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ABSTRACT 

The aim of this paper is to specify a small econometric model capable 
of generating adjustment-free, short-run forecasts of key macro­
economic variables on a monthly basis. The aim is carried out using 
the vector autoregression approach in conjunction with a Bayesian 
specification procedure. The Bayesian approach to forecasting is 
reviewed and applied using Finnish data from the 1980s. The out-of­
sample forecasting performance of the model is found to be 
satisfactory. 
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1. INTRODUCTION 

The aim of this paper is to specify a small econometric model capable 
of generating adjustment-free, short-run forecasts of key macroeconomic 
variables on a monthly basis. The ability of real - time forecasting 
is, per se, valuable, but such forecasts may also be of value when 
assessing the reliability of preliminary economic statistics and in 
fixing starting values for econometric forecasting models operating on 
quarterly data. Furthermore, the adjustment-free forecasts can serve as 
a standard of comparison for other forecasts. In particular, comparison 
with forecasts which rely heavily on add factors may be of interest. 

The aim is carried out using the vector autoregression (VAR) approach 
(Sims (1980)) in conjunction with a Bayesian specification procedure 
(Litterman (1979)). The Bayesian vector autoregression (BVAR) approach, 
has been found to yield macroeconometric models with reasonably 
accurate forecasts producable at low cost. 1 In particular, estimated 
BVAR models require no judgemental adjustment and forecasting can be 
done in minutes on a PC. 2 

1 Forecasts from BVAR models compared favorably with those of 
conventional macroeconometric models during the first half of the 1980s 
(Litterman (1986a), McNees (1986), Zarnowitz (1986)). The record of 
BVAR models has been somewhat less convincing during the latter half of 
the 1980s (McNees (1990)). See Friedman & Montgomer~ (1985) for . 
theoretical work supporting the use of estimators llke those used ln 
BVAR models when forecasting. 

2 In a comparative study of the role of judgment in forec~sting, McNees 
(1990) found that more ofte~ than not, .forecast~rs cou ld lmpro~e 
accuracy by placing less welght on thelr own adJustments relatlve to 
their mechanically generated model forecasts. 
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2. THE BVAR APPROACH 

2.1 The specification problem 

The conventional approach to specifying a macroeconometric model is to 
adopt one single paradigm within which each model equation is derived. 
Even if this procedure were appropriate for some particular type of 
economic activity, it seems far from guaranteed that the model as a 
whole will be a good approximation of the underlying complex, 
multifaceted structure of reality. In fact, using the positivist 
criterion for model adequacy (predictive power), the conventional 

approach typically fails as forecasters usually think of their models 
as not capable of un~ssisted forecasting. This comes about partly 
because conventional models are formulated conditional on exogenous 
variables and partly because they may behave peculiarly unless 
adjusted. 

The conventional approach to specifying macroeconometric models came 
under heavy attack in the late 1970s. One line of attack was launched 
by Christopher Sims, who argued that the exclusion restrictions derived 
from imperfect economic theories used as identifying assumptions in 
conventional macroeconometric models are incredible (Sims (1980)). The 
critique put forward by Sims effectively implies that conventional 
exclusion restrictions may be a barrier to improved forecasting. This 
occurs because it seems quite reasonable to suppose that small bits of 

useful information concerning the aggregate economy are scattered 
through the data, and a narrowly focused approach is unlikely to find 

much usef ul information for forecasting purposes. As we see it, the 
problem of macroeconometric forecasting models hence becomes to extract 
as much of the information as possible from the data and to give each 

little bit an appropriate weight. 

2.2 A Bayesian view of forecasting 

From a Bayesian perspective, the view that the current state of 
macroeconomic theory leaves a great deal of uncertainty concerning 
which economic frameworks are useful for forecasting translates into 
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the following assertion. Economic theory allocates 11 a sma probability 
to a large number of economic structures, and each can be represented 
as an equation with a flat prior distribution over a wide range of 
parameter values. The parameters themselves are considered to be 
stochastic. Bayesian decision theory can then be used to revise the 
priors in the light of the evidence of the data in order to generate a 
filter for the optimal extraction of information from the data useful 
for forecasting. 3 . 

The Bayesian specification search developed by Litterman (1979) entails 
searching over a parameter-space with a certain fairly uncontroversial 
prior as a means of fine-tuning a filter for the optimal extraction of 
information from the data. In conjunction with the VAR approach of Sims 
(1980), this Bayesian approach allows one to generate a class of 
estimators that highlight the tradeoff between oversimplification and 
overparametrization of a forecasting multivariate autoregression. In 
other words, one is able to exploit the tradeoff between bias and 
variance. Out-of-sample prediction errors provide the metric for 
picking the optimal specification for forecasting purposes. 

The issue of parsimony is, of course, particularly pressing in VAR 
models, and unrestricted VAR models are known to produce relatively 
large out-of-sample forecast errors. This simply suggests that spurious 
correlations in the data have been picked up by allowing too many 
channels of interaction between multicollinear, noisy variables. The 
use of priors reduces the risk of picking up misleading relationships 
and lessens the problem of noise in the data obscuring a weak signal . 

In Bayesian time series models, parsimony is not achieved through 
exclusion restrictions like in conventional models. Exclusion of a 
variable amounts to full certainty that the parameters of the variable 
are exactly zero, but Bayesian decision theory questions such an 
absolute belief which is not given a chance to be revised by any amount 

3 The Bayesian approach dates back to the reverend Thomas Bayes and the 
18th century (Bayes (1763)). See Zellner (1985) for an introduction .to 
the Bayesian paradigm and its application to econometrics. See Harr~son 
& Stevens (1971, 1976) for early applications of the Bayesian paradlgm 
to short-run forecasting. 
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of historica1 evidence. The Bayesian procedure a110ws both the data and 
the be1iefs of the mode1er to bear on the resu1ts, and a110ws the 
mode1er to f1exib1y contro1 how much weight either consideration is to 
be given. 

The way prior information and data are combined to yie1d a probabi1ity 
distribution for, say, a forecast is given by Bayes' theorem. Let p(8) 

-
be the prior probabi1ity density function (pdf) for the parameter 
vector ~, p <.yl~) the pdf for an observation vector f, given ~ and the 
like1ihood function, and p(~lf) the posterior pdf for ~ given f and 
the prior information. Then the joint pdf for y and e is 

(1) 

and 

(2) 

where a denotes proportiona1ity. In words, Bayes' theorem (2) states 
that the posterior pdf is proportiona1 to the prior pdf times the 
1ike1ihood function. A1so note that (2) provides an exact, finite 
samp1e posterior pdf for e. 

In order to obtain a point estimate 1ike the posterior mean vector, we 
need to introduce an exp1icit 10ss function when solving 

(3) 
A 

m}n f L(~,~)p(~lf) ~ 
e 

A A A 
where L (e,e) is the 10ss function and e = e(y) . For examp1e, 
emp10ying the quadratic 10ss function 

A A A 
( 4 ) L ( e , e) - ( e -8) I Q ( e -8 ) 

where Q is a given, positive definite symmetric matrix, the prob1em (3) 
can be stated 

A 
(5) min E L (e, e) 

II 
e 
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where the expectation E is taken conditiona1 on 8 in which 

(6) 
A _ _ A _ A 

E L (8, 8) = E (8 -8) I Q (8 -8) + (8 -8) I Q (8 -8) _ .... - - -- - -

where ~A= E_8 is the posterior mean vector. From (6) we see that 
taking ~ = ~ 1eads to minima1 expected 10ss. Thus the posterior mean is 
an optima1 point estimate for a quadratic 10ss function in the sen se 
that it minimizes expected 10ss. In the current work, we wi11 use 
a readi1y computab1e approximation to this posterior mean vector 
re1ying on the mixed estimation technique of Thei1 (see Thei1 (1971), 
pp. 346-352). 

