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Abstract

Recent models of monetary policy have analysed the desirability of different
optimal and ad hoc interest-rate rules under the restrictive assumption that
forecasts of the private sector and central bank are homogeneous. In this paper,
we study from a learning perspective the implications of heterogeneity across
forecasts by the central bank and private agents for the performance of interest-
rate rules.
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Rahapolitiikka ja keskuspankin talousennusteet

Suomen Pankin keskustelualoitteita 3/2002

Seppo Honkapohja — Kaushik Mitra
Tutkimusosasto

Tiivistelma

Viimeaikaisessa rahapolitiikkaa koskevassa kirjallisuudessa on tarkasteltu erilais-
ten korkopoliittisten sddntdjen kéyttokelpoisuutta olettaen, ettd keskuspankin ja
yksityisen sektorin ennusteet ovat samanlaiset. Tdssd tutkimuksessa tarkastellaan,
mitd seurauksia on siitd, ettd keskuspankin ja yksityisten sektorin taloudenpitdjien
ennusteet poikkeavat toisistaan. Ndkokulmana tutkimuksessa on oppimiseen pe-
rustuva yksityisen sektorin odostustenmuodostus.

Asiasanat: oppiminen, stabiilius, heterogeenisuus, rahapolitiikka
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1 Introduction

The question whether monetary policy should be forward-looking, ie based on
forecasts of future inflation and other variables, has raised debates in the re-
cent research into monetary policy making. On one hand, empirical evidence
on Germany, Japan and the US since 1979 provided by (Clarida, Gali, and
Gertler 1998) suggests that central banks are forward looking in practice. More
general discussions also pose the question whether central banks should focus
attention to economic fundamentals or “follow the markets”, which “some-
times stray far from fundamentals”, see p. 60-61 of (Blinder 1998). Bank of
England Inflation Reports, see (Bank of England 2001), discuss private sector
forecasts while the June and December Issues of the Monthly Bulletin of the
European Central Bank, see (European Central Bank 2001b), present both in-
ternal macroeconomic projections and forecasts by other instutions. However,
the precise role of these forecasts in the decision making of these central banks
is not revealed.!

On the other hand, theoretical studies have shown that the conduct of
optimal monetary policy on the part of the bank can lead to a choice of the
instrument, the short-term nominal interest rate, which reacts to the next
period forecast of inflation and/or output gap, see (Clarida, Gali, and Gertler
1999) for a survey of the recent literature. This conclusion can nevertheless be
problematic as forward looking monetary policy rules, both some formulations
of optimal setting of the instrument as well as Taylor rules based on forecasts
of inflation and/or output gap, can lead to indeterminacy of equilibria, see. eg
(Clarida, Gali, and Gertler 1999), (Bernanke and Woodford 1997), (Bullard
and Mitra 2001b) and (Evans and Honkapohja 2000). However, indeterminacy
need not arise if the forward-looking interest rate rule is carefully designed, see
(Bullard and Mitra 2001b) and (Evans and Honkapohja 2000).

In the literature just cited, the forecasts refer to those of the private sector,
see eg (Hall and Mankiw 1994) for a discussion of targeting of private forecasts.
(Evans and Honkapohja 2000) forcefully make a case for incorporating private
forecasts of inflation and output gap into the interest rate rule as the reaction
function of the optimal central bank behavior under discretion.? Naturally, for
such a proposal to make sense it is required that the private sector forecasts
are observable.

(Evans and Honkapohja 2000) show that small measurement errors would
not lead to large deviations from optimality. However, (Orphanides 2000)
and others have argued that there are large errors in private forecasts. While
private forecasts by different institutions are regularly published, it is not self-
evident that these published numbers accurately represent the expectations
of the private sector that are relevant for the key private sector economic
decisions. Thus the observability problems might in fact be more serious than
they appear at first sight. Moreover, if it becomes known that the decisions
of the monetary policy maker depend significantly on the forecasts by private

!Earlier (Hall 1984), p. 146, proposed that the “Fed’s internal procedure” should place
some weight on “reliable outside forecasts.”

2(Evans and Honkapohja 2001b) extend the results of (Evans and Honkapohja 2000) to
the case of commitment.



institutions, these institutions might alter their forecasts in a strategic way so
as to influence the decisions about the conducted monetary policy.

These arguments suggest that a case can be made for the use of inter-
nal forecasts by the central bank in the decision making on monetary pol-
icy. Moreover, it seems likely that internal forecasts, rather than those of
other institutions, play the central role in actual monetary policy decisions
and the recent literature by (Bernanke and Woodford 1997), (Svensson 1997),
(Svensson 1999a), (Svensson and Woodford 1999) and (Svensson 2001) incor-
porates internal forecasts by the central bank in models of monetary policy. All
these reasons justify the assumption that the central bank and private sector
may have potentially different forecasts of endogenous variables like inflation
and output.

The implications of different forecasts by the central bank and the pri-
vate sector can potentially shed some light on the issue of transparency in
the formulation of monetary policy, which has been widely debated in both
academic and policy circles. It is frequently argued that central banks should
be as transparent as possible, so that the actions of central bankers become
credible and the public comes to understand this. (It is suggested that this
would make it easier to support a low inflation regime.) The case where both
the bank and the private sector have identical forecasts can conceptually be
thought to describe a transparent central bank so that the private agents have
adopted the forecasts of the bank. In contrast, the forecasts of the bank and
private agents can easily differ if the central bank is not transparent about its
decision making process (as some authors like (Svensson 1999b) claim is the
case with the European Central Bank). Our analysis can, therefore, provide
some insight into the desirability of transparency on the part of the central
bank.

From an analytical viewpoint, the distinction between private sector and
central bank forecasts of inflation and output gap is not relevant in a rational
expectations equilibrium (REE). This is because, in an REE, the expectations
of different agents are identical unless there are asymmetries in the information
sets. However, even if the information sets of different agents are the same,
distinguishing between private sector and central bank forecasts makes sense
in a learning framework, where the expectations of different agents are usually
heterogenous when the economy is (at least transitorily) outside REE. The
learning approach to modelling expectations formation has gained popularity
in the recent literature and we will take this view point in our study.?

In models of adaptive learning the economic agents are assumed to use
forecast functions that depend on some parameters and, at any moment of
time, the economic decisions are made on the basis of expectations/forecasts
obtained from these functions. The values of the parameters in the forecast
functions and the expectations of the agents are adjusted over time as new
data becomes available. Parameter updating is often assumed to be done
using standard econometric methods such as recursive least squares (RLS)

3There has recently been extensive research into the learning approach to macroeco-
nomics, see (Evans and Honkapohja 2001a) for a systematic treatise. Overviews and sur-
veys are provided eg by (Evans and Honkapohja 1999) , (Marimon 1997), (Sargent 1993)
and (Sargent 1999).



estimation. A key issue of interest is whether this kind of adaptive learning
behavior converges to REE over time. If this is the case, then eventually the
forecast functions of the agents are those associated with the REE.

Taking the learning viewpoint to expectations formation and forecasts, we
analyze the implications of heterogeneity in private sector and central bank
forecasts for the performance of forward-looking interest rate rules. The earlier
literature on learning and monetary policy has largely employed the simplify-
ing assumption that only private forecasts affect the economy (or equivalently
that forecasts of private agents and the policy maker are identical).! Our
objective is to study how the conditions for learnability of equilibrium, ie sta-
bility of equilibrium under adaptive learning, are affected by heterogeneities in
expectations and learning rules. The model we use is standard in the recent lit-
erature on monetary policy conducted with interest rates rules, see the surveys
by (Clarida, Gali, and Gertler 1999), (Woodford 1999) and (McCallum 1999).

The heterogeneity in expectations and learning can naturally take different
forms. The first and simplest possibility we study is that both private sector
and central bank forecast functions have the same parametric form and the
updating of these forecast functions is done using the same learning algorithm.
(We specifically assume the RLS algorithm that has been widely used in the
literature.) Heterogeneity in expectations is then solely due to differences in
initial beliefs.

The second step we consider relaxes the assumption of identical estimation
algorithms. One subcase here is that the updating algorithms are in the same
class, but the strength of reaction to forecast errors in parameter updating
differs between the private sector and the central bank. Another subcase arises
when the algorithms used by the private agents and the policy maker are
different. For example, the private sector might use the stochastic gradient
(SG) algorithm that is simpler to implement than RLS.?

Finally, we analyze the case of asymmetric information in forecasting be-
tween the private sector and the central bank. For brevity, we can only take up
a simple case. One agent, say the private sector, is assumed to have superior
(full) information, as it can observe both of the two shocks, while the other
agent with the limited information sees only one shock. (Alternatively, one
may assume that the central bank has full and the private sector limited infor-
mation.) We develop the analytical techniques and convergence conditions in
this particular setting, but the methods are more generally applicable to other
situations of asymmetric information. Restricted perceptions equilibrium, pro-
posed by (Evans and Honkapohja 2001a), is an appropriate equilibrium concept
for this situation. In this equilibrium the corresponding forecast function of

4See (Bullard and Mitra 2001b), (Bullard and Mitra 2001a), (Evans and Honkapohja
2000), (Honkapohja and Mitra 2001a), (Evans and Honkapohja 2001b) and (Mitra 2001).
(Carlstrom and Fuerst 2001) study the standard model of monetary policy under the as-
sumption that private sector has rational expectations and the Central Bank tries to learn.

>These forms of heterogeneity in learning are studied in (Honkapohja and Mitra 2001b) for
general frameworks with heterogeneity. In independent work (Giannitsarou 2001) considers
similar cases under the more restrictive assumption that the economy depends on the average
expectations of the agents.



the agent with limited information is misspecified relative to the symmetric in-
formation REE even though the forecasting is optimal relative to the restricted
information set.’

