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ABSTRACT

The aim of this paper is to specify a small econometric mode] capable
of generating adjustment-free, short-run forecasts of key macro-
economic variables on a monthly basis. The aim is carried out using
the vector autoregression approach in conjunction with a Bayesian
specification procedure. The Bayesian approach to forecasting is
reviewed and applied using Finnish data from the 1980s. The out-of-
sample forecasting performance of the model is found to be

satisfactory.
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1. INTRODUCTION

The aim of this paper is to specify a small econometric mode] capable
of generating adjustment-free, short-run forecasts of key macroeconomic
variables on a monthly basis. The ability of real - time forecasting
is, per se, valuable, but such forecasts may also be of value when
assessing the reliability of preliminary economic statistics and in
fixing starting values for econometric forecasting models operating on
quarterly data. Furthermore, the adjustment-free forecasts can serve as
a standard of comparison for other forecasts. In particular, comparison
with forecasts which rely heavily on add factors may be of interest.

The aim is carried out using the vector autoregression (VAR) approach
(Sims (1980)) in conjunction with a Bayesian specification procedure
(Litterman (1979)). The Bayesian vector autoregression (BVAR) approach,
has been found to yield macroeconometric models with reasonably
accurate forecasts producable at Tow cost.! In particular, estimated
BVAR models require no judgemental adjustment and forecasting can be
done in minutes on a PC.°

! Forecasts from BVAR models compared favorably with those of
conventional macroeconometric models during the first half of the 1980s
(Litterman (1986a), McNees (1986), Zarnowitz (1986)). The record of
BVAR models has been somewhat less convincing during the latter half of
the 1980s (McNees (1990)). See Friedman & Montgomery (L985) fions =
theoretical work supporting the use of estimators like those used in

BVAR models when forecasting.

“1In a comparative study of the role of judgment in forecasting, McNees

(1990) found that more often than not, forecasters could improve
accuracy by placing less weight on their own adjustments relative to

their mechanically generated model forecasts.




THE BVAR APPROACH
2.1 The specification problem

The conventional approach to specifying a macroeconometric model is to
adopt one single paradigm within which each model equation is derived.
Even if this procedure were appropriate for some particular type of
economic activity, it seems far from guaranteed that the model as a
whole will be a good approximation of the underlying complex,
multifaceted structure of reality. In fact, using the positivist
criterion for model adequacy (predictive power), the conventional
approach typically fails as forecasters usually think of their models
as not capable of unassisted forecasting. This comes about partly
because conventional models are formulated conditional on exogenous
variables and partly because they may behave peculiarly unless

adjusted.

The conventional approach to specifying macroeconometric models came
under heavy attack in the late 1970s. One line of attack was launched
by Christopher Sims, who argued that the exclusion restrictions derived
from imperfect economic theories used as identifying assumptions in
conventional macroeconometric models are incredible (Sims (1980)). The
critique put forward by Sims effectively implies that conventional
exclusion restrictions may be a barrier to improved forecasting. This
occurs because it seems quite reasonable to suppose that small bits of
useful information concerning the aggregate economy are scattered
through the data, and a narrowly focused approach is unlikely to find
much useful information for forecasting purposes. As we see it, the
problem of macroeconometric forecasting models hence becomes to extract
as much of the information as possible from the data and to give each

little bit an appropriate weight.

2.2 A Bayesian view of forecasting

From a Bayesian perspective, the view that the current state of
macroeconomic theory leaves a great deal of uncertainty concerning
which economic frameworks are useful for forecasting translates into

the following assertion. Economic theory allocates a small probability
to a large number of economic Structures, and each can be represented
as an equation with a flat prior distribution over a wide range of
parameter values. The parameters themselves are considered to be
stochastic. Bayesian decision theory can then be used to revise the
priors in the light of the evidence of the data in order to generate a

filter for the optimal extraction of information from the data useful
for forecasting.3

The Bayesian specification search developed by Litterman (1979) entails
searching over a parameter-space with a certain fairly uncontroversial
prior as a means of fine-tuning a filter for the optimal extraction of
information from the data. In conjunction with the VAR approach of Sims
(1980), this Bayesian approach allows one to generate a class of
estimators that highlight the tradeoff between oversimplification and
overparametrization of a forecasting multivariate autoregression. In
other words, one is able to exploit the tradeoff between bias and
variance. Out-of-sample prediction errors provide the metric for
picking the optimal specification for forecasting purposes.

The issue of parsimony is, of course, particularly pressing in VAR
models, and unrestricted VAR models are known to produce relatively
large out-of-sample forecast errors. This simply suggests that spurious
correlations in the data have been picked up by allowing too many
channels of interaction between multicollinear, noisy variables. The
use of priors reduces the risk of picking up misleading relationships
and lessens the problem of noise in the data obscuring a weak signal.