In brief, the specification procedure deve10ped by Robert Litterman for 
vector autoregression mode1s consists of the fo110wing four steps.4 
First1y, benchmark univariate autoregressive forecasting equations are 
estimated by ordinary 1east squares. The dimension of search is over 
the 1ag 1engths of these univariate representations. The second step in 
the specification process consists of trying to improve the forecasting 
performance by a110wing for mu1tivariate interaction. The dimension of 
search inc1udes the univariate specifications at one end and an 
unrestricted VAR mode1 at the other. 

In the third step of the specification procedure equation-specific 
priors are introduced into the mu1tivariate autoregression. This search 
defines a dimension of more or 1ess differentiation among variab1es; at 
one end a11 variab1es are treated symmetrica1ly and at the other end 
equation-specific exclusion restrictions are obtained. The final step 
is to strike a balance between the oversimplification of a constant­
coefficient specification and the overparametrization of a fu1ly time­
varying coefficient mode1. At each step in the specification process, 
out-of-samp1e forecast errors are generated using the Kalman filter, 
and forecasting performance is judged by, e.g. , Thei1's inequality 

coefficient. 

4 See Litterman (1979 1986b) for details on the specification 
procedure. Doan et al~ (1984) develop a similar, but more comp1ex, 
procedure. The antecedents of these procedures are the work.of Hoer1 & 
Kennard (1970), Leamer (1972, 1978), Shi11er (197~) and Steln (1974) on 
shrinkage estimation and its Bayesian interpretatlon. 
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2.3 The Minnesota prior 

The prior used throughout the specification search has gained 
sufficient popularity among BVAR forecasters to merit a closer 
presentation. Since it was developed by researchers associated with the 
University of Minnesota and the Federal Reserve Bank of Minneapolis, it 
has been minted the Minnesota system of prior beliefs, or more briefly, 
the Minnesota prior. 5 This prior expresses, in the form of 
probabilities, which kind of a set of model parameter values will give 
the best forecasts. In particular, the Minnesota prior assumes that the 
joint probability distribution for the model parameters is multivariate 

normal. 

The first moments of the model parameters are set according to the 
random walk hypothesis. As it is well known, a random walk component 
has proved to be very hard to reject in most macroeconomic time series. 
The prior second moments on own lag parameters are set to decay 
geometrically or harmonically with lag length. Cross lags get prior 
means of zero with the same downweighting of prior variances as own 
lags. Cross lag variances are also weighted by an own-versus-cross 
variance factor, which gives the cross prior variances units comparable 
to those of the own prior variances. The Minnesota system of priors is 
completed by specifying a prior on the absolute size of own and cross 

variances. 6 

5 The Minnesota prior is lucidly and at length presented by Todd 
(1984). The Minnesota prior is sometimes also referred to as the 
Litterman prior. 

6 Applications of the Minnesota prior include Amirizadeh & Todd (1984), 
Doan et al. (1984), Litterman (1984a, b), Kunst & Neusser (1986), 
Genberg & Salemi (1987), Cargill & Morus (1988), Raynauld (1988), 
Trevor & Thorp (1988), Trehan (1989), Artis & Zhang (1990) and Boero 
(1990). 

3. AN APPLICATION TO THE FINNISH ECONOMY 

3.1 Data and functional form 

The choice of what variables to include into a VAR model depends on the 
aim and scope of the study. In our study we, in asense, sidestep the 
problem by simply including those variables which have received most 
attention in the context of real time forecasting, when assessing the 
reliability of preliminary economic statistics and in fixing starting 
values for econometric forecasting models based on quarterly data. Of 
course, the resulting vector of variables will almost surely not be the 
entropy-minimizing vector. The Bayesian specification procedure allows 
us to balance bias and variance in the resulting model, but 
computational considerations limit the number of variables to include. 
Following earlier work designed for purposes similar to ours, we limit 
the number of variables to eight. 7 

All data are monthly and (where appropriate) seasonally adjusted and 
expressed in natural logarithms. 8 The variables are: an indicator of 
real gross domestic product (y), real industrial production (Yi)' 
consumer prices (p), the short-term nominal interest rate (i), real 
exports (x), real imports (m), export prices (Px) and import prices 
(Pm). We employ data from 1980M1 - 1990M9, using data from 1980M1 -
1989M9 to estimate the model from and leaving data from 1989M10 -
1990M9 for the assessment of forecasting performance. This choice of 
estimation period maximizes the difficulties of out-of-sample 
forecasting, since a major slowdown of the Finnish economy began at the 
end of the estimation period following a decade of stable growth. Data 
from the 1960s and the 1970s are not employed, since major structural 
changes took place during the latter part of the 1970s changing the 
short-run dynamics of the Finnish economy (Starck (1990)). 

7 Studies with aims similar to ours include Litterman (1979, 1984a, 
1986b), Doan et ale (1984), Kunst & Neusser (1986), Cargill & Morus 
(1988), Trevor & Thorp (1988), Artis & Zhang (1990) and Boero (1990). 

8While the use of seasonally adjusted data maY,have its dra~b~cks (Sims 
(1974), Wallis (1974)), the use of sensible prlors should mltlgate 
these concerns. 
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The multivariate autoregression comprlslng the above variables is 
estimated in levels. By refraining from differencing we avoid 
distroying information about possible long-run (cointegration) 
relationships between the variables. We include intercepts in every 
equation, but refrain from using time trends. This is because an eight­
variable VAR model can fit exactly an arbitrary set of very high-order 
polynomial time trends, while explicitly adding trend terms requires 
that forecasts with a linear time trend have standard errors of 
forecast not increasing at all as the forecast horizon lengthens. 
1ncluding intercepts implies that our prior will not include a pure 
random walk, but a random walk with drift. 9 

3.2 Empirical results 

Throughout the specification search, Theil's inequality coefficient U 
will be used in the evaluation of dynamic, out-of-sample forecasts. 
This metric will be reported for 1, 3, 6, 9 and 12 steps ahead 
forecasts. Theil's U is the ratio of the root mean square error of 
forecast to the corresponding error of a no-change forecast. This unit­
free statistic is 0 for a perfect forecast, while a value in excess of 
1 is discouraging in the sense that a naive no-change forecast would do 
better. A no-change forecast is the optimal forecast for a pure random 
walk, and it is reasonable to believe that our variables contain 
sizeable random walk components. All empirical results are relegated to 
the Appendix. 