The analysis of learning dynamics in the context of monetary policies pro-
vides a very natural example of settings, where adaptive learning takes place
under structural heterogeneity. Structural heterogeneity means that the ex-
pectations of different agents differ and these expectations enter the economic
model in different ways. In the model of monetary policy the private sector
expectations influence the economy directly through aggregate demand and
the new Phillips curves, while the central bank forecasts enter through the
interest rate. The earlier literature on adaptive learning with heterogenous
expectations has typically made the simplifying assumption that the economic
structure is nevertheless homogenous so that, for example, the economy might
depend just on the average expectations of the private agents.” Our analysis
is based on the results for general forward-looking multivariate linear models
with structural heterogeneity, derived in the companion paper (Honkapohja
and Mitra 2001b).

The general message from our analysis is that the learnability restrictions
for interest rate rules derived under the assumption of homogenous expecta-
tions/forecasts continue to be important when heterogeneity is present. They
are a necessary condition for convergence of adaptive learning to equilibrium
with heterogenous forecasts and learning rules. However, these conditions need
not be sufficient for learnability under the structural heterogeneity due to the
differential effects of the central bank and the private sector on the actual out-
come of the economy. Additional conditions are often required for convergence
of learning to take place. The nature of these additional conditions depends
on the prevailing type of heterogeneity in the learning, and we will provide
specific results for the different cases listed above. Interestingly, these results
have natural interpretations as suggestions concerning the forecasting activity
of the central bank.

2 Analytical framework

The analysis will be conducted using a standard model with a representative
consumer and monopolistic competition in markets for differentiated products.
It is assumed that firms face restrictions on price changes, so that only a
fraction of firms can change its price in any given period. Real balances enter
the utility function of the consumer, who can also make savings in the form
of government bonds. In the formal treatment we employ directly the log-
linearized model, and we thus adopt the framework that is formally as outlined

0(Sargent 1999) and (Cho, Williams, and Sargent 2001) study a model of the natural
rate hypothesis and asymmetric information in which the central bank has a misspecified
model.

"See (Honkapohja and Mitra 2001b) for further discussion of and references to the liter-
ature on heterogenous expectations and learning.
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in Section 2 of the survey paper by (Clarida, Gali, and Gertler 1999).8 We
clearly need a specific model for analytical reasons and we emphasize that our
approach is applicable to the very similar frameworks that have been used in
the recent literature.

The structural model consists of two equations:

2 = —¢lic— B m) + B 2 + g1, (1)
T o= Az + ﬁEtPWtH + uy, (2)

where z; is the “output gap”, ie the difference between actual and potential
output, ; is the inflation rate, ie the proportional rate of change in the price
level from ¢ — 1 to t, and 4; is the nominal interest rate. E 1 and E Zti1
denote private sector expectations of inflation and output gap next period. We
will use the same notation without the “~” and superscript P to denote RE of
the private sector. All the parameters in (1) and (2) are positive. 0 < § < 1
is the discount rate of the representative firm.

(1) is a dynamic “IS” curve that can be derived from the Euler equation
associated with the household’s savings decision. (2) is a “new Phillips curve”
that can be derived from optimal pricing decisions of monopolistically com-
petitive firms facing constraints on the frequency of future price changes. The
essence of the new Phillips curve is the forward-looking character of the infla-
tion expectations.

u; and g; denote observable shocks following first order autoregressive
processes:

U p 0O Ut—1 Uy
(o) = () Gn) - (5) ®
where 0 < 1 < 1,0 < p < 1 and §; ~ 4d(0,02),1; ~ #d(0,0%). The demand
shock ¢g; may be rationalized as a preference shock or as expected changes in
government purchases relative to expected changes in potential output. The
“cost push” shock wu; captures features that might affect expected marginal
costs other than those entering through z;.

We supplement equations (1) and (2) with monetary policy that is con-
ducted by means of control of the nominal interest rate i;.” We focus on rules
where the interest rate is adjusted in accordance with the central bank expec-
tations of output gap and inflation next period and possibly the exogenous
shocks. Then

i =Xo + Xa B Pri1 + X B P + XgGt + XUt (4)

W~y

Again the same notation without the and superscript CB will denote RE

(of the central bank).

¥See eg (Woodford 1996) for the nonlinear model and its log-linearized version. As noted
by (Clarida, Gali, and Gertler 1999), the same framework is used in a number of other
papers.

91t should be noted that we have left out explicit consideration of the intertemporal
government budget constraint. This is appropriate only if fiscal policy in the form of lump-
sum taxes is passively adjusted in the sense of (Leeper 1991), so that taxes are set to ensure
fulfillment of the intertemporal government budget constraint.

11



Written this way, the rule (4) seems like an ad hoc Taylor (or instrument)
rule considered, for instance, in (Bullard and Mitra 2001b). However, formally
similar rules can also arise from optimal policy on the part of the central bank
as we now show. For example, postulating a standard quadratic objective
function

1
mngt{ZZ;ﬁ [azf+i+wf+i]} (5)

that describes flexible inflation targeting, we can consider optimal monetary
policy under discretion. In the objective function (5) « is the relative weight
for output deviations and [ is the discount rate. The policy maker is assumed
to discount future at the same rate as the private sector. (If desired, one could
allow for a possible deviation of socially optimal output from potential output
and a non-zero target value for the inflation rate.)

Following (Evans and Honkapohja 2000) we consider optimal discretionary

policy by minimizing (5) subject to general private sector expectations (ie even
outside REE) and (2). The first order condition is

A+ az =0 (6)

that, together with (1) and (2), implies an interest rate rule like (4) that
would depend on private expectations. As there are possibly large errors in
measuring private expectations, a plausible procedure would use the internal
forecasts by the central bank in place of private sector expectations. This is
in the spirit of the approach of (Svensson 2001), section 5.3, and (Svensson
and Woodford 1999), sections 3.1-3.2, according to which the interest rate
is determined to satisfy (6), (1) and (2) with given central bank forecasts.!?
These considerations lead to a rule

ip = [L+ N +a) o NEPr + ¢ B P2, (7)
+o g+ ()\2 + a)’lgofl)\ut,

which is of the form (4). We will refer to (7) as the expectations based (EB-)
optimal rule.

The optimal interest rate under discretion can be characterized in different
ways, as pointed out in (Clarida, Gali, and Gertler 1999). Assuming that the
economy is in the fundamental REE, (6) implies that the interest rate can be
written as

(1-p)A

oo )EtCBWtH +¢ g, (8)

which is a special case of the rule (4) where in the REE Etc Br 1 = Eymipq. We

therefore think of (8) as a specified interest rate rule where internal forecasts
by the central bank are used for the inflation expectations. We will refer to (8)

10(Svensson 2001) and (Svensson and Woodford 1999) have a somewhat different model
and also discuss other aspects of policy making. However, they do not tell how the forecasts
of the central bank are determined.

12



as the rational expectations (RE-) optimal rule as in (Evans and Honkapohja
2000).

As mentioned before, in the earlier literature (Bullard and Mitra 2001b)
assume identical forecasts and learning algorithms (versions of RLS) for the
private sector and the central bank to derive conditions for (local) stability
of fundamental or minimal state variable (MSV) solutions under learning dy-
namics. Under these assumptions, the conditions for stability are given by
E-stability conditions, and Bullard and Mitra found that the Taylor principle
(see (Woodford 2000)) completely characterized learnability of the MSV so-
lution.’! In particular, interest rate rules satisfying the Taylor principle are
learnable while rules violating this principle are unlearnable. Regarding opti-
mal rules, (Evans and Honkapohja 2000) found that, with private expectations,
the rule (7) yields both stability under learning and determinacy whereas rule
(8) is stable but leads to indeterminacy in some parameter domains.

Our purpose in this paper is to analyze the robustness of these results to
the heterogeneity in forecasts and/or learning algorithms for the private sector
and the central bank. Our model, therefore, comprises of equations (1), (2),
and (3) supplemented with the interest rate rule (4), of which (7) and (8) are
special cases. We thus substitute equation (4) into (1) and reduce our system
to

~

Zt _ —p 1 ¥ Bz
() = (5 e (aa e ) () -
( —OX:  —PXa >( zt+1) (9)
—APX;  —APX4 EBr,

< —PXu 1—px, )( )
1 — Apx, A(1—90><g) g

For future reference, we write the above system in a general form

v = D+ APEFy 1+ APE Py, 1 + Buy, (10)
wy = Fwt_l + V.

where y; = (z,7m)', wy = (us,g;)" and AT, AP B denote the right hand
matrices in (9), and F is the (diagonal) matrix appearing in (3), namely

F:(éﬂ). (11)

We assume x, > 0 and x, > 0 throughout the paper.
We will consider learnability of the minimal state variable (MSV) solution
for the model (10). It takes the form

Ye = a+ by, (12)

where a,b are to be computed in terms of the structural parameters of the

model.'> The MSV solution is generically unique, see (Honkapohja and Mitra

2001b) for the proof:

Hntuitively, the Taylor principle means that in the event of a 1% rise in expected inflation,
the nominal interest rate rises by more than 1% in the long run.

12There are other stationary REE in addition to the MSV solution if the model is inde-
terminate. See (Honkapohja and Mitra 2001a) for a detailed analysis of indeterminacy in
this model of monetary policy.

13



Proposition 1 The model of monetary policy (9), or (10), has a unique MSV
solution of the form (12) if the matrices I — (AP + A°P) and I — F' @ (AF + A“B)
are invertible.

The MSYV solution @, b can be obtained by solving the following system of linear
equations

= D+ (A" + A9P)a
b = (AT + A9BYWF + B.

The latter equation is matrix-valued, but it can be vectorized.