In Bayesian time series models, parsimony is not achieved through
exclusion restrictions like in conventional models. Exclusion of a
variable amounts to full certainty that the parameters of the variable
are exactly zero, but Bayesian decision theory questions such an
absolute belief which is not given a chance to be revised by any amount

3 The Bayesian approach dates back to the reverend Thomas Bayes and the
18th century (Bayes (1763)). See Zellner (1985) for an introduction to
the Bayesian paradigm and its application to econometrics. See Harrison
& Stevens (1971, 1976) for early applications of the Bayesian paradigm
to short-run forecasting.




of historical evidence. The Bayesian procedure allows both the data and
the beliefs of the modeler to bear on the results, and allows the
modeler to flexibly control how much weight either consideration is to
be given.

The way prior information and data are combined to yield a probability
distribution for, say, a forecast is given by Bayes' theorem. Let p(0)
be the prior probability density function (pdf) for the parameter 3
vector 0, p(y|0) the pdf for an observation vector y. given 8 and the
likelihood function, and p(9|)~/) the posterior pdf for 6 given y and
the prior information. Then the joint pdf for y and 0 is ]

(1) ;?CY,Q) ==£>(Q)19(219) ==£9(2ﬁ19(9|2¢
and

(2) pBly) =p(0®)p(y|0)/p(y) « p(0)p(y|6)

where a denotes proportionality. In words, Bayes' theorem (2) states
that the posterior pdf is proportional to the prior pdf times the
likelihood function. Also note that (2) provides an exact, finite
sample posterior pdf for 0.

In order to obtain a point estimate like the posterior mean vector, we
need to introduce an explicit loss function when solving

A
(3) m%n.f.L(@,@)p(QLy)d@
0

A
where L (Q,@) is the loss function and =0(y) . For example,
employing the quadratic loss function

A
(4) L (6,0

where Q is a given, positive definite symmetric matrix, the problem (3)
can be stated

A
(5) m%n EL (0,0)
0

where the expectation E is taken conditional on 8 in which
i s Atk e
(6) ) = E (6-8)'0(6-0) + (6-8)/0(6-9)

where §X= E O is the posterior mean vector. From (6) we see that
taking 0 = 0 leads to minimal expected loss. Thus the posterior mean is
an optimal point estimate for a quadratic loss function in the sense
that it minimizes expected loss. In the current work, we will use

a readily computable approximation to this posterior mean vector
relying on the mixed estimation technique of Theil (see Theil (1971),
pp. 346-352).

In brief, the specification procedure developed by Robert Litterman for
vector autoregression models consists of the following four steps.’
Firstly, benchmark univariate autoregressive forecasting equations are
estimated by ordinary least squares. The dimension of search is over
the lag lengths of these univariate representations. The second step in
the specification process consists of trying to improve the forecasting
performance by allowing for multivariate interaction. The dimension of
search includes the univariate specifications at one end and an
unrestricted VAR model at the other.

In the third step of the specification procedure equation-specific
priors are introduced into the multivariate autoregression. This search
defines a dimension of more or less differentiation among variables; at
one end all variables are treated symmetrically and at the other end
equation-specific exclusion restrictions are obtained. The final step
is to strike a balance between the oversimplification of a constant-
coefficient specification and the overparametrization of a fully time-
varying coefficient model. At each step in the specification process,
out-of-sample forecast errors are generated using the Kalman filter,
and forecasting performance is judged by, e.g., Theil's inequality

coefficient.

% See Litterman (1979, 1986b) for details on the specification
procedure. Doan et al. (1984) develop a similar, but more comp lex,
procedure. The antecedents of these procedures are the work of Hoerl &
Kennard (1970), Leamer (1972, 1978), Shiller (1973) and Stein (1974) on
shrinkage estimation and its Bayesian interpretation.




2.3 The Minnesota prior

The prior used throughout the specification search has gained
sufficient popularity among BVAR forecasters to merit a closer
presentation. Since it was developed by researchers associated with the
University of Minnesota and the Federal Reserve Bank of Minneapolis, it
has been minted the Minnesota system of prior beliefs, or more briefly,
the Minnesota prior.5 This prior expresses, in the form of
probabilities, which kind of a set of model parameter values will give
the best forecasts. In particular, the Minnesota prior assumes that the
joint probability distribution for the model parameters is multivariate

normal.