Results from the first step in the specification procedure - estimating 
univariate benchmark models - are presented in Table 1. Autoregressive 
models of order 1 through 12 are evaluated. Overall, very low-order 
- 1 and 2 lag - models forecast best. There seems to be no need to 
include more lags in order to increase the accuracy of forecasts for 
longer horizons. The best benchmark models outperform no-change models 
in practically all cases and at all forecast horizons. Nevertheless, 

the variables y, y;, i, Px and Pm appear to be closely approximated by 

9 Outliers are dealt with using the following dummy variables: 81M4 
(i), 85M5 (x), 86M5 (y, y;, m), 86M6 (m) and 86M8 (i). 
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random walks hence severely limiting the possibilities to improve 
forecasts for these variables. 1n particular, the best forecast for 
is a no-change value at all forecast horizons. The data generating 

Px 

processes for p, x and m appear to be more elaborate than random walks 
thus leaving scope for improvement in forecasting. 

1n the second step of the specification process, we evaluate gains in 
forecasting performance from allowing for multivariate interaction 
between variables. A sixth-order VAR is chosen because of computational 
considerations. The second moments of the distributions for 
coefficients on lags vary as a function of the lag number, being 
tighter around lags further back. The tightening of second moments is 
harmonic with a unity decay parameter. The tightness of the prior 
around zero for each of the coefficients on variables other than own 
lags is parametrized by a number TI1• When TI1 = 0 a system of univariate 
equations is estimated and when TI1 = 1 a complete VAR model is 
considered. Constants and coefficients on dummy variables are given 
flat priors with zero means. Empirical findings are reported in 
Table 2. 

The best forecast performance is in the majority of cases obtained by 
allowing for interaction between variables. 1n general, in the best 
models the variance around the first lag of other variables with prior 
mean zero is as high as 0.5 (aside from a scale factor). Some variation 
in the optimal value of TI1 is encountered depending on the forecast 
horizon. The variables y; and Px appear to be largely exogenous and 
difficult to forecast, however. 1ncreases in forecasting accuracy 
relative to benchmark models are unanimous for p and x and partial for 
m and Pm. Allowing for unstructured multivariate interaction does not 
improve forecasts for y, y;, i and px. 

Having put priors on the variances of coefficients on variables other 
than own lags, we proceed by investigating the consequences for 
forecasting of varying the tightness of the prior around first own 
lags. Let TI2 determine prior own lag variances and maintain TI1 = 0.5 for 
other than own lag variances. The empirical evidence is given in Table 
3. Results differ somewhat across variables and forecasting horizons, 
but a modest tightness (TI2 = 0.15) seems to be preferable, on the 

14 

The multivariate autoregression comprlslng the above variables is 
estimated in levels. By refraining from differencing we avoid 
distroying information about possible long-run (cointegration) 
relationships between the variables. We include intercepts in every 
equation, but refrain from using time trends. This is because an eight­
variable VAR model can fit exactly an arbitrary set of very high-order 
polynomial time trends, while explicitly adding trend terms requires 
that forecasts with a linear time trend have standard errors of 
forecast not increasing at all as the forecast horizon lengthens. 
1ncluding intercepts implies that our prior will not include a pure 
random walk, but a random walk with drift. 9 

3.2 Empirical results 

Throughout the specification search, Theil's inequality coefficient U 
will be used in the evaluation of dynamic, out-of-sample forecasts. 
This metric will be reported for 1, 3, 6, 9 and 12 steps ahead 
forecasts. Theil's U is the ratio of the root mean square error of 
forecast to the corresponding error of a no-change forecast. This unit­
free statistic is 0 for a perfect forecast, while a value in excess of 
1 is discouraging in the sense that a naive no-change forecast would do 
better. A no-change forecast is the optimal forecast for a pure random 
walk, and it is reasonable to believe that our variables contain 
sizeable random walk components. All empirical results are relegated to 
the Appendix. 

Results from the first step in the specification procedure - estimating 
univariate benchmark models - are presented in Table 1. Autoregressive 
models of order 1 through 12 are evaluated. Overall, very low-order 
- 1 and 2 lag - models forecast best. There seems to be no need to 
include more lags in order to increase the accuracy of forecasts for 
longer horizons. The best benchmark models outperform no-change models 
in practically all cases and at all forecast horizons. Nevertheless, 

the variables y, y;, i, Px and Pm appear to be closely approximated by 

9 Outliers are dealt with using the following dummy variables: 81M4 
(i), 85M5 (x), 86M5 (y, y;, m), 86M6 (m) and 86M8 (i). 

15 

random walks hence severely limiting the possibilities to improve 
forecasts for these variables. 1n particular, the best forecast for 
is a no-change value at all forecast horizons. The data generating 

Px 

processes for p, x and m appear to be more elaborate than random walks 
thus leaving scope for improvement in forecasting. 

1n the second step of the specification process, we evaluate gains in 
forecasting performance from allowing for multivariate interaction 
between variables. A sixth-order VAR is chosen because of computational 
considerations. The second moments of the distributions for 
coefficients on lags vary as a function of the lag number, being 
tighter around lags further back. The tightening of second moments is 
harmonic with a unity decay parameter. The tightness of the prior 
around zero for each of the coefficients on variables other than own 
lags is parametrized by a number TI1• When TI1 = 0 a system of univariate 
equations is estimated and when TI1 = 1 a complete VAR model is 
considered. Constants and coefficients on dummy variables are given 
flat priors with zero means. Empirical findings are reported in 
Table 2. 

The best forecast performance is in the majority of cases obtained by 
allowing for interaction between variables. 1n general, in the best 
models the variance around the first lag of other variables with prior 
mean zero is as high as 0.5 (aside from a scale factor). Some variation 
in the optimal value of TI1 is encountered depending on the forecast 
horizon. The variables y; and Px appear to be largely exogenous and 
difficult to forecast, however. 1ncreases in forecasting accuracy 
relative to benchmark models are unanimous for p and x and partial for 
m and Pm. Allowing for unstructured multivariate interaction does not 
improve forecasts for y, y;, i and px. 

Having put priors on the variances of coefficients on variables other 
than own lags, we proceed by investigating the consequences for 
forecasting of varying the tightness of the prior around first own 
lags. Let TI2 determine prior own lag variances and maintain TI1 = 0.5 for 
other than own lag variances. The empirical evidence is given in Table 
3. Results differ somewhat across variables and forecasting horizons, 
but a modest tightness (TI2 = 0.15) seems to be preferable, on the 



16 

whole. Again, Yi and Px resemble random walks, while clear improvements 
in forecasting are documented for p and x and some success is 
encountered in the cases of m and Pm. The evidence tends to suggest 
that the mean of the own first lag of x is less than unity. 

Having found optimal degrees of tightness on prior variances (~1 = 0.5 
and ~2 = 0.15), we conclude the second step of the specification 
process by searching for the optimal type of tightening of variances by 
lag number. So far, a harmonic lag decay with decay parameter ~3 = 1 
has been used. In Table 4 we report results using both harmonic and 
geometric decays for a variety of values of ~3.10 As it happens, no 

overall best type of lag decay can be singled outo Most variables seem 
to require fairly tight decays, but m and Px may benefit from 
relatively loose decays. Improvements in forecasting relative to 
benchmarks are found for p and x, and possibly for i and m. While the 
choice of lag decay pattern does not seem to be of overwhelming 
importance, we chose to tighten the decay somewhat in the subsequent 
analysis by employing a harmonic pattern with decay parameter ~3 = 2. 