3 Heterogenous forecasts under homogenous
learning rules

In this section we assume that the central bank and the private sector have
different forecasts although their forecast functions take the same general form
and they use asymptotically identical learning algorithms in updating the pa-
rameter values of their forecast functions.

It has been observed for a wide variety of different models (with homoge-
nous forecasts and learning) that convergence to the REE obtains if and only
if certain stability conditions, known as expectational stability (or E-stability)
conditions, are satisfied, see eg (Evans and Honkapohja 2001a). In this section
we obtain the E-stability conditions that govern convergence of the economy
to the REE under real time learning as long as the bank and private agents
use asymptotically identical versions of RLS.!® The assumed learning rules do,
however, allow the bank and the private sector to have different initial beliefs
about the parameters they are estimating, so that their forecasts in general
differ for finite time periods.

The formulation of E-stability (and learning) starts from the perceptions of
the agents. The agents are assumed to have perceptions about the stochastic
process that the endogenous variables of the economy follow. These are called
the perceived law of motion (PLM) and they are assumed to have the same
parametric form (12) as the REE of interest. For given values of the parame-
ters of the PLM and the current values of the exogenous variables, the agents
use the estimated PLM to make forecasts about the values of the endogenous
variables next period. This step yields the forecast functions of the agents.
This formulation of forecasting by the private agents and the central bank is a
natural first approach, since the forecast functions correspond, under specific
parameter values, to the equilibrium forecast functions. However, we do ac-
knowledge that they represent a greatly simplified view of actual forecasting
practices.'?

The next step is to insert these forecasts into the model (10) and compute
the temporary equilibrium of the economy, also called the actual law of motion

13 This result is discussed in detail in the companion paper (Honkapohja and Mitra 2001b).
1 For example, we do not make a distinction between conditional and unconditional fore-
casts that is important in practice, cf. eg (European Central Bank 2001a).

14



(ALM). The ALM turns out to have the same parametric form as the PLMs
of the agents. E-stability is then determined by the differential equation in
which the parameters partially adjust (in virtual time) in the direction of the
ALM parameter values.

Formally, we assume that the private sector and the central bank, respec-
tively, have PLMs of the form that corresponds to the MSV solutions (12) but
they have different parameter values. The PLMs are

y = a’ +b"w, = (ngP)’{L’t (13)
v = a®B+0Pw, = (ngCB)’xt (14)

with corresponding forecast functions'®

A

Elye = o +bvPFuy, (15)
EPy. 1 = aP 40P Fu, (16)

where z; = (1,w;)’ is a vector of variables relevant in forecasting and (¢') =
(a*,b"), with a’ a 2—dimensional vector and b* an 2 x 2 matrix for i = P,CB.

Inserting these forecasts into the model (10), one obtains the ALM followed
by inflation and output as

Y = D+AP(IP+ACBCLCB+[(APbP+ACBbCB)F+B]wt
= [D+ APal + A9BaOB (AT + A“BYCB)F + B] [Uf ]
t
= T(¢), py)w:.

Written explicitly, the mapping from the PLMs to the ALM, called the T" map,
takes the form

(LP N D—I—APCLP—I—ACB(LCB,
(ICB N D—|—AP(IP+ACBCLCB,
P —  (ATDP 4 ACPYOB)F + B,
bP — (A" + AYPPYF + B.

We look at E-stability of the REE in which the bank and the private sector
have identical forecasts, that is when a” = a®? = a@ and b = v“P = b. The
REE is said to be FE-stable if it is a locally asymptotically stable fixed point
under differential equation (I denotes the identity matrix)

da*/dr = D+ (A" — Da" + A9Ba“P,
db* Jdr = APBPF —bF 4+ A9PYYPF + B,
da®Pjdr = D+ A" + (AYP — 1)a“?,
db“Blar = APVPF + AYPyOPF —b9P 4 B,
15Tn this formulation parameter estimates will be assumed to depend on data up to t — 1

but the current observation on exogenous variables is used in the forecasts. This is commonly
done in the literature.

15



This system is linear and the equations for (a”’,a“?) and (b7,b°B) are
independent from each other. For the subsystem involving a®, a“® stability is

determined by the matrix

AP — T A°B
(")

The companion paper (Honkapohja and Mitra 2001b) shows that two of the
eigenvalues of this system are —1 and the other two are those of A" +A“F ] so
that this system is stable provided the eigenvalues of AT + A“P have real parts
less than one. As for the (b7, b°8) subsystem, (Honkapohja and Mitra 2001b)
show that stability requires that the matrix

FAP - F® A°B
Fo AP F® AB T

has eigenvalues with negative real parts. The eigenvalues of this matrix are
either equal to —1 or correspond to those of F/® (AP +A“P)—1. Consequently,
the necessary and sufficient conditions for E-stability are that the eigenvalues
of

AP 4+ AP — T and F @ (AT + A9P) — 1

have negative real parts.

These requirements for stability are exactly the E-stability condition when
the bank and the private sector have identical forecasts. In this case Etp Yir1 =
ECBy, .1 and the matrix in front of the common expectations EFy, 1 in (10)
becomes A" + A®B. The conclusion then follows by applying the results in
(Evans and Honkapohja 2001a). Since the matrix F' in (11) is diagonal and
has positive elements (ie ¢ > 0 and p > 0), the necessary and sufficient
conditions for E-stability in fact reduce to the condition that the eigenvalues of
AP + AYB — [ have negative real parts, as shown in (Bullard and Mitra 2001b).

We have thus verified:

Proposition 2 The MSV solution to the model of monetary policy (9) is
E-stable under heterogenous forecasts if and only if the corresponding model
with homogenous expectations is E-stable. The E-stability condition is that the
eigenvalues of the matriz AT + A — I have negative real parts.

As already mentioned above, the stability of the system under learning dy-
namics obtains if and only if the E-stability conditions are satisfied. In actual
real time learning the central bank and private sector use versions of RLS in
their updating of estimates of parameters that are relevant to their forecast-
ing. However, the learning rules can start with different initial beliefs about
the parameters, so that they differ along the actual time path. The E-stability
conditions, therefore, govern convergence to REE even when we allow this form
of heterogeneity. We also note that under some (mild) regularity conditions,
the RLS algorithm will converge to an E-unstable symmetric (MSV) solution
with probability zero. See (Evans and Honkapohja 2001a) for these details.
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Proposition 2 shows that the stability conditions obtained in the homoge-
nous case in (Bullard and Mitra 2001b) and (Evans and Honkapohja 2000)
are not as restrictive as they might seem. The assumption that the bank
and private sector have the same type of forecast functions and same learning
algorithms serves as a good first approximation.

It follows that interest rules that satisfy the Taylor principle can be deter-
minate as well as learnable, as in (Bullard and Mitra 2001b), even with this
form of heterogeneity. It is heartening to note that the Taylor principle contin-
ues to dictate principles of good monetary policy. Similarly, if the bank uses
its own internal forecasts in the expectations based policy rules for its conduct
of optimal monetary policy, as in the rules (7) or (8), convergence to the REE
continues to obtain as in (Evans and Honkapohja 2000). As we have empha-
sized, these results are important since in practice the central bank probably
does not observe the private sector expectations accurately and it seems more
reasonable to assume that the bank forms its own internal forecasts of inflation
and output.

4 Heterogenous learning rules

The preceding section allowed for different forecasts for the central bank and
private agents but assumed that the bank and private sector use learning
rules that were asymptotically identical (even though these rules differed along
the transition to REE). A greater degree of heterogeneity would allow for
learning rules that differ even asymptotically or for altogether different learning
algorithms. Here we take up these two further forms of heterogeneity.

The first subcase assumes that both the bank and the private agents use
versions of RLS in their updating schemes but they differ in the degree of adap-
tion to forecast errors. This allows for inertia in the formation of expectations
as well as various weighting schemes for data in later periods relative to early
ones, see eg (Ljung and Soderstrom 1983), (Marcet and Sargent 1989b) and
(Evans, Honkapohja, and Marimon 2001) for different possibilities.®

The second subcase considers a scenario where the agents use different
learning rules. The rules we consider are RLS and stochastic gradient (SG)
type algorithms. These algorithms involve a trade-off between simplicity and
efficiency. The RLS algorithm is statistically efficient but computationally
expensive, whereas the SG algorithm is relatively easy to compute but lacks
some of the good statistical properties of RLS (see Section 4.2 for further
discussion).

16See also (Evans and Honkapohja 2001a), Chapter 15, Section 2, for a discussion of
alternative gain sequences.
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4.1 RLS Learning with different gain sequences

We continue to assume that the private sector and the bank use forecast func-
tions (15)—(16) in forming their forecasts of inflation and output. Consequently,
the analysis of E-stability is identical to that in Section 3. However, the analy-
sis of real time learning is different since we now allow the bank and the private
sector to display different speeds of adaption in their updating of estimates of
parameters required for their forecasting. Versions of the RLS algorithm take
the form

(1) = (¢ 1) +7vie(RD) w1y 1 — ¢p 120 1) (17)
R, = Ry +viglza(we) — Ry,

for i = P,CB, where we have used the notation in equation (13) from the pre-
ceding section.!” (Here prime denotes transpose.) The first equation describes
the updating of the parameters of the PLM of the private sector and the cen-
tral bank, while the second equation updates the matrix of second moments
of x; that is needed in the updating of the PLM parameters. (We note that
in this formulation the estimation of parameters for time ¢ is again based on
information available in ¢ — 1 but forecasts use current data. This is a common
assumption in the literature.)

