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Learning, inflation expectations and optimal monetary
policy

Bank of Finland Discussion Papers 20/2003

Eric Schaling
Research Department

Abstract

In this paper we analyse disinflation policy in two environments. In the first, the
central bank has perfect knowledge, in the sense that it understands and observes
the process by which private sector inflation expectations are generated; in the
second, the central bank has to learn the private sector inflation forecasting rule.
With imperfect knowledge, results depend on the learning scheme that is
employed. Here, the learning scheme we investigate is that of least-squares
learning (recursive OLS) using the Kalman filter. A novel feature of a learning-
based policy – as against the central bank’s disinflation policy under perfect
knowledge – is that the degree of monetary accommodation (the extent to which
the central bank accommodates private sector inflation expectations) is no longer
constant across the disinflation, but becomes state-dependent. This means that the
central bank’s behaviour changes during the disinflation as it collects more
information.

Key words: learning, rational expectations, separation principle, Kalman filter,
time-varying parameters, optimal control

JEL classification numbers: C53, E43, E52, F33
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Oppiminen, inflaatio-odotukset ja optimaalinen
rahapolitiikka

Suomen Pankin keskustelualoitteita 20/2003

Eric Schaling
Tutkimusosasto

Tiivistelmä

Tässä tutkimuksessa vertaillaan inflaationvastaisen rahapolitiikan toimintaa kah-
denlaisissa olosuhteissa. Ensimmäisessä tapauksessa keskuspankilla on täydelli-
nen tietämys yleisön inflaatio-odotusten syntymekanismista, ja toisessa tapaukses-
sa keskuspankin on opittava se sääntö, jota yleisö käyttää inflaatio-odotuksia
muodostaessaan. Kun keskuspankin tietämys ei ole täydellistä, tulokset riippuvat
siitä, miten keskuspankki oppii säännön. Tässä tutkimuksessa tarkastellaan oppi-
mista, joka tapahtuu Kalmanin suotimella rekursiivista pienimmän neliösumman
menetelmää käyttäen. Oppimiseen perustuvalle politiikalle on ominaista, että
rahapolitiikan akkommodaation aste (eli se, missä määrin politiikka toteuttaa ylei-
sön inflaatio-odotuksia) ei ole vakio, vaan riippuu talouden tilasta. Keskuspankin
käyttäytyminen siis muuttuu inflaation hidastuessa ja keskuspankin kerätessä lisää
informaatiota. Tämä piirre erottaa oppimiseen perustuvan rahapolitiikan siitä, mi-
ten keskuspankki käyttäytyy täydellisen tietämyksen oloissa.

Avainsanat: oppiminen, rationaaliset odotukset, separaatioperiaate, Kalmanin suo-
din, aikariippuvat parametrit, optimaalinen kontrolli

JEL-luokittelu: C53, E43, E52, F33
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1 Introduction

As pointed out by Bullard (1991), in the three decades since the publication of the
seminal work on rational expectations (RE) in the early 1960s, a steely paradigm
was forged in the economics profession regarding acceptable modelling
procedures. Simply stated, the paradigm was that economic actors do not persist
in making foolish mistakes in forecasting over time.

Since the late 1980s researchers have challenged this paradigm by examining
the idea that how systematic forecast errors are eliminated may have important
implications for macroeconomic policy. Researchers who have focused on this
question have been studying what is called ‘learning’, because any method of
expectations formation is known as a learning mechanism. Thus, since the late
1980s a learning literature, or learning paradigm, developed.1 An excellent
introduction to – and survey of – this paradigm is presented in Evans and
Honkapohja (2001).

A different strand of literature in the economics profession has been dealing
with optimal control or dynamic optimisation. The method of dynamic
programming advanced by Bellman has been a main tool for optimisation over
time under uncertainty.