Moving on to the third step of the specification process, we introduce 
equation-specific priors. We suggest a tentative structure for the 
relationships between the variables in our model, but let the data 
override the prior if the historical evidence is strong enough. The 
relative weights used to impose an asymmetric structure on the model 
are given in Table 5. Let ~4 index how much weight the a priori 
structure is to have. When ~4 = 1 all variables are treated 
symmetrically, and as ~4 decreases, the limiting specification has zero 
restrictions with the relative weights displayed in Table 5. 

Results from the search along a dimension of the prior allowing for 
varying amounts of asymmetric multivariate interaction are presented in 
Table 6. For most variables, a modest degree of asymmetric treatment 
(~4 = 0.2) appears to be appropriate. In the case of Yi and Px' tight 
adherance to the limiting specification is preferable. In all cases, 
allowing for a mild structure on the interactions in the model improves 

10 Harmonic lag decay as a function of lag lenght 1 is imposed using the 
formula 1-~3 and geometric decay is obtained using ~31-1. 
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forecasting performance relative to previous estimates. Moreover , the 
preferred model outperforms the benchmark models for p, x and m. All 
forecasts, except those for Yi and Px' also outdo naive no-change 
forecasts for at least some forecast horizons. 

The final step in the specification search is to evaluate whether gains 
in forecasting performance can be obtained by allowing for parameter 
variation. We let the parameters follow a random walk with variances 
proportional to their variances in the prior distribution. Let the 
factor of proportionality be ~5. When TI5 = 0 a constant-coefficient 
model is used and as TI5 increases more parameter variation is allowed. 
In this final search, the optimal parameter settings obtained above 
are, as in earlier searches, employed (~1 = 0.5, ~2 = 0.15 and harmonic 
decay with ~3 = 2).11 Empirical results are given in Table 7. 

In the case of y, p, x and m improvements in forecasting performance 
cannot be obtained by allowing parameter variation. A very small amount 
of time variation may be beneficial for Yi' i and Px. Allowing the 
parameters in the equation for Pm to change clearly would improve out­
of-sample forecasts. The last result stems from the occurrence of the 
latest oil-shock (see Figure 1h of the Appendix), which, obviously, 
cannot be accounted for by the other model variables. 

On the whole, we favor the use of a fixed-coefficient model for the 
following reasons. Firstly, half of the variables do not benefit from 
varying parameter specifications. Secondly, the computational burden is 
massive for varying parameter models. Thirdly, the parameter drift for 
those variables that could benefit from it is of negligible magnitude, 
in particular in comparison to sampling error. The implied standard 
error of the change in the first own lag is roughly 0.001 around a 
prior mean of 1. Lastly, the fact that simple random walks forecast as 
well as they do even 12 steps ahead (Table 1) is inconsistent with 
large amounts of parameter variability. In addition, we should remember 
that data spanning a decade only are used thus lessening the magnitude 

of possible true parameter drift. 

11 Because of computational difficulties, asymmetric mult}v~ria~e 
interaction is not employed in the l~st step.of the speclflc~tlon 
search. Likewise, the models are estlmated wlthout dummy varlables . 
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We conclude the illustration of the Bayesian specification scheme by 
scrutinizing the forecasting ability of our final model. A selection of 
model evaluation statistics is presented in Table 8 where the best 
benchmark models are contrasted with the best multivariate model. With 
respect to in-sample fit, the final model outperforms all benchmark 
models. In out-of-sample forecasting, consistent improvements are 
documented for p, x and m. For yand i, only minor improvements are 
found. No gains relative to a no-change forecast are achieved in the 

case of Yi' Px and Pm' In fact, within our vector of variables, no model 
was found to beat a no-change forecast of Px' 

The forecasting performance of the final model is presented graphically 
in Figure 1 of the Appendix. With regard to y and Yi' the trend is 
picked up, but the slowdown at the very end of our sample period is not 
tracked. Using our disparate set of variables, it seems, not too 
surprisingly, to be impossible to account for the recent, pronounced 
slowdown in the production variables. 12 The model tracks p well, and 
picks up the fundamental movements in i. Likewise, x is well forecasted 
while some difficulties in predicting the slowdown in m show upo The 
forecast for Px is nonsensical and modest success is met with in the 

case of Pm' 

12 As it is well known, VAR models typically contain only a little 
information not in conventional econometric macromodels while 
conventional models may contain information not in VAR models (Fair & 
Shiller (1989, 1990)). 
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4. CONCLUDING REMARKS 

In this paper, we have reviewed a Bayesian approach to multivariate 
time series modeling for short-run forecasting, illustrating i t with 
data from the Finnish economy. A vector autoregression model with 
Bayesian priors was specified, which yields adjustment-free, low-cost 
forecasts of key macroeconomic variables on a monthly basis. The model 
is estimated using data from the 1980s only, and the out-of-sample 
forecasting performance is found to be reasonable for some of the model 
variables. Since our variables are characterized by only small amounts 
of comovement, and the specification period differs from the 
forecasting period, our application would tend to speak favourably of 
the Bayesian approach to specifying multivariate time series models . 
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APPENDIX TABLE 1 (continued) 

TABLE 1 UNIVARIATE AUTOREGRESSION FORECAST Real exports 
PERFORMANCE AS MEASURED BY THEIL'S U 

1 .943 1.066 1.368 1.013 .899 Number of steps ahead forecasted 2 .868 .905 1.186 .897 .781 3 .796 .814 1.047 .815 .695 1 1 3 6 9 12 4 .780 .785 1.007 .784 .657 5 .761 .753 .960 .767 .645 6 .755 .743 .939 .749 .614 Real gross domestic product 7 .749 .733 .912 .727 .579 
8 .725 .720 .909 .734 .547 1 1.007 1.008 .655 .482 .777 9 .756 .748 .916 .759 .460 2 .852 .971 .539 1.069 1.875 10 .765 .755 .932 .773 .484 3 .933 .981 .612 1.374 2.212 11 .791 .765 .956 .834 .514 

4 .935 1.012 .725 1.713 2.739 12 .741 .725 .913 .800 .508 
5 1.031 1.139 1.087 2.387 3.679 
6 1.052 1.192 1.151 2.566 3.902 Real imports 
7 1.148 1.238 1.270 2.756 4.142 
8 1.124 1.227 1.221 2.622 3.946 1 1.157 1.068 2.263 .839 .292 
9 1.188 1.314 1.343 2.771 4.156 2 .997 .803 1.316 .632 .191 
10 1.104 1.173 1.150 2.538 3.842 3 1.116 .832 1.020 .746 .679 
11 1.114 1.202 1.200 2.597 2.873 4 1.138 .828 1.094 .845 .887 
12 1.130 1.258 1.280 2.706 4.055 5 1.170 .846 1.347 1.026 1.177 

6 1.132 .807 1.516 1.143 1.386 
Real industrial production 7 1.135 .802 1.488 1.120 1.348 