The sequences v, ;,% = P, C'B are known as the sequence of gains. The gain
sequences can differ even asymptotically, and our interest is in the implications
of heterogeneity in the form of different gain sequences of the central bank and
private agents. The gain sequence indicates how much weight, say, the private
agent puts on forecast errors y;_; — ¢ x,_;. For standard RLS it is given
by 7,; = t~'. Modifications to standard RLS can be obtained by permitting
greater or smaller response than ¢~! to the forecast errors, adjusted for by the
matrix of second moments and the state of exogenous variables. It is possi-
ble to include various weighting schemes, inertia in updating of forecast rules
and even independent random fluctuations in adaption speeds, see the com-
panion paper (Honkapohja and Mitra 2001b) and the references cited above
for detailed discussion. Inertia in the formation of expectations is observed in
experimental data, see for instance (Marimon and Sunder 1993) and (Evans,
Honkapohja, and Marimon 2001).

We write the (possibly random) gain sequences in the form

Yee =% (vpeve ") and vep, = v (VepVi ),

where 1, is an exogenously given, nonincreasing deterministic sequence satis-
fying certain properties. The different asymptotics are captured by assuming
that

E(7P7tfy;1) — Op and E(fyCB7tfyt’1) — dcp, as t — oo with 6p # d¢p.

Here the mathematical expectations are taken over the possible independent
randomness in the individual gains.

17See eg Section 3 of (Evans and Honkapohja 1998) for the derivation of the formal details.
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The results in (Honkapohja and Mitra 2001b) imply that local convergence
of learning under these algorithms is determined by the following two matrices

Sp(AP — 1) §pACB (18)
Scp AP Sop(ACE — 1)
[ spI 0 AP —T  A°B
o 0 ol AP ACB
and
Sp(F o AP — 1) SpF @ ACB (19)
ScpF @ AP $op(F @ AP — 1)

B opl 0 FRAY -1 F® ACB
- 0 bcpl F AP Fe AB_T )7
and we state the formal convergence result:

Proposition 3 If the private sector and the central bank use modified RLS
learning algorithms with different gain sequences, then learning converges lo-
cally if the matrices (18) and (19) have eigenvalues with negative real parts.

We first note that if the gain sequences are the same asymptotically, ie 6p =
dc B, the asymptotic behavior of the system is identical to that in the preceding
section. In other words, the necessary and sufficient condition for convergence
to the MSV solutions is given by the E-stability conditions. However, the
situation is quite different if 6p # 6. The stability conditions are in general
affected by the relative size of the gain parameters, though the earlier E-
stability condition is still relevant, as we now show.

4.1.1 Stability and instability conditions for interest rate rules

The first substantive result that follows from Proposition 3 concerns the general
form of interest rate policies (4). We first provide some necessary conditions
that must be satisfied for an equilibrium to be locally stable under learning.
The next corollary is proved in Appendix A.1.

Corollary 4 Consider model (9) and assume that the private sector and the
central bank use modified RLS learning algorithms with different gain se-
quences. The two conditions

Xz + M — 0p8opA — 07 (1= B+ 85 6cn)] > 0. (21)

are necessary for local stability of the symmetric equilibrium under learning,

Note that (20) is precisely the Taylor principle that completely characterized
stability under learning for the homogenous case considered in (Bullard and
Mitra 2001b). Corollary 4 shows the continued importance of the Taylor prin-
ciple in the presence of heterogenous rules. In particular, it shows that rules
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violating this principle continue to be unstable as is the case under homogenous
forecasts.

In general, the Taylor principle need not suffice for stability under learn-
ing since condition (21) depends on é,'6cp. The interest rule may require a
stronger response to inflation and/or output (via larger x, or x,) than what is
dictated by the Taylor principle, especially for small values of §5'6¢ 5. To illus-
trate this, assume that 3+ Ap > 1.8 Then, if x, = 0, the necessary condition
(21) requires x, > 6pbop[l — A o1 (1 — B4 65" 6¢p)], which is strictly more
than 1, for any 65'6cp < (8+ Ap —1)(1+ Ap)~!. Consequently, the necessary
condition is stronger than the Taylor principle (20).

However, one can show that the Taylor principle is necessary and sufficient
for stability when 61316(;3 > 1. Intuitively, this last requirement means that
the central bank should put at least as much weight on incoming information
about the economy when revising its parameter estimates as does the private
sector. The next corollary is also proved in Appendix A.1.

Corollary 5 Consider model (9) when the private sector and the central bank
use modified RLS learning algorithms with different gain sequences and assume
that

6pt6cp > 1.

The dynamics of the economy is then locally stable under learning if and only

if

A common theme that emerged from (Bullard and Mitra 2001b) for a variety of
interest rate rules is that a strong enough response towards inflation or output
always resulted in stability under learning dynamics. Corollary 5 shows this
to be true when 61316(;3 > 1. In fact, it can be shown that for any 6;1603 (and
values of the structural parameters), if the central bank is aggressive enough
by choosing large values of x, and x,, the symmetric equilibrium becomes
necessarily stable.!?

On the other hand, Corollary 4 has hinted that policies satisfying the Taylor
principle can sometimes lead to instability. This can indeed happen if the bank
puts much less weight on incoming information about the economy than the
private sector (ie if 6¢p is much smaller than ép). This can be seen informally
by examining the left-hand side of (18). We can write

( Sp(AP — 1) §pACB )

Sos AP Sep(ACP —T) (22)

AP — T ACB
= op -1 -1
18This parameter restriction will typically be satisfied since the discount factor 3 is as-
sumed to be close to 1. For example, the restriction is satisfied for the calibrated values in

both (Woodford 1999) and (Clarida, Gali, and Gertler 2000).
Y9For brevity, we do not formally develop this result.
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so that, if §3'6¢p is sufficiently small, half of the eigenvalues of the matrix
(22) are approximately equal to zero while the other half are approximately
the eigenvalues of A” — I. The latter set contains an eigenvalue with positive
real part. This intuition is made more rigorous below in the result:

Corollary 6 Consider model (9) when the private sector and the central bank

use modified RLS learning algorithms with different gain sequences and assume
that B+ Ap > 1. If

B4+ Ap—1
L+o(x, +Ax,)

§p 6cn < (23)

the dynamics of the economy is locally unstable under learning.?

As mentioned before, the parameter restriction S+Ap > 1 is very often satisfied
since [ is close to 1. Corollary 6 points to the danger of instability even for
interest rules satisfying the Taylor principle when the central bank does not
put enough weight on the forecast errors while revising its parameter estimates.
The general intuition for the result is as follows.

One observes from the model (9) that, while the central bank has a stabi-
lizing effect, the private sector has a de-stabilizing influence on the economy.
(9) makes it clear that if private sector expectations of inflation (or output)
deviate upward from the RE value, then actual inflation (and output) increase,
which leads, ceteris paribus, to upward revisions of both E e and E Zt41
(note that all the entries of A" are positive). On the other hand, if the central
bank’s expectations BB, 1 or ESB 2., deviate upwards from the RE value,
m; and z; fall, which tends to guide the bank’s non-rational expectations to-
wards the RE values as all the entries of A°P are negative. More formally, one
observes that the eigenvalues of A" are non-positive, while the eigenvalues
of AY are positive and one of them exceeds 1. The eigenvalue exceeding one is
the key to understanding our instability results under heterogenous forecasts
and learning.?!

Under homogenous forecasts, it is the sum of the matrices A” and A“? that
determined stability under learning dynamics. Pursuit of the Taylor principle
by the bank is then able to guide non-rational expectations of the private
sector towards RE. However, under heterogenous forecasts, this is no longer
sufficient because of the differential effects of the different forecasts via AF
and A°P and the different weights in parameter updating on 7, and z. It
now becomes very important for the bank to put sufficient weight on new
data about the exogenous observables while revising its forecasts of inflation
and output, so that, in conjuction with the Taylor principle, its stabilizing
influence outweighs the de-stabilizing influence of the private sector to render
the symmetric REE stable. This makes intuitive sense since, after all, these
shocks are indicative of inflationary pressures in the economy.

The results indicate the degree to which the results in (Bullard and
Mitra 2001b) and (Evans and Honkapohja 2000) are affected by the use of

20The proof is immediate by making a strict reversal of condition (21).
21 This intuition continues to be true when we examine different types of learning rules in
Section 4.2.
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differential gains by the bank and the private sector. If §5'6¢p satisfies the
condition in Corollary 6, then the Taylor principle no longer suffices to guar-
antee convergence. Moreover, even if the central bank behaves optimally by
following the rules (7) or (8), convergence to the equilibrium may not take place
unless the bank attaches sufficient weight to current data in the updating of
the PLM parameters. We illustrate this further in the next subsection.

4.1.2 Robustness of the rules to gain differentials

Corollary 6 provides only sufficient conditions for the learning dynamics to be
unstable. We now use numerical techniques to study to what extent the differ-
ences in learning actually influence stability for plausible values of structural
parameters. As a useful by-product, we also consider the desirability of differ-
ent optimal interest rate rules (7) and (8) advocated under the assumption of
homogenous forecasts in the previous literature.

We first look at variants of optimal policies considered in Section 2. The
two variants are the EB-optimal rule, equation (7), and the RE-optimal rule,
namely equation (8). (Evans and Honkapohja 2000) recommend the EB-
optimal rule in part on grounds of determinacy: the rule (7) is always de-
terminate under RE, the rule (8) can become indeterminate for values of p
close to zero. Regarding learnability, (Evans and Honkapohja 2000) show that
under homogenous forecasts and learning, both the rules (7) and (8) are stable
under learning. We now consider the implications of heterogeneity in learning
rules for these results by means of numerical analysis.

