̄)

³P−1
=0 

´´
 0

The system is now like (65)

 = 2−1 (80)

where  is as before in Proposition 1, but 2 incorporates the new forms

of  and . Introduce the notation  = (  ) etc. Modifying the
system yields

 = ( 

  −1 −2 · · · −(−2) )

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(1− )3 3 0 · · · 0 0
(1− )  +1 2 · · · −2 −1

0 3 0 · · · 0 0
0 0 3 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

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For stability, the roots of  () = [2 − 3] must be inside the unit
circle. One can show that

 () = 2−2(1 +  − )̃ ()

Thus, the roots of  () are inside the unit circle if and only if the roots of
̃ () are inside the unit circle. In the limit  → 0, we have

̃ () = (1− )2(−1 + 
−2P
=0

−2−)

where

 =


∗(∗ − ̄)


∗(∗ − ̄) +

¡
∗(

∗ − ̄) + (∗)2∗
¢ ³P−1

=0 
´ ∈ (0 1)

The polynomial has two unit roots. For the other roots one can apply a

generalization of the classic Enerstrom-Kakeya theorem in Gardner and N.K.

(2014), Theorem 36, stating that the roots of the second polynomial in ̃ ()
satisfy ||    1.
Therefore, the roots of  () are inside the unit circle if   0

evaluated at  = 0 and  = 1. To evaluate the derivative, we consider the
Taylor series expansion of ̃ () up to second order at point (0 0). Let
( ) = ( )− (0 0). Then

̃ ( ) = ̃ (0 0) + ̃(0 0)+ ̃(0 0) +

̃(0 0)
2

2
+ ̃(0 0) + ̃(0 0)

2

2
+

where subscripts denote partial derivatives and  is a remainder.

Now

̃(0 0) = 0

̃(0 0) = 0

so we get the approximation

̃ ( ) = ̃ (0 0) + ̃(0 0)
2

2
+ ̃(0 0) + ̃(0 0)

2

2

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Now impose

̃ ( )− ̃ (0 0) = 0

to compute the derivative of the implicit function. So we have

̃(0 0) + ̃(0 0)
2

2
+ ̃(0 0)

2

2
= 0

or



=
−1
2

Ã
̃(0 0)

̃(0 0)
+

̃(0 0)

̃(0 0)

µ




¶2!
Evaluating the partial derivatives at (0 0) = (1 0) we have

̃(1 0) = (−1) 2(∗ − ̄)((1− )∗ + ∗( − ∗))

( − 1)2
³
∗(

∗ − ̄) + 
∗(∗ − ̄)

³P−1
=0 



´
+ (∗)2∗

´
̃(1 0) = (−1) 2

¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
∗(

∗ − ̄) + 
∗(∗ − ̄)

³P−1
=0 



´
+ (∗)2∗

̃(1 0) = (−1) 
∗(∗ − ̄)(∗ − 2) + (2− )∗(̄ − ∗)− (1− )(∗)2∗

( − 1)
³
∗(

∗ − ̄) + 
∗(∗ − ̄)

³P−1
=0 



´
+ (∗)2∗

´
One can show that ̃(1 0)  0, ̃(1 0)  0, ̃(1 0)  0 if  is even and
̃(1 0)  0, ̃(1 0)  0, ̃(1 0)  0 if  is odd. Therefore,   0
and we have stability for  ≥ 0 and small .

C.4 Proof of Proposition 4

In the linearization (32) we get

 =

⎛⎜⎝ 1 0 (∗−)
∗− 1 0

−
∗ −


∗ 1

⎞⎟⎠

 =

⎛⎜⎝ −1 −(−∗)
∗(−1)

2(−∗)
∗(−1)



−1 0 0

0 0 0

⎞⎟⎠
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 =

⎛⎝ 0 0 0
0 0 0
0 −(1− )

∗ 0

⎞⎠
where

 =



µ
(−1)∗(∗−̄)−−1


− (−1)(∗−̄)−


+ (+1)∗ +1 −1

2

¶
(2∗ − 1) ≥ 0

if   (∗ − ̄)∗. It follows that

 = −()
−1 =⎛⎜⎜⎝

∗(2(∗−̄)+(−1)∗2)


∗∗(̄−∗)


2∗∗(∗−̄)


(−∗)(2(∗−̄)+∗∗)


∗∗(̄−∗)


2∗∗(∗−̄)


∗((−1)∗−∗)


(̄−∗)(∗+∗)


2(∗−̄)(∗+∗)


⎞⎟⎟⎠ 

 = −()
−1 =⎛⎜⎜⎜⎝

0
(−1)∗(̄−∗)

(∗(∗−̄)+∗(∗−̄)+(∗)2∗)
0

0
(−1)∗(̄−∗)

(∗(∗−̄)+∗(∗−̄)+(∗)2∗)
0

0
(−1)∗∗

(∗(∗−̄)+∗(∗−̄)+(∗)2∗)
0

⎞⎟⎟⎟⎠
 = ⎛⎜⎜⎜⎝

(−1)∗(̄−∗)
(∗(∗−̄)+∗(∗−̄)+(∗)2∗)

(−1)∗(̄−∗)
(∗(∗−̄)+∗(∗−̄)+(∗)2∗)

(−1)∗∗
(∗(∗−̄)+∗(∗−̄)+(∗)2∗)

⎞⎟⎟⎟⎠
where  = ( − 1) ¡∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
 0.