8 1.163 .834 1.679 1.128 1.466 
1 .988 .971 .978 .818 .732 9 1.220 .882 1.859 1.183 1.560 
2 1.002 1.055 1.052 1.476 1.469 10 1.242 .895 1.889 1.188 1.584 
3 1.249 1.124 1.163 2.104 1.880 11 1.300 .939 1.977 1.239 1.650 
4 1.323 1.147 1.194 2.292 1.985 12 1.287 .928 1.961 1.246 1.627 
5 1.474 1.186 1.283 2.635 2.165 
6 1.455 1.185 1.248 2.543 2.171 Export prices 
7 1.499 1.226 1.324 2.696 2.294 
8 1.467 1.206 1.446 2.870 2.341 1 1.035 1.124 1.237 1.356 1.490 
9 1.474 1.206 1.431 2.887 2.350 2 1.070 1.142 1.284 1.384 1.784 
10 1.507 1.240 1.496 2.985 2.414 3 1.112 1.318 1.625 1.937 2.551 
11 1.434 1.172 1.399 2.239 2.381 4 1.121 1.326 1.634 1.949 2.561 
12 1.413 1.154 1.379 2.821 2.377 5 1.125 1.284 1.550 1.789 2.357 

6 1.151 1.292 1.554 1. 740 2.321 
Consumer prices 7 1.096 1.305 1.601 1.816 2.380 

8 1.123 1.252 1.435 1.309 1.627 
1 .684 .527 .477 .469 .421 9 1.132 1.218 1.369 1.112 1.373 
2 .670 .508 .452 .442 .385 10 1.119 1.211 1.341 1.040 1.244 
3 .669 .508 .451 .440 .381 11 1.112 1.225 1.374 1.114 1.327 
4 .677 .517 .455 .441 .381 12 1.115 1.201 1.338 1.025 1.202 
5 .609 .469 .405 .398 .327 
6 .602 .487 .434 .430 .361 Import prices 
7 .602 .507 .476 .464 .417 
8 .628 .519 .495 .477 .443 1 .997 .980 .992 .969 .922 
9 .620 .498 .470 .450 .414 2 .899 .980 1.030 .980 .957 
10 .582 .449 .421 .402 .370 3 .897 .985 1.034 .974 .946 
11 .615 .492 .466 .449 .422 4 .897 .998 1.041 .966 .940 
12 .603 .423 .384 .373 .344 5 .892 1.002 1.048 .971 .964 

6 .878 .983 1.045 1.010 .995 
Short-term nominal interest rate 7 .881 .983 1.042 1.010 1.009 

8 .911 1.027 1.083 1.041 1.131 
1 1.022 .931 .648 .234 590 9 .894 1.006 1.061 1.055 1.079 
2 1.285 1.040 .780 .367 912 10 .896 1.002 1.063 1.064 1.064 
3 1.382 1.085 .846 .438 991 11 .891 1.003 1.102 1.065 .965 
4 1.429 1.119 .854 .442 1060 12 .892 1.003 1.114 1.068 .949 
5 1.415 1.097 .859 .472 1100 
6 1.496 1.142 .931 .561 1070 
7 1.487 1.142 .882 .511 1300 
8 1.391 1.101 .891 .537 1140 
9 1.393 1.091 .859 .519 1170 
10 1.308 1.059 .916 .620 1100 
11 1.300 1.053 .932 .652 1180 
12 1.271 1.035 .954 .741 1120 
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TABLE 2 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM 
A SEARCH ALONG A DIMENSION OF THE PRIOR ALLOWING VARYING TABLE 3 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM AMOUNTS OF MULTIVARIATE INTERACTION A SEARCH ALONG A DIMENSION OF THE PRIOR 

ALLOWING VARYING AMOUNTS OF TIGHTNESS OF A RANDOM 
WALK SPECIFICATION FOR OWN LAGS Number of steps ahead forecasted 

1T1 
1 3 6 9 12 Number of steps ahead forecasted 

1T2 Real gross domestic product 1 3 6 9 12 0.001 .965 1.105 .947 2.111 3.365 
0.01 .963 1.098 .932 2.068 3.298 
0.05 .949 1.037 .799 1.638 2.658 Real gross domestic product 0.1 .946 1.017 .738 1.308 2.206 1 1.024 1.183 .929 2.196 3.455 0.5 .968 1.072 .648 1.053 2.035 0.2 .965 1.067 .652 1.218 2.271 1 .988 1.048 .631 1.235 2.332 0.15 .968 1.072 .648 1.053 2.035 

0.1 .987 1.091 .707 .957 1.836 Real industrial production 0.05 1.019 1.128 .842 1.193 2.002 0.001 1.070 1.078 1.084 1.877 1.705 0.01 1.048 1.235 1.114 2.208 3.517 0.01 1.073 1.082 1.094 1.894 1.700 
0.05 1.113 1.127 1.201 2.047 1.685 Real industrial production 0.1 1.161 1.191 1.302 2.192 1.735 1 1.487 1.281 1.673 3.607 2.534 0.5 1.299 1.358 1.559 2.760 2.065 0.2 1.369 1.370 1.589 2.921 2.162 1 1.331 1.359 1.631 2.987 2.178 0.15 1.299 1.358 1.559 2.760 2.065 

0.1 1.202 1.317 1.528 2.559 1.944 Consumer prices 0.05 1.093 1.218 1.437 2.205 1.801 0.001 .671 .510 .461 .457 .403 0.01 1.053 1.160 1.335 2.053 1.918 0.01 .671 .509 .459 .456 .401 
0.05 .665 .493 .436 .426 .364 Consumer prices 
0.01 .655 .461 .388 .369 .291 1 .862 .523 .315 .223 .305 
0.05 .673 .387 .244 .177 .009 0.2 .688 .393 .238 .166 .050 
1 .721 .415 .247 .170 .098 0.15 .673 .387 .244 .177 .009 

0.1 .658 .388 .263 .206 .057 
Short-term nominal interest rate 0.05 .650 .422 .329 .293 .195 

0.001 1.256 1.068 .947 .785 197 0.01 .669 .496 .437 .424 .367 
0.01 1.264 1.061 .873 .558 576 
0.05 1.323 1.096 .809 .458 1250 Short-term nominal interest rate 
0.1 1.327 1.098 .806 .469 1260 1 1.552 1.149 1.203 1.458 118 
0.5 1.296 .993 .688 .422 727 0.2 1.340 .995 .728 .530 654 
1 1.304 .973 .723 .582 529 0.15 1.296 .993 .688 .422 727 

0.1 1.231 1.000 .664 .335 872 
Real exports 0.05 1.124 1.006 .699 .394 1140 

0.001 .918 1.014 1.462 1.174 1.122 0.01 1.030 1.011 .890 .620 1010 
0.01 .880 .922 1.265 .998 .916 
0.05 .760 .703 .869 .674 .475 Real exports 
0.1 .740 .683 .833 .646 .405 1 .599 .631 .810 .696 .168 
0.5 .713 .664 .799 .632 .326 0.2 .676 .666 .798 .629 .289 
1 .703 .636 .812 .643 .319 0.15 .712 .664 .799 .632 .326 

0.1 .783 .683 .813 .649 .387 
Rea 1 imports 0.05 .915 .830 .910 .769 .594 

0.001 .977 .787 1.025 .712 .200 0.01 1.013 1.042 1.127 1.144 1.279 
0.01 .978 .774 1.075 .688 .379 
0.05 .992 .751 1.242 .649 .747 Rea 1 imports 
0.1 1.007 .757 1.299 .631 .818 1 .930 .591 1.122 .704 1.123 
0.5 .970 .741 1.251 .629 .955 0.2 .978 .728 1.225 .637 .983 
1 .907 .706 1.187 .636 1.020 0.15 .970 .741 1.251 .628 .955 