The calibrated parameters values in (Woodford 1999) are used in this dis-
cussion:

Calibrated Example: ¢ = (.157) 1, A\ = .024, and 8 = .99.22

We allow « to range in the interval (0, 1], which captures the scenarios rang-
ing from strict inflation targeting (a close to 0) to that of flexible inflation
targeting. The ratio 6 '8¢ is allowed to range in the interval (0,2].2
Figures 1 and 2 illustrate the stability region for the EB-optimal rule (7)
and the RE-optimal rule (8), respectively, with the value p = .9 for the per-
sistence parameter of the wu; shock, which was used in (Clarida, Gali, and
Gertler 2000). The shaded and unshaded regions mean stability and instability,
respectively. For the EB-optimal rule, we find that for all a € (0, 1], the sym-
metric equilibrium is stable under learning dynamics whenever §5'6¢c5 > 0.2.
Instability can only arise for 65'6cp < 0.2. However, for the RE-optimal
rule stability is guaranteed only when 6;1603 > 1 whereas most values of
6p 6cp < 1 lead to instability for all o € (0,1]. We, therefore, find that the
EB-optimal rule performs better than the RE-optimal rule as it yields more
robustly stability with differences in the gain parameters of the learning rules.
Differences in gain sequences also affect the stability of ad hoc Taylor type
rules like (4) considered in (Bullard and Mitra 2001b). Figure 3 plots the sta-

22We have found that our results are in fact robust to the calibrated values in (Clarida,
Gali, and Gertler 2000) who use ¢ = 1, A = .3 and the same g.
23Both rules are always stable for all o € (0,1) when 65 605 > 2.
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Figure 1: The EB-optimal rule for the calibrated example in the space of
(e, b¢p/6p) with p = 0.9. The shaded region is stable. Note that almost the
whole space is now stable.
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Figure 2: The RE-optimal rule for the calibrated example in the space of
(a, 6op/dp) with p = 0.9. The shaded region is stable. Note that for écp/6p
less than 1 we usually have instability.
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Figure 3: Taylor rules for the calibrated example in the space of (x,, écp/0p)
with x, = 0 and p = 0.35. The shaded region is stable and the blank region
unstable. Note that for §¢p/p less than 1 we often have instability even with
X, more than one.

bility region of the rule (4) with y, = 0 and the above calibration. We assume
that there is no cost-push shock u; and that p = 0.35 as in (Woodford 1999).
The horizontal axis indicates values for x, while the vertical axis indicates the
values for 6p'6cp € (0,2]. In the analysis of (Bullard and Mitra 2001b), all
rules with y, > 1 are stable under learning. However, for values of 6, 6cp < 1
even rules with x, > 1 can now lead to instability. Stability is guaranteed for
rules satisfying the Taylor principle (ie x, > 1) only when §5'6¢c5 > 1, as
shown in Corollary 5. Of course, rules with y, < 1 continue to deliver unsta-
ble dynamics, as shown in Corollary 4. The general message is that, with a
Taylor rule in place, the central bank should put enough weight on incoming
information to ensure stability of the economy.

4.2 RLS learning and SG learning

In this section we consider a different form of heterogeneity in the learning rules
of the private agents and the bank. The broad aim is consider settings where
the bank is using a learning algorithm that is either more or less sophisticated
than the algorithm of the private sector. Central banks usually devote a large
amount of resources in forming forecasts of economy-wide variables, see (Romer
and Romer 2001). Our analysis in this section provides an analytical answer to
the question whether such actions on the part of the central bank are justified.

Specifically, we assume that there are two possible types of learning algo-
rithms, the RLS and the stochastic gradient (SG) algorithms that the private
agents or the central bank might use. The RLS algorithm is more common
than SG in the literature. The SG algorithm is computationally much sim-
pler than the RLS algorithm; however the latter is more efficient from an
econometric viewpoint since it uses information on the second moments of the
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variables. More precisely, for parameter estimation of fixed exogenous sto-
chastic processes, both the RLS and SG algorithms yield consistent estimates
of parameters but the former in addition possesses some optimality proper-
ties. For instance, if the underlying shock process is iid normal, then the RLS
estimator is minimum variance unbiased.?*

When the central bank uses the SG algorithm, parameter updating takes
the form

(61 %) = (625) +vopwe-1(Yemr — G201 ) (24)

where we have used the notation in equation (14) from Section 3. The main
difference from the RLS algorithm (17) is that (24) does not involve the matrix
of second moments. The private sector is assumed to use the RLS algorithm.
For simplicity, it is assumed that there are no differential in gain sequences, ie
6p = 6cp = 1 in the notation of Section 4.1.

The results in the companion paper (Honkapohja and Mitra 2001b) show
that local convergence under learning is determined by the following two ma-

trices
AP — T ACB
( AP ACB —7 ) ) (25)
Fo AP — 1 F® AP (26)
M,F @ AY M, F® A°B — M, 1 )’

when the private sector uses RLS and the central bank uses the SG algorithm.
Here

o N (L=p)7l02 0
Mw—tEf?oEWtwt)—( 0 (1= p*)~log

with o7 = var(i;) and o) = var(j,). Formally, we state:

Proposition 7 If the private sector uses RLS and the central bank the SG
algorithm, then learning converges locally if the matrices (25) and (26) have
etgenvalues with negative real parts.

Analogous conditions may be obtained when the private agents use SG learning
and the bank uses RLS by inter-changing the roles of A" and AP in (25) and
(26).

We observe from Proposition 7 that the E-stability conditions continue
to be necessary for stability. An application of the results in (Bullard and
Mitra 2001b) immediately yields the following necessary condition:

Corollary 8 Consider model (9). If the private sector uses RLS and the cen-
tral bank the SG algorithm in their learning rules (or vice versa), the dynamics
of the economy is stable under learning only if \(x, — 1) + (1 — B)x, > 0.

24See (Evans and Honkapohja 2001a), Section 3.5 for a discussion and references to SG
learning. We note that these properties refer to the usual statistical analysis that involves
parameter estimation for exogenous processes.
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We, therefore, see that the conclusion that interest rules violating the Taylor
principle are undesirable is quite robust. In particular, such ”passive” rules
lead to instability irrespective of whether the central bank uses a sophisticated
algorithm like RLS or a simple algorithm like SG.

However, as is clear from Proposition 7, the E-stability conditions are no
longer sufficient for convergence of learning. The learnability conditions are
now influenced by the persistence in the shocks (p and p) and their variances
(02 and 07) via the matrix (26). Next, we study in more detail, first, the situ-
ation when the central bank uses the SG algorithm in its updating equations
while the private sector uses RLS and, second, the converse situation when the
bank uses RLS and the private agents SG in the following section.

Before proceeding we note one result, which is easily seen from (26): If
p and p are small enough, the E-stability conditions are sufficient for learn-
ing stability irrespective of whether the private agents use RLS or the SG
algorithm.

4.2.1 Bank uses SG and private agents use RLS

We now turn to the situation when the central bank uses the SG algorithm
in its updating equations and the private sector uses RLS. As observed above,
the matrices (25) and (26) need to have eigenvalues with negative real parts
for stability.

Since stability of (25) is equivalent to the Taylor principle, we concentrate
on the matrix (26). It can be shown (eg using Mathematica) that the char-
acteristic polynomial of the matrix (26) is symmetric in the quantities (p, 02)
and (u, 02) of the two shocks u, and g, so that w.1.o.g. the relevant stability or
instability conditions can be obtained by considering the case of a single shock,
say, g;- Thus, we may formally assume that F' is a scalar yu when examining
the eigenvalues of (26). When we obtain stability or instability conditions in
terms of p and ag, it should be kept in mind that the same conditions are
required also for p and o?2.

The next thing to note is that (26) is exactly the same matrix (19) (or
(36)) which appears in Section 4.1, if we replace §5'6cp by (now the scalar)
M, (compare (26) and (36)). In other words, with this identification, (26) will
have eigenvalues with negative real parts if and only if (19) has so, given that
both 6;160 s and M, are positive. This observation is useful since we are able
to directly apply most of the results of Section 4.1. Henceforth, for the general
interest rate rules (4), we confine ourselves to the one shock case, g;, although,
as noted, the symmetric conditions in u; are also needed in the case of two
shocks.

By the above arguments, Corollary 5 implies the following:

Corollary 9 Consider model (9). Assume that (1 — p*)~'o? > 1 and that
the central bank uses the SG algorithm while the private sector uses the RLS
algorithm in their learning rules. The dynamics of the economy is then locally
stable under learning if and only if N(x, — 1) + (1 — )x, > 0.

We note that the condition ¢2 4+ p* > 1 in Corollary 9 is likely to be easily
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satisfied for plausible values of these parameters. For example, the calibrated
values in (Woodford 1999) satisfy this condition since y = .35 and o2 = 3.72.

In addition, large enough values of y, and y, continue to make the sym-
metric equilibrium necessarily stable. However, as in Corollary 6, the Taylor
principle does not guarantee stability under learning and we consider this fur-
ther. The following Corollary is proved in Appendix A.2.

Corollary 10 Consider model (9). Assume that the central bank uses the
SG algorithm and the private sector uses the RLS algorithm in their learning
rules. Then for all p > i = 2(1 + B+ Ap)™',*° the dynamics of the economy
15 unstable under learning if

(1— 1202 < p(1+ 8+ Ap) — 2

. 27
T 1T+ pe(x, + Axx) (27)

Roughly, the intuition for Corollaries 9 and 10 is as follows. While the Taylor
principle suffices for stability of (25), it does not for (26). From (26) one ob-
serves that a large 03 enhances the stabilizing influence of the bank (recall that
A®B has negative entries only), which provides intuition for Corollary 9. On
the other hand, a small O'Z effectively works towards eliminating the stabilizing
influence of the bank and a large p (in conjunction with this) enhances the de-
stabilizing influence of the private sector via (26) since A has an eigenvalue
more than 1. This provides some intuition for Corollary 10. More formally, the
latter is also evident from the fact that in this case half the eigenvalues of (26)
are approximately zero and the other half are approximately the eigenvalues
of F ® A” — I and that A" has an eigenvalue more than 1.