The first moments of the model parameters are set according to the
random walk hypothesis. As it is well known, a random walk component
has proved to be very hard to reject in most macroeconomic time series.
The prior second moments on own lag parameters are set to decay
geometrically or harmonically with lag length. Cross lags get prior
means of zero with the same downweighting of prior variances as own
lags. Cross lag variances are also weighted by an own-versus-cross
variance factor, which gives the cross prior variances units comparable
to those of the own prior variances. The Minnesota system of priors is

completed by specifying a prior on the absolute size of own and cross

variances.6

> The Minnesota prior is lucidly and at length presented by Todd
(1984). The Minnesota prior is sometimes also referred to as the

Litterman prior.

b Applications of the Minnesota prior include Amirizadeh & Todd (1984),

Doan et al. (1984), Litterman (1984a, b), Kunst & Neusser (1986),

Genberg & Salemi (1987), Cargill & Morus (1988), Raynauld (1988),

Irevo; & Thorp (1988), Trehan (1989), Artis & Zhang (1990) and Boero
1990).

AN APPLICATION TO THE FINNISH ECONOMY

3.1 Data and functional form

The choice of what variables to include into a VAR model depends on the
aim and scope of the study. In our study we, in a sense, sidestep the
problem by simply including those variables which have received most
attention in the context of real time forecasting, when assessing the
reliability of preliminary economic statistics and in fixing starting
values for econometric forecasting models based on quarterly data. Of
course, the resulting vector of variables will almost surely not be the
entropy-minimizing vector. The Bayesian specification procedure allows
us to balance bias and variance in the resulting model, but
computational considerations limit the number of variables to include.
Following earlier work designed for purposes similar to ours, we limit
the number of variables to eight.7

A1l data are monthly and (where appropriate) seasonally adjusted and
expressed in natural logarithms.8 The variables are: an indicator of
real gross domestic product (y), real industrial production (y,),
consumer prices (p), the short-term nominal interest rate (i), real
exports (x), real imports (m), export prices (p,) and import prices
(p,). We employ data from 1980M1 - 1990M9, using data from 1980M1 -
1989M9 to estimate the model from and leaving data from 1989M10 -
1990M9 for the assessment of forecasting performance. This choice of
estimation period maximizes the difficulties of out-of-sample
forecasting, since a major slowdown of the Finnish economy began at the
end of the estimation period following a decade of stable growth. Data
from the 1960s and the 1970s are not employed, since major structural
changes took place during the latter part of the 1970s changing the
short-run dynamics of the Finnish economy (Starck (1990)).

7 Studies with aims similar to ours include Litterman (1979, 1984a,
1986b), Doan et al. (1984), Kunst & Neusser (1986), Cargill & Morus
(1988), Trevor & Thorp (1988), Artis & Zhang (1990) and Boero (1990).

84hile the use of seasonally adjusted data may have its drawbacks (Sims
(1974), Wallis (1974)), the use of sensible priors should mitigate

these concerns.




The multivariate ahtoregression comprising the above variables is
estimated in levels. By refraining from differencing we avoid
distroying information about possible long-run (cointegration)
relationships between the variables. We include intercepts in every
equation, but refrain from using time trends. This is because an eight-
variable VAR model can fit exactly an arbitrary set of very high-order
polynomial time trends, while explicitly adding trend terms requires
that forecasts with a linear time trend have standard errors of
forecast not increasing at all as the forecast horizon lengthens.
Including intercepts implies that our prior will not include a pure

random walk, but a random walk with drift.’

3.2 Empirical results

Throughout the specification search, Theil's inequality coefficient U
will be used in the evaluation of dynamic, out-of-sample forecasts.
This metric will be reported for 1, 3, 6, 9 and 12 steps ahead
forecasts. Theil's U is the ratio of the root mean square error of
forecast to the corresponding error of a no-change forecast. This unit-
free statistic is 0 for a perfect forecast, while a value in excess of
1 is discouraging in the sense that a naive no-change forecast would do
better. A no-change forecast is the optimal forecast for a pure random
walk, and it is reasonable to believe that our variables contain
sizeable random walk components. A1l empirical results are relegated to
the Appendix.

Results from the first step in the specification procedure - estimating
univariate benchmark models - are presented in Table 1. Autoregressive
models of order 1 through 12 are evaluated. Overall, very low-order

- 1 and 2 lag - models forecast best. There seems to be no need to
include more lags in order to increase the accuracy of forecasts for
longer horizons. The best benchmark models outperform no-change models
in practically all cases and at all forecast horizons. Nevertheless,

the variables y, y,, i, p, and p, appear to be closely approximated by

X

 Qutliers are dealt with using the following dummy variables: 81M4
(i), 85M5 (x), 86M5 (y, y;, m), 86M6 (m) and 86M8 (i).

random walks hence severely limiting the possibilities to improve
forecasts for these variables. In particular, the best forecast for p
; X
is a no-change value at all forecast horizons. The data generating

processes for p, x and m appear to be more elaborate than random walks
thus leaving scope for improvement in forecasting.