0.1 .954 .761 1.277 .629 .946 
Export prices 0.05 .959 .853 1.214 .721 1.105 

0.001 1.078 1.244 1.474 1.688 2.114 0.01 1.037 1.157 1.873 1.659 2.268 
0.01 1.079 1.249 1.483 1.705 2.138 
0.05 1.105 1.332 1.627 1.942 2.458 Export prices 

6.635 0.01 1.147 1.459 1.839 2.247 2.832 1 1.617 2.686 3.889 5.023 
0.5 1.400 2.090 2.857 3.615 4.347 0.2 1.408 2.174 3.011 3.805 4.533 
1 1.460 2.294 3.236 4.098 5.004 0.15 1.380 2.090 2.857 3.615 4.347 

0.1 1.338 1.970 2.645 3.347 4.091 
Import prices 0.05 1.251 1.742 2.276 2.863 3.569 

0.001 .942 .978 1.016 .957 .902 0.01 1.144 1.457 1.825 2.230 2.747 
0.01 .945 .989 1.022 .969 .938 
0.05 .951 1.016 1.052 .955 .960 Import prices 

2.163 .524 0.1 .951 1.036 1.129 .890 .792 1 .824 1.035 2.047 
0.5 .942 1.164 1.745 1.456 .090 0.2 .913 1.148 1.808 1.539 .038 
1 .896 1.104 1.841 1.642 .071 0.15 .942 1.164 1.745 1.456 .090 

0.1 .972 1.152 1.589 1.269 .231 
0.05 .995 1.077 1.216 .896 .672 
0.01 1.030 1.067 1.073 1.196 1.327 
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TABLE 4 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM 
A SEARCH ALONG A DIMENSION OF THE PRIOR 
ALLOWING VARYING AMOUNTS OF TIGHTNESS IN LAG DECAY 

Number of steps ahead forecasted 
'lT3 

1 3 6 9 12 

Real gross domestic product 
0.5 (harroonic) 1.028 1.134 .833 1.658 2.694 
1 (harroonic) .968 1.072 .648 1.053 2.035 
2 (harroonic) .961 1.081 .642 .641 1.528 
0.75 (geometric) .983 1.079 .692 1.352 2.462 
0.5 (geometric) .945 1.068 .607 .691 1.662 
0.25 (geometric) .960 1.084 .651 .617 1.496 

Real industrial production 
0.5 (harroonic) 1.313 1.310 1.540 2.961 2.238 
1 (harroonic) 1.299 1.358 1.559 2.760 2.065 
2 (harroonic) 1.279 1.422 1.611 2.640 1.927 
0.75 (geometric) 1.304 1.306 1.525 2.863 2.183 
0.5 (geometric) 1.299 1.401 1.559 2.669 1.981 
0.25 (geometric) 1.279 1.434 1.629 2.643 1.919 

Consumer prices 
0.5 (harroonic) .685 .389 .233 .147 .072 
1 (harroonic) .677 .387 .244 .177 .009 
2 (harroonic) .666 .382 .250 .189 .024 
0.75 (geometric) .682 .395 .240 .160 .058 
0.5 (geometric) .670 .391 .255 .193 .008 
0.25 (geometric) .666 .382 .251 .189 .025 

Short-term nominal interest ra te 
0.5 (harroonic) 1.342 1.047 .843 .711 627 
1 (harroonic) 1.296 .993 .688 .422 727 
2 (harroonic) 1.310 1.014 .603 .294 897 
0.75 (geometric) 1.30~ 1.018 .835 .738 563 
0.5 (geometric) 1.274 .971 .638 .340 734 
0.25 (geometric) 1.315 1.023 .610 .316 909 

Real exports 
0.5 (harroonic) .714 .671 .798 .638 .307 
1 (harroonic) .712 .664 .799 .632 .326 
2 (harroonic) .727 .675 .821 .637 .351 
0.75 (geometric) .707 .670 .798 .636 .299 
0.5 (geometric) .711 .661 .804 .632 .333 
0.25 (geometric) .728 .676 .822 .637 .352 

Real imports 
0.5 (harroonic) .951 . . 710 1.173 .653 1.015 
1 (harroonic) .970 .741 1.251 .628 .955 
2 (harroonic) .981 .752 1.311 .633 .934 
0.75 (geometric) .959 .726 1.209 .634 .980 
0.5 (geometric) .972 .752 1.295 .620 .921 
0.25 (geometric) .980 .752 1.318 .636 .934 

Export prices 
0.5 (harroonic) 1.407 2.206 3.101 3.914 4.652 
1 (harroonic) 1.380 2.090 2.857 3.615 4.347 
2 (harllxmic) 1.395 2.071 2.734 3.502 4.343 
0.75 (geometric) 1.401 2.203 3.058 3.872 4.594 
0.5 (geometric) 1.395 2.109 2.820 3.589 4.399 
0.25 (geometric) 1.401 2.078 2.734 3.512 4.374 

Import prices 
0.5 (harroonic) .905 1.156 1.926 1.690 .029 
1 (harroonic) .942 1.164 1.745 1.456 .090 
2 (harroonic) .996 1.150 1.566 1.266 .198 
0.75 (geometric) .917 1.172 1.876 1.627 .004 
0.5 (geometric) .963 1.176 1.689 1.397 .102 
0.25 (geometric) 1.003 1.150 1.555 1.258 .201 

TABLE 5 

Equation 

Y 

Yj 

p 

x 
m 

Px 

Pm 
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RELATIVE WEIGHTS OF VARIABLES IN DIFFERENT 
EQUATIONS 

Variable 

Y Yj P i x m 

2.0 0.2 0.1 0.2 0.5 0.8 
0.5 2.0 0.1 0.2 0.2 0.2 

0.8 0.1 2.0 0.2 0.8 0.1 
0.5 0.2 0.5 1.0 0.2 0.1 
0.2 0.5 0.1 0.5 1.0 0.2 
0.8 0.2 0.2 0.1 0.1 1.0 
0.8 0.1 0.5 0.1 0.1 0.1 
0.2 0.2 0.8 0.5 0.2 0.5 

Px Pm 

0.1 0.8 
0.1 0.2 

0.2 0.2 
0.2 0.1 
0.8 0.2 
0.2 0.5 

2.0 0.8 

0.2 2.0 
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TABLE 6 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM TABLE 7 FORECAST PERFORMANCE MEASURED BY THEIL'S U FROM A SEARCH ALONG A DIMENSION OF THE PRIOR 
A SEARCH ALONG A DIMENSION OF THE PRIOR ALLOWING VARYING ALLOWING VARYING AMOUNTS OF ASYMMETRIC TREATMENT AMOUNTS OF TIME-VARIATION IN COEFFICIENTS OF VARIABLES IN DIFFERENT EQUATIONS 

Number of steps ahead forecasted 
1r5 Number of steps ahead forecasted 1 3 6 9 12 1r4 