Even though Corollary 10 gives theoretical conditions for instability, these
conditions will in general be hard to satisfy for plausible values of parameters.
It, therefore, seems that stability under learning is very likely to obtain when
the bank uses the SG algorithm and subscribes to the Taylor principle in view
of Corollary 9.

These results are also borne out by the numerical results for the optimal
and Taylor rules.?® Generally, we find that both the RE-optimal and the EB-
optimal rules lead to stability under learning provided that ag is not very
small. However, instability arises for small enough values of O'Z and relatively
large values of u, as expected from the discussion above. Nevertheless, the
EB-optimal rule continues to be more robust than the RE-optimal rule in the
sense that it delivers a stable economy for a larger domain of values of p and
2. In addition, rules fulfilling the Taylor principle yield stability as long as o
(or 02, by symmetry) are not too small.

2We note that i ~ 0.93 with the Woodford values and is approximately .87 with the
Clarida et al values.
26We do not provide details, which are available on request from the second author.
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4.2.2 Bank uses RLS and private agents use SG

We now consider the converse situation when the central bank uses RLS and
the private sector the SG algorithm. In this case we need (25) and

(F@ACB—I Fx AP >

M,F @ A’ M, F® A — M, 01 (28)

to have eigenvalues with negative real parts for stability.

We first show that the Taylor principle continues to completely character-
ize stability for interest rules under certain conditions as shown in the next
corollary, which is proved in Appendix A.3.

Corollary 11 Consider model (9). Let the central bank use RLS and the
private sector the SG algorithm in their learning rules. Assume the following
two conditions

(1 - /‘L2)710§7
27 n=(1+8+Xp) ",

with @ as in Corollary 10. Then the symmetric equilibrium s locally stable
under learning if and only if A(x, — 1) + (1 — B)x, > 0 for the interest rule

(4)-

Thus, stability obtains if z (and p) is small enough and ¢2 (and ¢2) is not too
small in the sense made precise in the Corollary. Woodford’s calibrated values
satisfy the conditions of Corollary 11 since p = .35 and 03 = 3.72 so that, with
these values, the Taylor principle completely characterizes stability.

However, instability may arise when p is large. The next corollary, which
is also proved in Appendix A.3, shows that the symmetric equilibrium may be
rendered unstable in this case. Before stating the result we define the following
expressions

IAINA

1
I

2 —p(l+ B+ Ap) + pp((2 — Bu)x. + 2Axq]
pAe — (1= p) (1 — Bp) ’
L+ po(x; + Axx)

vy = PSS (30)

Corollary 12 Consider the model (9) with the interest rule (4). Assume that
the central bank uses RLS and the private sector uses the SG algorithm in their
learning rules. Let fi be as in Corollary 10 and define

B=(20) 1+ B+ o — (146 + )2 —44].

We have i > 12" The dynamics of the economy is locally unstable under
learning if
(a) (1 —p?)~ro2 > vy when p > fi

U1

(29)

or
(b) (1 — p?) o2 > min[vy, vs] when p > i,
where v1, vy are defined in (29)-(30).

27 ~ .68 with the Woodford values and is approximately .58 with the Clarida et al values.

28



Ou EB - optimal rule

Figure 4: The EB-optimal rule for the calibrated example in the space of
(p, 02) with a = 0.1 when the private sector uses the SG algorithm and the

central bank uses RLS. The shaded region is stable.

Some intuition for Corollaries 11 and 12 follows from our discussion in the
previous section. A small enough value of p always contributes to stability
in (28), which explains Corollary 11. On the other hand, a large value of u
(together with a large 02) increases the possibility of instability arising from
the behavior of the private sector (since A has an eigenvalue more than 1)
when it uses the SG algorithm, which provides some intuition for Corollary
12, see (28).

Regarding policy response, we note that vy, v9 in Corollary 12 are increasing
in x, (and y,) so that if the central bank reacts aggressively enough to inflation,
the inequalities (a) and (b) will be violated. In general, the central bank can
continue to contribute towards stability in the learning dynamics by choosing
large values of x, (and x,).

For further analysis we revert to numerics for the calibrated example. When
considering the performance of the two optimal rules, we note that the rules
fully neutralize the g; shock, and so we must state the conditions in terms of
p and o2. We have stability for small values of p with both versions of the
optimal rules, as might be expected from Corollary 11. However, instability
arises with either rule when p and o2 are large enough (as expected from
Corollary 12). Nevertheless, the EB-optimal rule continues to yield stability
under learning for a larger range of values of p and 02 than the RE-optimal
rule. Figures 4-5 illustrate this phenomenon in the (p, 02) space with a = .1,
p €10.7,1) and o2 € (0,5].28

A similar picture emerges with the Taylor rules. Rules fulfilling the Taylor
principle lead to instability for large enough values of p or u (as expected from
the corollary above). This is illustrated in Figure 6, where we have assumed

28For values of p € (0,0.7) and 02 € (0,5], we have stability with either version of the
optimal rule.
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Ou RE - optimal rule

0.7 0.75 0.8 0.85 0.9 0.9 1

Figure 5: The RE-optimal rule for the calibrated example in the space of
(p, 02) with a = 0.1 when the private sector uses the SG algorithm and the

central bank uses RLS. The shaded region is stable.

that there is no cost push shock as in (Woodford 1999). In Figure 6 we set
o2 = 3.72 (the calibrated value in (Woodford 1999)) and y, = 0. Note that
rules with x, > 1 imply instability for values of p close to 1. Figure 7 also
(re)emphasizes this instability. It plots Taylor rules in the (x,,02) space with
X, = 0 and p = .9. Note that most of the space associated with rules satisfying
the Taylor principle yields now instability.2”

5 Asymmetric information between
the private sector and central bank

Another and quite different form of heterogeneity in forecasting arises if there
are differences in the information sets of the private agents and the monetary
policy maker. Clearly, these differences can take various forms and a sys-
tematic study of the consequences of differential information for learning and
monetary policy must be left for future. Here we take up only one case in
which the assumption is that one party observes only one of shocks while the
other sees both of them. We develop the formal analysis in the case where the
central bank does not have knowledge of the shocks to marginal costs that the
private sector experiences (and observes), but we will comment on the other
possibilities at the end of the section.

If the private sector observes both shocks, its PLM is as before, ie it has

290n the other hand, with p = .35 as in (Woodford 1999) rules fulfilling the Taylor
principle yield stability under learning illustrating that the problem of instability arises only
for p close to 1.
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H Rules Taylor type

0.8

0.6

0.4+

0.2t

X

Figure 6: Taylor rules for the calibrated example in the space of (x,, ) with
X, = 0 and og = 3.72 when the private sector uses the SG algorithm and
the central bank uses RLS The shaded region is stable and the blank region
unstable. Note that for p values close to 1 we have instability even with x,.
more than one.

Rules Taylor type

‘@q\)

X

Figure 7: Taylor rules for the calibrated example in the space of (X7r7 03)
with x, = 0 and g = 0.9 when the private sector uses the SG algorithm and
the central bank uses RLS The shaded region is stable and the blank region
unstable. Note that a large portion of the parameter space is unstable now

even with y,. more than one.
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the form

(zt) = aP+bP<gt),where
Tt Ut

a; bl b,
a’ = (af) andbP:<bfZ bf’u).

As before, the forecasts of the private sector are obtained by advancing the
PLM one period, so that

EP 241 :aP+bP u 0 gt ‘
¢ T 0 p Uy

It is now assumed that the central bank does not observe the shock to the
marginal costs u; and, moreover, does not have a good signal about it. Thus
the central bank guesses that the values of the endogenous variables depend
just on the aggregate demand shock g;, which it is taken to observe. Its PLM
thus has the form

< “ ) = a“P +b9Bg,, where

Tt

B CLCB OB bCB
v - () - ()

and the forecast function of the central bank is

EtCB < At+1 ) = a8 + 9B g,
T+1

It must be emphasized that the forecast function of the central bank does
not nest the REE studied previously, ie the PLM of the central bank is misspec-
ified even asymptotically. However, it can still be asked whether the economy
will converge to some equilibrium that is rational in a limited information sense.
In such a restricted perceptions equilibrium (RPE) the forecasts are optimal
relative to the restricted information of the central bank. These equilibria are
studied eg in Chapter 13 of (Evans and Honkapohja 2001a).%

Given these PLMs, the temporary equilibrium of the economy, ie the ALM,
is obtained by substituting the resulting forecast functions into the basic model
(9). Moreover, the restriction y, = 0 must be introduced, since the central
bank does not observe u; and so the interest rate rule cannot be based on it
(we also assume for notational simplicity that x, = 0 in the rule (4) since this
does not affect the analysis). The ALM is now

_ 1 @ P —PX:  —PXx CB
o= <A B+/\so)a +<—/\soxz ex, )T
1 ® p —PX,  —PX CB
b z T )b
K/\ ﬁ+/\90> g+<—Asﬁxz —APXr Hoe
1 @ p l—px, O gt
<)\ ﬁ+)\go)b“put+<)\(1—gpxg) 1 uy )’

30Related concepts of “limited information REE” and “self-confirming equilibrium” are
considered in (Marcet and Sargent 1989a), (Sargent 1991) and (Sargent 1999).
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where b} and b are, respectively, the 1st and 2nd columns of matrix b”. Using
the notation from Section 2 we can write this formally as

y = APal 4+ A%PaCP o [ (APBY + AYPbOP) £ Bylg,  (31)
—|—(pAPb5 + Bu)utu

where

(By, B,) = < A(ll__fpxig) (1) )

For both PLMs the parameters are assumed to be updated by recursive least
squares. (For simplicity, we bypass the issues that arise when different agents
use different algorithms, which were discussed in Section 4.) The parameter
updating algorithm for the private sector is as in Section 4.1 with vp, = t=1, ie
equation (17). Introducing the notation £€57 = (a2, b¢B) and (z¢B) = (1, 41),
the estimation algorithm for the central bank takes the form

(&7) = (&2 + 7 (R e (yer — €520 (32)

REE = ROE el - RO

We note that this formulation is similar to that of the algorithm of the private
sector, except that it incorporates the imperfect observability of the exogenous
shocks by the monetary policy maker. w; is not observable for the policy maker
and, therefore, u; does not appear in the state variables z&Z.