In the second step of the specification process, we evaluate gains in
forecasting performance from allowing for multivariate interaction
between variables. A sixth-order VAR is chosen because of computational
considerations. The second moments of the distributions for
coefficients on lags vary as a function of the lag number, being
tighter around lags further back. The tightening of second moments is
harmonic with a unity decay parameter. The tightness of the prior
around zero for each of the coefficients on variables other than own
lags is parametrized by a number . When m, = 0 a system of univariate
equations is estimated and when w; = 1 a complete VAR model is
considered. Constants and coefficients on dummy variables are given
flat priors with zero means. Empirical findings are reported in

Table 2.

The best forecast performance is in the majority of cases obtained by
allowing for interaction between variables. In general, in the best
models the variance around the first lag of other variables with prior
mean zero is as high as 0.5 (aside from a scale factor). Some variation
in the optimal value of m; is encountered depending on the forecast
horizon. The variables y; and p, appear to be largely exogenous and
difficult to forecast, however. Increases in forecasting accuracy
relative to benchmark models are unanimous for p and x and partial for
m and p,. Allowing for unstructured multivariate interaction does not

improve forecasts for y, y,, i and p,.

Having put priors on the variances of coefficients on variables other
than own lags, we proceed by investigating the consequences for
forecasting of varying the tightness of the prior around first own
lags. Let m, determine prior own lag variances and maintain =, = 0.5 for
other than own lag variances. The empirical evidence is given in Table
3. Results differ somewhat across variables and forecasting horizons,
but a modest tightness (w, = 0.15) seems to be preferable, on the




whole. Again, Yy, and p, resemble random walks, while clear improvements
in forecasting are documented for p and x and some success is
encountered in the cases of m and p,. The evidence tends to suggest
that the mean of the own first lag of x is less than unity.

Having found optimal degrees of tightness on prior variances (m = 0.5
and m, = 0.15), we conclude the second step of the specification
process by searching for the optimal type of tightening of variances by
lag number. So far, a harmonic lag decay with decay parameter m; = 1
has been used. In Table 4 we report results using both harmonic and

geometric decays for a variety of values of n330 As it happens, no

overall best type of lag decay can be singled out. Most variables seem
to require fairly tight decays, but m and p, may benefit from
relatively loose decays. Improvements in forecasting relative to
benchmarks are found for p and x, and possibly for i and m. While the
choice of lag decay pattern does not seem to be of overwhelming
importance, we chose to tighten the decay somewhat in the subsequent
analysis by employing a harmonic pattern with decay parameter m; = 2.

Moving on to the third step of the specification process, we introduce
equation-specific priors. We suggest a tentative structure for the
relationships between the variables in our model, but let the data
override the prior if the historical evidence is strong enough. The
relative weights used to impose an asymmetric structure on the model
are given in Table 5. Let w, index how much weight the a priori
structure is to have. When m, = 1 all variables are treated
symmetrically, and as w, decreases, the limiting specification has zero
restrictions with the relative weights displayed in Table 5.

Results from the search along a dimension of the prior allowing for
varying amounts of asymmetric multivariate interaction are presented n
Table 6. For most variables, a modest degree of asymmetric treatment
(m; = 0.2) appears to be appropriate. In the case of y; and p,, tight
adherance to the limiting specification is preferable. In all cases,
allowing for a mild structure on the interactions in the model improves

10 Harmonic lag decay as a function of lag lenght 1 is imposed using the

formula 1773 and geometric decay is obtained using w;'l.

forecasting performance relative to previous estimates. Moreover, the
preferred model outperforms the benchmark models for p, x and m. All

forecasts, except those for y. and P,. also outdo naive no-change
forecasts for at least some forecast horizons.

The final step in the specification search is to evaluate whether gains
in forecasting performance can be obtained by allowing for parameter
variation. We let the parameters follow a random walk with variances
proportional to their variances in the prior distribution. Let the
factor of proportionality be w.. When m, = 0 a constant-coefficient
model is used and as m; increases more parameter variation is allowed.
In this final search, the optimal parameter settings obtained above
are, as in earlier searches, employed (w = 0.5, w, = 0.15 and harmonic
decay with w3 = 2).'' Empirical results are given in Table 7.