1 3 6 9 12 
Real gross domestic product O' 1.246 1. 741 1.556 3.696 5.660 Real gross domestic product 1 x 10-8 1.329 2.005 2.492 4.570 7.579 1 1.017 1.205 1.062 1.985 3.083 1 x 10-7 1. 719 3.131 5.751 14.622 6.531 0.2 .918 1.058 .641 .936 1.902 1 x 10-6 2.180 4.531 8.442 9.987 19.783 0.15 .922 1.051 .622 .928 1.882 1 x 10-5 2.201 4.114 7.295 6.293 9.050 0.1 .943 1.050 .624 1.003 1.906 

1 x 10-4 1.934 3.472 5.758 6.242 5.399 0.05 .988 1.062 .673 1.167 1.924 
Real industrial production 0.01 1.023 1.099 .772 1.360 2.223 

O' 1.344 1.255 1.629 3.313 2.622 
Real industrial production 1 x 10-8 1.253 1.168 1.638 1.289 3.004 

1 1.661 1.461 1.901 3.570 2.503 1 x 10-7 1.501 1.890 4.858 14.804 7.411 
0.2 1.430 1.435 1.649 2.825 2.020 1 x 10-6 1.788 2.854 7.796 28.400 8.260 
0.15 1.340 1.398 1.605 2.743 1.965 1 x 10-5 1.663 2.324 5.026 6.740 1.835 0.1 1.198 1.302 1.508 2.583 1.870 1 x 10-4 1.552 1.687 3.419 3.854 1.729 0.05 -1.040 1.110 1.236 1.996 1.566 Consumer prices 0.01 1.015 1.045 1.076 1.312 1.297 0- .886 .576 .337 .174 .217 

1 x 10-8 .987 .794 .696 .679 .220 Consumer prices 1 x 10-7 1.064 .954 .985 .914 .826 1 .693 .373 .221 .155 .140 1 x 10-6 1.081 1.101 1.150 .945 1.446 0.2 .643 .360 .231 .171 .035 
1 x 10-5 .954 1.011 1.069 .932 1.239 0.15 .641 .369 .248 .193 .074 
1 x 10-4 .908 1.004 1.075 .854 1.204 0.1 .642 .390 .282 .235 .137 

0.05 .652 .439 .356 .325 .255 Short-term nominal interest rate 
O' 1.872 1.354 1.190 1.111 466 0.01 .675 .508 .453 .442 .390 
1 x 10-8 1.593 1.354 1.483 2.139 1190 

Short-term nominal interest rate 1 x 10-7 1.502 1.809 3.023 8.238 4310 
1 1.423 1.000 .739 .527 631 1 x 10-6 1.538 2.395 4.655 15.766 2870 
0.2 1.294 1.035 .641 .377 1050 1 x 10-5 1.227 1.911 3.005 6.268 2340 0.15 1.262 1.047 .657 .446 1140 1 x 10-4 .883 1.348 2.114 4.706 2420 0.1 1.211 1.052 .682 .522 1260 Real exports 0.05 1.125 1.029 .705 .528 1390 0- .846 .674 .932 .734 .187 0.01 1.028 1.008 .883 .607 989 1 x 10-8 1.009 .734 .837 .849 .467 

1 x 10-7 1.304 1.637 2.119 4.162 1.436 Real exports 
1 x 10-6 1.612 3.167 7.981 13.992 7.318 1 .636 .708 .830 .639 .176 
1 x 10-5 1.692 3.116 6.194 7.533 9.264 0.2 .713 .690 .818 .627 .316 
1 x 10-4 1.686 3.004 5.114 6.649 7.623 0.15 .747 .706 .834 .634 .335 

Real imports 0.1 .813 .750 .876 .656 .377 
.933 .885 1.022 .805 .609 0 1.069 .497 1.415 .742 1.297 0.05 

0.01 1.012 1.036 1.155 1.157 1.299 1 x 10-8 1.197 .651 1.386 1.038 1.044 
1 x 10-7 1.461 1.518 4.101 5.224 2.069 

Rea 1 imports 1 x 10-6 1.675 2.615 13.011 14.129 3.611 
1 1.034 .717 1.266 .721 1.110 1 x 10-5 1.718 2.484 8.598 7.298 12.611 
0.2 .970 .730 1.321 .666 1.004 1 x 10-4 1.659 2.354 6.605 4.935 8.723 0.15 .946 .730 1.324 .670 1.012 

Export prices 0.1 .920 .742 1.325 .693 1.045 
0 2.152 3.384 4.763 6.297 8.231 0.05 .944 .854 1.306 .827 1.221 
1 x 10-8 1.653 2.294 3.076 3.721 6.584 0.01 1.024 1.109 1.617 1.477 1.912 
1 x 10-7 1.649 2.288 2.892 3.166 6.073 
1 x 10-6 1.707 2.527 3.577 3.736 7.031 Export prices 

4.423 1 x 10-5 1.633 2.450 3.680 3.464 7.949 1 1.434 2.047 2.774 3.426 
0.2 1.270 1.806 2.376 3.009 4.111 1 x 10-4 1.493 2.301 3.664 3.523 8.045 
0.15 1.263 1. 797 2.372 3.045 4.226 Import prices 

4.060 1.487 0.1 1.262 1.799 2.392 3.119 4.353 0- 1.071 1.444 3.122 
0.05 1.241 1. 740 2.307 2.993 4.021 1 x 10-8 1.081 1.655 2.675 2.691 .288 
0.01 1.148 1.465 1.832 2.230 2.740 1 x 10-7 1.017 1.684 3.140 4.122 .485 

1 x 10-6 .951 1.677 3.505 6.184 .449 
Import prices 1 x 10-5 .834 1.357 2.496 2.570 .108 

1 .818 1.056 1.638 1.269 .237 1 x 10-4 .811 1.159 2.010 1.137 1.171 0.2 .945 1.189 1.544 1.145 .344 
0.15 .967 1.178 1.464 1.050 .444 
0.1 .987 1.136 1.306 . 900 .630 
0.05 1.002 1.059 1.066 .852 .943 
0.01 1.028 1.055 1. 057 1.158 1.270 



TABLE 8 

Statistic 

1 
2 

R 
SEE 

Q 
U(1) 
U(3) 
U(6) 
U(9) 
U(12) 
U(wa) 

COMPARISON OF INITIAL UNIVARIATE AND FINAL MULTIVARIATE MODELS 

Y 

initial/ final 

2 / 6 

0.9815 / 0.9851 
0.0112 / 0.0101 
0.0000 / 0.0000 
0.8518 / 0.9175 
0.9713 / 1. 0581 
0.5394 / 0.6405 
1. 0694 / 0.9362 
1.8751 / 1.9019 
0.9541 / 0.9985 

2 

Yi 

initial/ final 

1 / 6 

0.9403 / 0.9636 
0.0218 / 0.0170 
0.0000 / 0.0029 
o . 9880 / 1. 4295 
0.9706 / 1.4352 
o . 9777 / 1. 6486 
0.8183 / 2.8254 

0.7316 / 2.0201 
0.9305 / 1.7432 

p 

initial/ final 

12 / 6 

0.9990 / 0.9993 
0.0045 / 0.0041 
0.4125 / 0.0000 

0.6033 / 0.6427 
0.4229 / 0.3595 
0.3844 / 0.2307 
0.3729 / 0.1712 
0.3444 / 0.0353 
0.4540 / 0.3580 