The RPE is given by the solution to the equations

(LP — AP(LP + ACBCLCB
(ICB — APCLP + ACB(ICB
for the constant terms,
b" = [u(A"b] + APb°P) 4 By, pATY, + B,] (33)

for the parameters of the second term in the PLM of the private sector, and
bCB — ,U(Apbg —|—ACBbCB) +Bg

for the parameters of the second term in the PLM of the central bank.

Comparing these to the full information REE discussed in Section 3, it is
seen that the constant terms a” and a“”, as well as the terms b’ and b“", are,
respectively, equal and have the same values in both the RPE and the REE.
Regarding the dependence of the forecast functions on the cost-push shock,
in the RPE the forecast function of the central bank does not depend on wuy
whereas the private sector forecast function does by assumption. This is seen
from the equation b = pATbl + B, for the parameters of the u; dependence.

The condition for local convergence of learning with rules (17) and (32) is
given in the following proposition:
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Proposition 13 The RPE is locally stable under learning if all eigenvalues of
the following two matrices

AP — T ACB
< AP ACB_})ﬁPAP_I-

have negative real parts.

The proof is given in Appendix A.4.

The condition for the first matrix in Proposition 13 is simply the E-stability
requirement for the full information REE. The second condition on the matrix
pAF — I requires the autocorrelation coefficient p in the cost push shocks to
be sufficiently small since A" has an eigenvalue bigger than one (the other one
being between 0 and 1). If one computes the eigenvalues of A", the following
corollary is immediate.

Corollary 14 The RPFE is locally stable under learning iff

207+ B8+ e — V(1 +B+Xp)>— 48] = p=>p.

In the corollary p is the same value as i that appears in Corollary 12. For
example, the value of p = .9 used in (Clarida, Gali, and Gertler 2000) violates
this condition for the parameter values used there. We also note that if instead
the central bank observes (only) the u; shock but not the g; shock, then the
condition for stability is the same as above with p replacing p in Corollary
14.31

The results are quite different if, in contrast, the private sector observes
less than the central bank. The stability condition reduces to the E-stability
requirement (in either case of non-observability of ¢, or u, by the private sec-
tor). This follows by interchanging the roles of A” and A" in Proposition 13
and noting that the eigenvalues of A°P are non-positive.

This analysis, therefore, supports the idea that the central bank should
spend enough resources in acquiring good information about the shocks hit-
ting the economy. In fact, there is recent empirical evidence that the Federal
Reserve appears to possess information about the current and future state of
the economy that is not known to commercial forecasters, see (Romer and
Romer 2001).

6 Discussion and concluding remarks

In this paper we have considered the argument that the use of central bank
internal forecasts in monetary policy making might be a source of instability
of the economy. For the analysis we employed a standard forward looking

31This scenario may also be plausible since the g; shock can represent shocks to house-
hold preferences. Finally, if the CB observes neither shock, then the stability condition in
Corollary 14 will also include the same upper bound for p.
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model that is currently the workhorse for studies of monetary policy and is
being used to give advice to policy makers. In reality one would think that the
practice of using internal forecasts will in general create significant differences
between central bank forecasts and those of the private sector and that these
differences can have potentially important effects on the economy. We studied
the consequences of the use of internal forecasts for the stability of the econ-
omy by means of the learning approach to expectations formation, in which
agents may at least temporarily have non-rational forecast functions that are
corrected over time. Such an approach is necessary since in any framework
with symmetric information the distinction between private sector and central
forecasts is irrelevant if RE modelling is used.

The paper has looked at the properties of both some optimal policies and
Taylor rules. We have analyzed different cases of heterogenous forecasts and
learning. In general, heterogeneity in forecasting and learning leads to further
constraints on good policy in addition to the learnability constraints derived
under homogenous learning rules. Looking at specific policies, the forecast
based rule with internal central bank forecasts, recently suggested by (Evans
and Honkapohja 2000), performed well more robustly than some other for-
mulations of optimal discretionary policy. However, that policy — as well as
learnable Taylor rules — may not be stable under heterogenous learning for
some parameter configurations.

Based on our analysis, we can make the following general suggestions for
the conduct of good monetary policy on the part of the central bank.

First, the interest rate rule should satisfy the Taylor principle. Our analysis
supports this suggestion since, with forward looking rules, the Taylor principle
is equivalent to E-stability of the equilibrium and it is always a necessary
condition for convergence of the economy under heterogenous learning.

Second, the central bank should take incoming information about the econ-
omy seriously and put sufficient weight on these indicators while setting its in-
terest rate rule. This suggestion is supported by our analysis of the differences
in the degree of responsiveness when forecast functions are updated (Section
4.1).

Third, the bank should spend sufficient resources in obtaining large amount
of information about the exogenous shocks. This suggestion is supported by
the analysis of Section 5 and in part by that in Section 4.2.

Fourth, the central bank should be transparent about its forecasts. If the
central bank forecasts are made public, it is possible that the bank and the
private agents will have the same forecasts. If so, the equilibrium will be stable
under weaker conditions than when they have different forecasts, a situation
more likely to arise when the bank is not transparent.

Informal discussions of monetary policy do tend to support all of these
suggestions. Our contribution has been to lend weight to these informal dis-
cussions in an analytical treatment of monetary policy.
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A Appendix

A.1 Proof of corollaries 4 and 5

To shorten notation, define 6 = 6;1503. Consider the matrix on the right
hand side of (22). Ignoring the scalar §p > 0 (which does not affect the sign
of the real parts of the eigenvalues of (22)), it can be checked that one of the
eigenvalues of the matrix within parentheses on the right hand side of (22) is
—06 and the remaining 3 eigenvalues are given by the characteristic polynomial

p(m) = m®+ aym?+ agm + a3, where (34)
ap = 1=B+6+6px, + A x, =6 D] =1-8+6+(,
ay = 8(1—=0)+8¢[(2 = B)x. + A2xz =6 =] =6(1 =) + (y,
as = 0p[(1=B)x. + Az — D]

where the definitions of (;, (5 are introduced to shorten notation and should be
obvious from above. The necessary and sufficient conditions for the eigenvalues
of p(m) to have negative real parts (the Routh conditions) are a; > 0, ag > 0,
and ajas > ag. These conditions imply that as > 0 also.

Note that a3 > 0 if and only if (1—3)x,+A(x,—1) > 0, which provides the
necessary condition (20) in Corollary 4. Second, a; > 0 if and only if condition
(21) in Corollary 4 is satisfied. This completes the proof of Corollary 4.

To prove Corollary 5 we first note that, when 6 > 1, the Taylor principle
suffices to make a; > 0. We still need to show that a;as > as.

Note that (, = (; + as, which we use below. In addition, (; and (, are
positive when 6 > 1. Now

aaz —az = 6(1=PF)(1=B+6)+6(1—B)+ (1 —B+0)C,
+(1¢o — as (35)
= (1 =B —=B+6)+6(1—=0)C+(1—=B+0)(C+as)
+(1 (¢ + a3) — as
= §(1-B)(1 =B+ +[(6+1)(1~B)+8¢ + (G
(1 =B+6)+ ¢ —1as
= 6A-P)A =B+ +[(6+ 11 —-p5)+6¢ +
G +[6 -6+ las.

6 > 1 suffices to make the coefficient of a3 in the final line above positive since
¢y > 0, which in turn implies a;as — ag > 0.

We still need to check the matrix (19) for stability. As in (22), rewrite
matrix (19) as (by pulling out ép)

5 Fo AP -1 F® A8 (36)
P\ 65 00pF @ AP 65 60(F @ ACF — 1)

and we examine the eigenvalues of the matrix within parentheses in (36). By

eg using Mathematica, we first note that the characteristic polynomial of this
(8 x 8) matrix is symmetric in the shocks p and i, so that we may consider only
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the shock p and the resulting 4th degree polynomial. One eigenvalue of this
polynomial is —é and the remaining 3 eigenvalues are given by the polynomial

q(m) = m*+bym?®+ bym + bs, where (37)
b = 2= p(1+0)+6+b6pplx. + A(xx —67)]

2—p(1+8)+ 06+,

by = (L=p)(1—=08p)+62—p(1+B)]+6pe[(2—Bp)x.

+A2x, — 67 —1)]

(L =p)(L=Fp) + 612 = p(L+ B)] + 72,

6(1 = p)(1 = Bp) + bppl(1 = Bp)x. + Axr — 1)]

= 6(1—p)(1—Pp)+7s,

o>
o3
Il

where the definitions of 7; (i = 1,2, 3) should again be obvious from above.