In the case of y, p, x and m improvements in forecasting performance
cannot be obtained by allowing parameter variation. A very small amount
of time variation may be beneficial for y.,, i and p,. Allowing the
parameters in the equation for p_ to change clearly would improve out-
of-sample forecasts. The last result stems from the occurrence of the
latest oil-shock (see Figure 1h of the Appendix), which, obviously,
cannot be accounted for by the other model variables.

On the whole, we favor the use of a fixed-coefficient model for the
following reasons. Firstly, half of the variables do not benefit from
varying parameter specifications. Secondly, the computational burden is
massive for varying parameter models. Thirdly, the parameter drift for
those variables that could benefit from it is of negligible magnitude,
in particular in comparison to sampling error. The implied standard
error of the change in the first own lag is roughly 0.001 around a
prior mean of 1. Lastly, the fact that simple random walks forecast as
well as they do even 12 steps ahead (Table 1) is inconsistent with
large amounts of parameter variability. In addition, we should remember
that data spanning a decade only are used thus lessening the magnitude

of possible true parameter drift.

1 Because of computational difficulties, asymmetric mu]tjvgriaﬁe
interaction is not employed in the last step of the specification
search. Likewise, the models are estimated without dummy variables.




We conclude the illustration of the Bayesian specification scheme by
scrutinizing the forecasting ability of our final model. A selection of
model evaluation statistics is presented in Table 8 where the best
benchmark models are contrasted with the best multivariate model. With
respect to in-sample fit, the final model outperforms all benchmark
models. In out-of-sample forecasting, consistent improvements are
documented for p, x and m. For y and i, only minor improvements are
found. No gains relative to a no-change forecast are achieved in the
case of y., p, and p,. In fact, within our vector of variables, no model
was found to beat a no-change forecast of p,.

The forecasting performance of the final model is presented graphically
in Figure 1 of the Appendix. With regard to y and y,, the trend is
picked up, but the slowdown at the very end of our sample period is not
tracked. Using our disparate set of variables, it seems, not too
surprisingly, to be impossible to account for the recent, pronounced

slowdown in the production variables.® The model tracks p well, and

picks up the fundamental movements in i. Likewise, x is well forecasted
while some difficulties in predicting the slowdown in m show up. The
forecast for p, is nonsensical and modest success is met with in the

casetofifpy:

12 As it is well known, VAR models typically contain only a little
information not in conventional econometric macromodels while '
conventional models may contain information not in VAR models (Fair &

Shiller (1989, 1990)).

4. CONCLUDING REMARKS

In this paper, we have reviewed a Bayesian approach to multivariate
time series modeling for short-run forecasting, illustrating it with
data from the Finnish economy. A vector autoregression model with
Bayesian priors was specified, which yields adjustment-free, low-cost
forecasts of key macroeconomic variables on a monthly basis. The mode]
is estimated using data from the 1980s only, and the out-of-sample
forecasting performance is found to be reasonable for some of the mode]
variables. Since our variables are characterized by only small amounts
of comovement, and the specification period differs from the
forecasting period, our application would tend to speak favourably of
the Bayesian approach to specifying multivariate time series models.




APPENDIX TABLE 1 (continued)
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FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM :
A SEARCH ALONG A DIMENSION OF THE PRIOR ALLOWING VARYING TABLE 3

AMOUNTS OF MULTIVARIATE INTERACTION FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM
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ALLOWING VARYING AMOUNTS OF TIGHTNESS OF A RANDOM
WALK SPECIFICATION FOR OWN LAGS
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Short-term nominal interest rate g .650 422 .329 .293 .195
.256 1.068 .947 .785 197 8 .669 .496 437 424 .367
.264 1.061 .873 .558 576
2323 1.096 .809 .458 1250 Short-term nominal interest rate
.327 1.098 .806 .469 1260 .552 1.149 195203 1.458 118
.296 .993 .688 422 727 - .340 .995 .728 2530 654
.304 2973 23 .582 529 : .296 .993 .688 42?2 727

2231 1.000 .664 :335 872

Real exports ) 124 1.006 .699 .394 1140
918  1.014  1.462 N7a 1122 ; 030 1.011 890 620 1010