Introduce the notation  = (  ) etc. Modifying the system (25),

(32), and the linearization of (30) yields yields

 = −1, where (81)

 = (    )

 =

⎛⎝  +  (1− ) (1− )

3 (1− )3 03×1
0  0 · · · 1− 

⎞⎠ 

57



For stability, the roots of  () = [−7] must be inside the unit circle.
One can show that

 () = 3(1 +  − )̃ ()

Thus, the roots of  () are inside the unit circle if and only if the roots of
̃ () are inside the unit circle. In the limit  → 0, we have

̃ () = (1− )2(− )

where  =
(1−)(∗(∗−̄)+(∗)2∗)

(∗−̄)(∗+∗)+(∗)2∗ 
(∗(∗−̄)+(∗)2∗)
(∗−̄)(∗)+(∗)2∗ = 1. There-

fore, the roots of  () are inside the unit circle if   0 evaluated at
 = 0 and  = 1. To evaluate the derivative, we consider the Taylor se-
ries expansion of ̃ () up to second order at point (0 0). Let ( ) =
( )− (0 0). Then

̃ ( ) = ̃ (0 0) + ̃(0 0)+ ̃(0 0) +

̃(0 0)
2

2
+ ̃(0 0) + ̃(0 0)

2

2
+

where subscripts denote partial derivatives and  is a remainder.

Evaluating the partial derivatives at (0 0) = (1 0) we have

̃(1 0) = 0

̃(1 0) = 0

and imposing

̃ ( )− ̃ (0 0) = 0

we get the approximation

̃(1 0) + ̃(1 0)
2

2
+ ̃(1 0)

2

2
= 0

or



=
−1
2

Ã
̃(1 0)

̃(1 0)
+

̃(1 0)

̃(1 0)

µ




¶2!
Further, we have
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̃(1 0) =
2(

∗ − ̄)(( − 1)∗ + ∗∗ − 
∗)

(1− )−1
¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
̃(1 0) = −2

¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
̃(1 0) =


∗ ¡( − 1)(∗)2 + ( − 2)∗ + ∗∗ − 2

∗¢
(1− )

¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
− ̄(( − 2)∗ + ∗∗ − 2

∗)

(1− )
¡
∗(

∗ − ̄) + 
∗(∗ − ̄) + (∗)2∗

¢
One can show that ̃(1 0)  0, ̃(1 0)  0, ̃(1 0)  0 if   ∗.
Therefore,   0 and we have stability for small  and   0.
In part (ii) with  = 0 the dynamics of output expectations do not depend

on the rest of the system and can be shown to be locally convergent. The

linearization (32) becomes

̃ ≡ −(̃)
−1̃ =

Ã
∗

(1−) −
∗

(1−)
1

(1−) − 

(1−)

!
and

̃ ≡ −(̃)
−1̃ =

µ
−1


0

0 0

¶
and

̃ ≡ −(̃)
−1̃ =

µ
−1


0

¶
,  = 1  − 1

Introduce the notation ̃ = ( ) etc. Modifying the system (25), (32)
and the linearization of (30) yields

̃ = ̃̃−1, where (82)

̃ = (    )

̃ =

⎛⎝ ̃ + ̃ (1− )̃ (1− )̃

2 (1− )2 02×1
 0 · · · 1− 

⎞⎠ 

For stability, the roots of  () = [̃−5] must be inside the unit circle.
One can show that

 () = 2(1 +  − )̃ ()
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where

̃ () = 2 +
( +  − 1)− ∗

(1− )

+
∗(1− )

(1− )



Thus, the roots of  () are inside the unit circle if and only if the roots of
̃ () are inside the unit circle.

Let 0 =
∗(1−)
(1−) and 1 =

(+−1)−∗
(1−) . The roots of ̃ () are in-

side the unit circle if and only if the Schur-Cohn condition, |1|  1+0  2, is
satisfied. The Schur-Cohn condition is satisfied if   max[

∗()(1−)
(1−)  ̄]

and  
(1−)
−∗ if   ∗() or   0 otherwise.
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