Note that 79 = (71 + 73), and that 7; > 0 by the Taylor principle and the
assumption that 6 > 1. Next we observe that b; > 0 and b3 > 0 also by the
Taylor principle and the assumptions 0 < p < 1 and 0 < 3 < 1. We now need
to determine the sign of b1bs — bg for which we use 79 = (71 + 73) below.

bibp —bs = [2—p(1+8)+6+71][(1—p)(L—Bp) +6{2 — p(1+ B)} + 72

—0(1 = p)(1 = Bp) — 73

= 2=p(1+8)+ (1 —p)(L = Bp)+6{2—p(1+ )} +
T1[(1 = p)(1 = Bp) +6{2 — p(1 + B)}] + 72[2 — p(1 + 3) + ¢]
+7179 — 6(1 — p)(1 — Bp) — 73

= 2=p(1+B)[(1 = p)(1 = Bp)+ {2 = p(1+ B)}]
+6(1 = p)(1 = Bp) + 6°[2 = p(1 + B)] + 71[(1 — p)(1 = Bp)
+6{2 — p(1 + ) }]
+722 = p(1+ B) + 6] + 7172 — 6(1 — p)(1 — Bp) — 73

= 2-p(1+B)[(1 = p)(1—Bp)+6{2—p(1+B)}]
+6%2 = p(1+ B)] + 11[(1 = p)(1 = Bp) + 6{2 — p(1 + B)}]
+(r1+73)[2 = p(1+ B) + 6] + 71(T1 + 73) — 73

= 2-p(1+ 31 =p)(1 = Bp)+6{2—p(1+B)}]
+6%12 = p(1+ B)] + 11[(1 = p)(1 = Bp) + 6{2 — p(1 + B)}]
+712 = p(1+B) + 6 + 71 + m3[L + 6 — p(1 + B) + 71].

Note that in the final line above all terms are positive since 0 < p < 1,
0< (@B <1andé>1. Hence, biby — bg > 0 when 6 > 1.

Finally, when 6 = 1 the stability matrices are the same as in the homoge-
nous case so that E-stability follows from the Taylor principle.

A.2  Proof of corollary 10

As mentioned in the text, the conditions for stability of (26) when F' = p are
identical to that of (19) or (36). Therefore, the characteristic polynomial (37),
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in Appendix A.1, determines stability in this case after making the substitution

6 = (1 — p?) 'oZ, so that it takes the form

p(m) = m® + 81m2 + Bgm + ?)3, where
by = 2—p(l4+ 8+ o)+ (1— ) o[l + pe(x, + M),
by = (1= p)(1=PBp)— pAp

+(1—p?) o2 = p(1+ B) + pe{ (2 — Bu)x. + AM2x, — 1)},

by = (1= p*) " ogl(L— ) (1 = Bp) + p{ (1 = Bu)x. + A0 — D}

in (37). The necessary and sufficient conditions for the eigenvalues of p(m) to

have negative real parts are given by by > 0, bs > 0 and b1by > bs.

The instability condition in Corollary 10 is simply b; < 0. We note that

for by < 0 it is necessary that u > i = 2(1 + 3+ Ap)~L.

A.3 Proof of corollaries 11 and 12

We first prove the inequalities

o> p>2
Here o and i are defined in Corollaries 10 and 12, respectively.
Now,
2 1 Ap — /(1 Ap)? —4
B> ie 1B+ =+ 8+ M) 45
(1+ 8+ Ap) 23

Rearranging and squaring, we require

163*
14+ 84+ X)) =48> (14 8+ Xp)* + ———— — 8
(L+B8+Ap)" =48> (1+ B+ Ap) (ENESWE 8
or
(1484 Ap)* > 483
or
(1= B)? + N> + 28 p + 2Ap > 0,
which is true, given that the parameters are all positive.
In a similar way we show that
1 1 Ap —+/(1 Ap)? —4
2 <ie L8+ Ae = V4 B+ M) -4
(1+ 8+ Ap) 20
Rearranging and squaring, we require
(1+ B+ Xp)* —48 < (1+ﬁ+)\g0)2+4—62—45
(14 8+ Ap)?
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or
46%(1 + B+ Ap) 2 > 0,

which is true.

To prove Corollary 11, we first note that necessity of the Taylor principle
(1 —=758)x, + A(xy — 1) > 0 follows from the necessity of E-stability through
the matrix (25). Thus assume that the Taylor principle holds and consider
the characteristic polynomial of the (8 x 8) matrix (28). It is again symmetric
in the shocks p and p, so that we may consider only the shock p and the
resultant 4th degree polynomial. One eigenvalue of this polynomial is —1 and
the remaining 3 eigenvalues are given by the polynomial

r(m) = m®+eim?® + cam + e, (39)
L+ pp(x; + Axe) +{2 = p(1+ B+ Ap) (1 — p?)"lo,

e = (L—p®)ol2— p(l+ B8+ M) + pe{(2 — Bu)x. + 2X\x,} +

(1= )" o { (1 — p)(1 = Bu) — ppA}],

cs = (1—p®) (00 [pe{(1 = Bu)x. + Mt + {(1 — p)(1 = Bp) — ppA}].
Clearly, ¢; > 0 and ¢35 > 0 since u < 27!, 0 < 3, p < 1 and the Taylor

principle holds. We still need to show that c;co — c3 > 0. We introduce the
notation 6 = (1 — p?) o2 below. We first write

C1

ccs = {1+ pp(x, + M) H2 — (L4 B84+ Ao)u}t + 62 — p(1+ B+ o)} +
Spp{l + pp(x. + Axx) H(2 — Br)x. + 2Ax,} +
8 {2 — p(1+ B+ 2p) H(2 — Bu)x. + 22X} +
{1+ pp( + M) HA = ) (1= Bu) — peA} +
642 = p(1+ B+ xo) H(1 — p) (1 — Bu) — peA}

In this expression (1 — u)(1 — Bu) — pe is positive for all p < fi and hence
for all 4 < 27'7i (using (38)) since the expression puAp — (1 — p)(1 — Bu) is
increasing in p and is zero when p = fi so that it is negative for all u < fi.

In computing c;co — c¢3 we ignore first, second, third and fifth terms of the
preceding expression for ¢;c and (to economize on space) denote them only
by .. while keeping in mind that these terms are all positive. We retain only
the fourth and final (sixth) term and obtain

cca—cs = {2 — p(1+ B+ 2o) H(2 — Bu)x. + 2Mx, ) +

62 — (1 + B4+ M) H(1 — p)(1 = Bp) — ppA}
—8%[pp{ (1 = Bp)x, + Ao} + {(1 = ) (1 = Bu) — pep}] +

= {2 — p(1+ 8+ 20) {1 = Bu)x, + Mt + I + A +
62 — p(1+ B+ Xp) H(1 — ) (1 = Bu) — ppA} —
8 [pp{ (1 = Bp)x. + Mo} + {(1 = ) (1 = Bu) — pp}] +

= 8 pe{(1 = Bu)x. + M H1 — (14 8+ xo)} +
S {2 — p(1+ B+ Ap) Hx. + Axa} +
(1 = ) (1 = Bp) — ppA}6{2 — p(1+ B+ Ap)} — 1] + ..
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The first two terms in the final expression are positive since p < 27 'i. Regard-
ing the final explicit term, it was shown above that (1 — p)(1 — Sp) — peA >0
for all p < 27f. Moreover, since § > 1 and u < 271,

2—p(l+8+2)} =1 = 2—p(l+5+rp)—1
= 1—p(l+8+Ap) >0,

which proves that the final term is positive. Thus ¢;co — ¢3 > 0 (recall that
the .. terms in the expression for ¢ico — ¢3 above are all positive).

To prove Corollary 12, consider the characteristic polynomial (39). Assume
that the Taylor principle holds since otherwise we immediately have instability.
We note that for ¢; < 0, it is necessary that ¢ > f and for co < 0, it is necessary
that pAep — (1 —p)(1—PBu) > 0. The rest follows, since ¢; < 0 or ¢o < 0 suffices
for instability.

A.4  Proof of proposition 13

We follow the methodology in Section 13.1.1 of (Evans and Honkapohja 2001a).
To obtain the associated differential equation for the algorithms (17) (with
Yps =t 1) and (32), we compute

E(R") a1 (y1 — ¢Twe 1)

1
= ER")' g | [(z—1,mm1) = (1, g1, wemn) (97)]
Ut—1
1 a, Qg
= BE(R")7'| g (Lgesu) || A Ang | = (67|
Ut—1 A Ary

where the temporary notation a,, A., etc. is obtained from the transposed
form of the (31), ie

R

a,

(ze-1,me-1) = (1, ge—1, ue-1) filzg {17rg
AZ’U, Aﬂ"u

Taking expectations and limits the associated differential equation for the pri-
vate sector algorithm becomes

do” /dr = (R") Y(Baxa)[T" (6", ¢77) — ¢"] (40)
dRY/dr = FExa’ — R",

where Fxx' = lim; Ez;x) and

TP(¢P7¢CB) — (APCLP—i—ACBCLCB,,u(APbg—‘rACBbCB) +Bg,pAbe+Bu).
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The associated differential equation for the algorithm of the central bank
is obtained analogously by computing

E(R) 1w (yemr — P )

= wee (L Yo [( 55 ) -]

+E(ROB) ( gtll )utl([lzu,flm).

Since ¢; and u; are uncorrelated and have zero means, the second term in this
expression is zero. The associated differential equation for the central bank is
then

40 Jdr = (RO)(BaCH (Y )[TOR (g, 6P — 67 (4)
dRCB/dT — EZ’CB(.'ECB)/ i RCB,

where Ex¢P(2¢P)" = lim; Ex¢2(2FP)" and
TCB(¢P7¢CB) — (APCLP + ACBCLCB,,M(AP[);D + ACBbCB) + Bg).

As is well known, the local stability of the associated differential equa-
tions (40) and (41) is governed by the local stability of the “small” differential
equations

dg” [dr = T"(¢",¢7") — ¢
dgbCB/dT — TC’B(¢P’¢CB) . ¢CB’

which are the modified E-stability differential equations. Inspecting the T
and TP mappings it is seen that for constant terms a” and a“?, as well as
for the terms b} and b“", we can just repeat the E-stability arguments for
homogenous case in Section 3. The E-stability equation for b is simply

db? Jdr = (pAT — )oY + B,,

which completes the proof.
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