.880 .922  1.265 .998 .916
.740 .683 .833 .646 .405 .599 1631 .810 696 .168
-713 -664 -799 -632 -326 ! .676 .666 .798 .629 .289
-703 -636 -812 -643 -319 ] .712 .664 .799 .632 .326
. .783 .683 .813 .649 .387
Real imports : .915 .830 .910 .769 .594
977 78] 1.025 -712 -200 : 013 1.082  1.127 .144 .279
.978  .774 1.075 .688 .379
.99?2 .751 1.242 .649 747 : Rea] imports
007 .757 1.299 .631 .818 .930 591 1.122 .704 .123
970 .741 1.251 .629 -955 : .978 L7288 1..225 .637 .983
907  .706 1.187 .636 .020 . .970 N0 751 .628 .955
X .954 610 . 277 .629 .946
Export prices . .959 .853  1.214 721 .105
.078  1.244  1.4/4 .688 114 A .037 1.157 1.873 .659 .268
2079 18249  1#483 .705 .138
.105 1332 1.627 -942 -458 Export prices
.147  1.459  1.839 .247 .832 617  2.686  3.889 .023 .635
.400  2.090  2.857 615 .347 A .408  2.174  3.011 .805 .533
.460  2.294  3.236 .098 004 ) .380  2.090  2.857 .615 .347
. .338  1.970  2.645 .347 .091
Import prices ; .251 1.742 2.276 .863 .569
942 .978  1.016 .957 902 ! .144  1.457  1.825 .230 .747
.945 .989  1.022 .969 .938
.951 1.016 1.052 .955 .960 Import prices
1951 1.0361 1129 .890 .792 .824  1.035  2.047 .163 .524
942 1.164  1.745 -456 -090 i .13  1.148  1.808 .539 .038

.896  1.104  1.841 .642 071 ] 942  1.164  1.745 .456 .090
972  1.152  1.589 .269 .231

995 1.077 1.216 .896 .672
.030 1.067 1.073 .196 .327




TABLE 4 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM :
A SEARCH ALONG A DIMENSION OF THE PRIOR TABLE 5 Egbﬁ¥%XﬁSWEIGHTS OF VARIABLES IN DIFFERENT
ALLOWING VARYING AMOUNTS OF TIGHTNESS IN LAG DECAY

Number of steps ahead forecasted :
Variable

1 3 6 9

Equation
Real gross domestic product 1

.5 (harmonic) 1.028 .134 .833 1.658
(harmonic) .968 .072 .648 1.053
(harmonic) .961 .081 .642 .641

.75 (geometric) .983 .079 .692 1.352

.5 (geometric) .945 .068 .607 .691

.25 (geometric) .960 .084 .651 .617

Real industrial production
.5 (harmonic) 53113 1.310 1.540 .961
(harmonic) .299 1.358 1.559 .760
(harmonic) .279 1.422 1.611 .640
.75 (geometric) .304 1.306 I%.525 .863
.5 (geometric) .299 1.401 1.559 .669
.25 (geometric) .279 1.434 1.629 .643

L] L] L] L] L ] L] L] L ]
N N O N = o N
L] ° L ° L ] L] L] L]
(8] —_ = O N N N
(=) (= (= = = = = (=)
o e o L ] L ] ° L] L]
N = = O N O N O
L ] ° L] L] L ] L] L] L]
N O N 0 NN —

Consumer prices
.5 (harmonic) .685 .389 .233 .147
(harmonic) .677 .387 .244 177
(harmonic) .666 .382 .250 .189
.75 (geometric) .682 .395 .240 .160
.5 (geometric) .670 .391 .255 .193
.25 (geometric) .666 .382 5251 .189

Short-term nominal interest rate

.5 (harmonic) .342 1.047 .843 Sk
(harmonic) .296 .993 .688 422
(harmonic) .310 1.014 .603 .294

.75 (geometric) .303 1.018 .835 .738
.5 (geometric) 274 .971 .638 .340
.25 (geometric) +315 1.023 .610 .316

Real exports
.5 (harmonic) .714 .671 .798 .638
(harmonic) /12 .664 .799 .632
(harmonic) T2 .675 .821 .637
.75 (geometric) .707 .670 .798 .636
.5 (geometric) S7AIN0! .661 .804 .632
.25 (geometric) .728 .676 .822 .637

Real imports
.5 (harmonic) .951 2710 173 .653
(harmonic) .970 .741 .251 .628
(harmonic) .981 52 311 .633
.75 (geometric) .959 .726 .209 .634
.5 (geometric) .972 - 152 .295 .620
.25 (geometric) .980 752 .318 .636

Export prices
.5 (harmonic) .407 2.206 .101 914
(harmonic) .380 2.090 .857 .615
(harmonic) .395 2.071 .734 .502
.75 (geometric) .401 2.203 .058 .872
.5 (geometric) .395 2.109 .820 .589
.25 (geometric) .401 2.078 .734 .512

Import prices
.5 (harmonic) .905 .156 .926 .690
(harmonic) : .164 .745 .456
(harmonic) : .150 .566 .266
.75 (geometric) : .172 .876 .627
.5 (geometric) . .176 .689 .397
.25 (geometric) 3 .150 .555 .258