Variable 

i x 

i n it i a 1 / f i na 1 initial/ final 

1 / 6 8 / 6 

0.8757 / 0.9180 0.5800 / 0.6435 
0.0088 / 0.0072 0.0717 / 0.0662 
0.0224 / 0.0590 0.4977 / 0.0097 

1.0219 / 1.2940 0.7254 / 0.7132 
0.9313 / 1.0349 0.7201 / 0.6895 
0.6479 / 0.6407 0.9086 / 0.8178 
0.2342 / 0.3774 0.7339 / 0.6269 
590 / 1048 0.5467 / 0.3157 
0.8412 / 0.9940 0.7441 / 0.6755 

m 

i n it i a 1 / f i na 1 

2 / 6 

0.6326 / 0.7929 
0.0957 / 0.0719 
0.0005 / 0.0015 
0.9969 / 0.9695 
0.8030 / 0.7298 
1.3156 / 1.3208 
0.6315 / 0.6655 
0.1906 / 1. 0043 
0.8767 / 0.8473 

Px 

initial/ final 

1 / 6 

0.9950 / 0.9958 
0.0065 / 0.0060 
0.0010 / 0.0850 
1. 0352 / 1. 2704 
1.1237 / 1.8064 
1.2373 / 2.3756 
1. 3558 / 3.0092 
1.4901 / 4.1112 
1.1913 / 2.1703 

Pm 

initial/ final 

1 / 6 

0.9681 / 0.9739 
0.0122 / 0.0110 
0.2654 / 0.4806 
0.9974 / 0.9454 
0.9796 / 1.1890 
0.9921 / 1. 5440 
0.9688 / 1.1448 
0.9222 / 0.3441 
0.9801 / 1.0958 

1 is lag length, R is the degrees-of-freedom-corrected squared multiple correlation coefficient, Q is the Ljung-Box portmanteau statistic based on 30 autocorrela­
tions, U(n) is Theil's U at forecast horizon n, n = 1, 3, 6, 9, 12 and U(wa) is a weighted average of the U(n) with weights (at forecast horizon n) 0.30 (1), 0.25 
(3), 0.20 (6), 0.15 (9) and 0.10 (12). In the case of the variable i, U(12) is ignored in the calculation of U(wa) using the weights (at forecast horizon n) 0.40 
(1), 0.30 (3), 0.20 (6), 0.10 (9) and 0.00 (12). 

H "'T'1 H ." ." 

..... ... e - ... ... ... 
~ 6 - -0 ... m 

~ 0 ... ~ 
G') G> 

0 0 c: 0 0 c: c: 
;0 

rllllllllllllllllllllllllllllllllllllllllllllllll 
;0 ;0 

rr1 rn rn 

..... ..... ..... 
C" 01 

i;; <-et 
... 
lO 
m 
0 

::0 ;0 "'l>--i 
CD (t) 0(')-
jl.I ... jl.I -sr+::: ..... lO --' (t)crn 

m (')01 ..... ru ta 01 -' Vl 
::3 -s V') rn 
0- 0 r+ ::0 
C V'I 1-4 
V') V'I • rn 
r+ ' • Vl 
-s c.. • ..... ... 0 • » 
jl.I ta :3 • z ..... m (!) • 0 

A- V') 

"0 r+ "'T'1 
-s -J. 0 
0 (') ;0 

c.. rn 
C "0 (""') 

(') -s l> 
r+ ... 0 Vl ..... ta c.. -; 
0 m c: VI 
::1 m n 

M-

N 
():) 

t-.J 
~ 

TABLE 8 

Statistic 

1 
2 

R 
SEE 
Q 

U(1 ) 
U(3) 
U(6) 
U(9) 
U(12) 
U(wa) 

COMPARISON OF INITIAL UNIVARIATE AND FINAL MULTIVARIATE MODELS 

Y 

initia1/ fina1 

2 / 6 

0.9815 / 0.9851 
0.0112 / 0.0101 
0.0000 / 0.0000 
0.8518 / 0.9175 
0.9713 / 1.0581 
0.5394 / 0.6405 
1.0694 / 0.9362 

1.8751 / 1.9019 
0.9541 / 0.9985 

2 

Yj 

iniHa1/ fina1 

1 / 6 

0.9403 / 0.9636 
0.0218 / 0.0170 
0.0000 / 0.0029 
0.9880 / 1. 4295 
0.9706 / 1.4352 
0.9777 / 1.6486 
0.8183 / 2.8254 

0.7316 / 2.0201 
0.9305 / 1. 7432 

P 

initia1/ fina1 

12 / 6 

0.9990 / 0.9993 
0.0045 / 0.0041 
0.4125 / 0.0000 
0.6033 / 0.6427 
0.4229 / 0.3595 
0.3844 / 0.2307 
0.3729 / 0.1712 
0.3444 / 0.0353 
0.4540 / 0.3580 

Variab1e 

x 

initia1/ fina1 initia1/ final 

1 / 6 8 / 6 

0.8757 / 0.9180 0.5800 / 0.6435 
0.0088 / 0.0072 0.0717 / 0.0662 
0.0224 / 0.0590 0.4977 / 0.0097 
1.0219 / 1.2940 0.7254 / 0.7132 
0.9313 / 1.0349 0.7201 / 0.6895 
0.6479 / 0.6407 0.9086 / 0.8178 
0.2342 / 0.3774 0.7339 / 0.6269 
590 / 1048 0.5467 / 0.3157 
0.8412 / 0.9940 0.7441 / 0.6755 

m 

i n it i a 1 / f i na 1 

2 / 6 

0.6326 / 0.7929 
0.0957 / 0.0719 
0.0005 / 0.0015 
0.9969 / 0.9695 
0.8030 / 0.7298 
1.3156 / 1.3208 
0.6315 / 0.6655 
0.1906 / 1.0043 
0.8767 / 0.8473 

Px 

init ia 1/ f ina 1 

1 / 6 

0.9950 / 0.9958 
0.0065 / 0.0060 
0.0010 / 0.0850 

1. 0352 / 1. 2704 
1.1237 / 1.8064 
1. 2373 / 2.3756 
1. 3558 / 3.0092 
1.4901 / 4.1112 
1.1913 / 2.1703 

Pm 

initia1/ fina1 

1 / 6 

0.9681 / 0.9739 
0.0122 / 0.0110 
0.2654 / 0.4806 
0.9974 / 0.9454 
0.9796 / 1.1890 
0.9921 / 1. 5440 
0.9688 / 1.1448 
0.9222 / 0.3441 
0.9801 / 1.0958 

1 is lag length, R is the degrees-of-freedom-corrected squared mu1tiple correlation coefficient, Q is the Ljung-Box portmanteau statistic based on 30 autocorrela­
tions, U(n) is Theil's U at forecast horizon n, n = 1, 3, 6, 9, 12 and U(wa) is a weighted average of the U(n) with weights (at forecast horizon n) 0.30 (1), 0.25 
(3), 0.20 (6), 0.15 (9) and 0.10 (12). In the case of the variab1e i, U(12) is ignored in the calculation of U(wa) using the weights (at forecast horizon n) 0.40 
(1), 0.30 (3), 0.20 (6), 0.10 (9) and 0.00 (12). 
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FIGURE Ig Export prices 
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