TABLE 6 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM TABLE 7 FORECAST
PERFORMANCE MEASURED BY -
A SEARCH ALONG A DIMENSION OF THE PRIOR THEIL'S U FROM
ALLOWING VARYING AMOUNTS OF ASYMMETRIC TREATMENT AMOUNS, orONG A DIMENSION OF THE PRIOR ALLOWING VARYING
OF VARIABLES IN DIFFERENT EQUATIONS -VARIATION IN COEFFICIENTS

Number of steps ahead forecasted

Number of steps ahead forecasted 1 3 6

9

1 3 6 9

Real gross domestic product

: ‘ 286 1.741 1.556  3.696 66

Real gross domestic product ; . .660
1.017  1.205 1.062  1.985 .083 : -329 2,005 2.492  4.570  7.579
719 3.131 5.751 14.622 .531

.918 1.058 .641 .936 .902 5
922 1.051 1602 028 .882 ) .180 4.531 8.442 9.987 .783

.943 1.050 .624 1.003 .906 j .201 4.114 7.295 6.293 .050
.088 1.062 .673 18167 .924 .934 3.472 5.758 6.242 .399
2023 1.099 T2 1.360 2223 : Real industrial production
.344 115255 1.629 3.313 .622
Real industrial production ) APASIE) 1.168 1.638 1.289 .004
1.661 1.461 .901 .570 .503 ) .501 1.890 4.858 14.804 411
1.430  1.435 -649 -825 -020 ' .788  2.854  7.796 28.400 .260
1.3300° 1.398°  1.605 = 2.743 " 1.965 ' 663 2.324 5,026 6.740  1.835

1.198 1.302 .508 .583 .870 -
1.040  1.110  1.236  1.996  1.566 552 1.687  3.419  3.854  1.729
Consumer prices

1.015 1.045 .076 231112 .297 ; .886 .576 .337 .174 217

.987 .794 .696 .679 .220

Consumer prices | !
693 .373 991 155 .140 .064 .954 .985 .914 .826

.643 .360 .231 .171 .035 ] .081  1.101 1.150 .945  1.446
.641 .369 .248 .193 .074 | .954 1.011 1.069 :932 15239
.642 .390 .282 .235 .137 .908  1.004 1.075 .854  1.204
.652 .439 .356 .325 .255 Short-term nominal interest rate
.675 .508 .453 .442 .390 : .872  1.354 8190 & ¥ 1.1 466
: : : 593  1.354 .483  2.139 1190
Short-term nominal interest rate i .502 1.809 .023 8.238 4310
Lo B ODOSSEC /S IR0 2 e 6l ‘ $538" +2:395 .655 15.766 2870
1.294  1.035 .641 .377 1050 :
2927 115911 .005 6.268 2340
1.262  1.047 .657 446 1140 ; 5T Sikge R g
iR T U520 i Gaz e iso) e 1760 J Reall exports: g i
1.125  1.029 .705 .528 1390 .
1.028  1.008 .883 .607 989 ‘ -846 .674 .932 .734 .187
.009 .734 .837 .849 .467

Real exports .304 1.637 .119 .162 .436

.636 .708 .830 .639 .176 ! .612 3.167 .981 2992 .318
SULE) .690 .818 .627 .316 ) .692 3.116 .194 533 .264

.747 .706 .834 .634 .335 j .686 3.004 114 .649 .623
813 .750 .876 .656 <377, Real imports

.933 .885 1.022 .805 .609 : .069 .497 1.415 742 .297

12012 1.036 15155 157 -299 ; .197 .651 1.386 .038 .044

RGall reonts i .461 1.518 4.101 .224 .069

' } .675 2.615 13.011 .129 26141

1.034 /A7 1.266 Sl .110 - 718 2.484 8.598 208 611

:gzg :;gg i:ggi :ggg :8?3 1 3 .659  2.354 6.605 .935 .723

.920 .742 %1325 .693 .045 . Export prices
.944 854 1.306 .827 2221 .152 3.384 4,763 297 231

1.024 1:109 1.617 477 912 ) .653 2.294 3.076 .721 .584
i .649 2.288 2.892 .166 .073

Export prices ) .707 24527 38577 .736 .031

1.434 2.047 2.774 .426 .423 ] .633 2.450 3.680 .464 .949
1.270 1.806 2376 .009 SabL i .493 2.301 3.664 593 .045
1.263 1.797 2.372 .045 .226 Import prices

1.262 1%7.93 2.392 <119 <358 i 071 1.444 o) .060 .487
1.241 1.740 2.307 .993 .021 - .081 1.655 2.675 .691 .288
1.148 1.465 172832 .230 .740 = 017 1.684 3.140 122 485

2351 1.677 3.505 .184 .449

Import prices i
.834 15.357. 2.496 .570 .108
.818 1.056 1.638 .269 253 j i fitel i (o s

.945 1.189 1.544 .145 .344
.967 1.178 1.464 .050 .444
.987 1.136 1.306 .900 .630
1.002 175059 1.066 .852 .943
1.028 1.055 1.057 .158 .270




TABLE 8

COMPARISON OF INITIAL UNIVARIATE AND FINAL MULTIVARIATE MODELS

Statistic

Variable

Y

initial/ final

Yi

initial/ final

P

initial/ final

i

initial/ final

X

initial/ final

m

initial/ final

Px

initial/ final

Pm

initial/ final

]

2

R
SEE
Q
u(1)
U(3)
u(6)
u(9)
u(12)
U(wa)

2 / 6

0.9815 / 0.9851
0.0112 / 0.0101
0.0000 / 0.0000
0.8518 / 0.9175
0.9713 / 1.0581
0.5394 / 0.6405
1.0694 / 0.9362
1.8751 / 1.9019
0.9541 / 0.9985

1 / 6

0.9403 / 0.9636
0.0218 / 0.0170
0.0000 / 0.0029
0.9880 / 1.4295
0.9706 / 1.4352
0.9777 / 1.6486
0.8183 / 2.8254
0.7316 / 2.0201
0.9305 / 1.7432

12 / 6

0.9990 / 0
0.0045 / 0
0.4125 / 0
0.6033 / 0
0.4229 / 0
0.3844 / 0
0.3729 / 0
0.3444 / 0
0.4540 / 0

1 / 6

0.8757 / 0.9180
0.0088 / 0.0072
0.0224 / 0.0590
1.0219 / 1.2940
0.9313 / 1.0349
0.6479 / 0.6407
0.2342 / 0.3774
590 / 1048

0.8412 / 0.9940

8 / 6

0.5800 / 0.6435
0.0717 / 0.0662
0.4977 / 0.0097
0.7254 / 0.7132
0.7201 / 0.6895
0.9086 / 0.8178
0.7339 / 0.6269
0.5467 / 0.3157
0.7441 / 0.6755

2 / 6

0.6326 / 0.7929
0.0957 / 0.0719
0.0005 / 0.0015
0.9969 / 0.9695
0.8030 / 0.7298
1.3156 / 1.3208
0.6315 / 0.6655
0.1906 / 1.0043
0.8767 / 0.8473

/ 6

9950 / 0.
.0065 / 0.
.0010 / 0.
0352 /1.
S 2/
233N
235581} 3t
.4901 / 4.
1913 / 2.

1 / 6

0.9681 / 0.9739
0.0122 / 0.0110
0.2654 / 0.4806
0.9974 / 0.9454
0.9796 / 1.1890
0.9921 / 1.5440
0.9688 / 1.1448
0.9222 / 0.3441
0.9801 / 1.0958

2
1 is lag length, R is the degrees-of-freedom-correct
tions, U(n) is Theil's U at forecast horizon n, n =

(3), 0.20 (6), 0.15 (9) and 0.10 (12). In the case of the variable i,
(1), 0.30 (3), 0.20 (6), 0.10 (9) and 0.00 (12).

08

w
o

:

3

R0

ed squared multiple correlation coefficient, Q is the Ljung-Box portmanteau statistic based on 30 autocorrela-
1, 3, 6, 9, 12 and U(wa) is a weighted average of the U(n) with weights (at forecast horizon n) 0.30 (1), 0.25
U(12) is ignored in the calculation of U(wa) using the weights (at forecast horizon n) 0.40
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- FIGURE 1c Consumer prices FIGURE 1le Real exports

IND. BILL.FIM

BILL.FIM

ppperantl lJlJllll

oo

()
4
L

ol
¥

i |

ia / N MM |

& '
“lﬂl“l"‘;g'gg il "I"i'g'élg """"l"l“li'g'g:; “|"|"|"|“|1Iglgl6l “'"lﬂl“l“i'g'gg ululu “l"li'g'ggjso " 5000 T T T L L L v L L e el ool el seboedselsoladed

1980 1982 1984 1986 1988

lllllll nnirm Illllllll Tllllllll llllllH

-
=
=T

(WS
o
O | lllllll lllJIllll pareiennd

FIGURE 1d Short-term nominal interest rate ~ FIGURE 1f Real imports
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FIGURE 1g Export prices
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FIGURE 1h Import prices
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