In general there are few papers in the literature that combine the themes of
learning and (optimal) control. An exception is recent and important work by
Wieland (2000a,b). Wieland (2000a) analyses the situation where a central bank
has limited information concerning the transmission channel of monetary policy.
Then, the CB is faced with the difficult task of simultaneously controlling the
policy target and estimating (learning) the impact of policy actions. Thus, the so-
called separation principle does not hold, and a trade-off between estimation and
control arises because policy actions influence estimation (learning) and provide
information that may improve future performance. Wieland analyses this trade-off
in a simple model with parameter uncertainty and conducts dynamic simulations
of the central bank’s decision problem.

In this paper we apply the themes of learning and control to the problem of
how a central bank should organize a disinflation process, ie how to reduce
inflation. Thus, our approach follows recent relevant work by Sargent (1999).

Central banks throughout the world are moving to adopt long-run price
stability as their primary goal. Thus, there is agreement among central bankers,
academics and financial market representatives that low or zero inflation is the
appropriate long-run goal of monetary policy. However, there is less agreement
on what strategies should be adopted to achieve price stability. For example, on
the one hand we have the view that a major cause of rising unemployment in the

                                                
1 Important papers are Lucas (1987) and Marcet and Sargent (1988, 1989a,b,c).
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1980s in OECD countries was the tight monetary policy that those countries
pursued to reduce inflation. On the other we have the view that a sharp
disinflation may be preferable to gradualism because the latter invites speculation
about future reversals or U-turns in policy.

The received view in the literature – as expressed by King (1996) at the
Kansas City Fed symposium on Achieving Price Stability at Jackson Hole –
seems to be for a gradual timetable, with inflation targets consistently set below
the public’s inflation expectations.

Throughout, King emphasizes the role of learning by private agents. He
shows how the optimal speed of disinflation depends crucially on whether the
private sector immediately believes in the new low inflation regime or not. If they
do, the best strategy is to disinflate quickly, since the output costs are zero. Of
course, if expectations are slower to adapt, disinflation should be more gradual as
well.

King illustrates both these polar cases, labeling the first a ‘completely credible
regime switch’ and the second ‘exogenous learning’. He also considers the case
where private sector expectations are a weighted average of the central bank’s
long-run inflation target and the lagged inflation rate. This is termed ‘endogenous
learning’. Obviously, endogenous learning is a mixture of a completely credible
regime switch and exogenous learning. Private sector expectations do not adjust
immediately (they depend on actual inflation experience, and hence on the policy
choices made during the transition), but are not completely independent of
monetary policy decisions either.

In his discussion of endogenous learning King says that there are good
reasons for the private sector to suppose that in trying to learn about the future
inflation rate many of the relevant factors are exogenous to the path of inflation
itself. But a central bank may try to convince the private sector of its commitment
to price stability by choosing to reduce its inflation target towards the inflation
target quickly. King calls this ‘teaching by doing’. Then the choice of a particular
inflation rate influences the speed at which expectations adjust to price stability.

Teaching by doing effects have recently been analysed by Hoeberichts and
Schaling (2000) for simple macro models with both linear and nonlinear (convex)
Phillips curves. They also allow the central bank’s ‘doing’ to affect private sector
learning. Of course, if the CB recognises its potential for active ‘teaching’ its
incentive structure changes. More specific, it should realize that by disinflating
faster, it can reduce the associated output costs by ‘teaching’ the private sector
that it means business. Thus, the dependence of private sector expectations on the
actual inflation rate should be part of its optimisation problem. This is in fact what
they find: allowing for ‘teaching by doing’ effects always speeds up the
disinflation vis-à-vis the case where this effect is absent. So, their result is that
‘speed’ in the disinflation process does not necessarily ‘kill’ in the sense of
creating large output losses.
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In this paper we analyze disinflation in two environments. One in which the
central bank has perfect knowledge, in the sense that it understands and observes
the process by which private sector inflation expectations are generated, and one
in which the central bank has to learn the private sector inflation forecasting rule.
Here following Evans and Honkapohja (2001), the learning scheme we investigate
is that of least-squares learning (recursive OLS) using the Kalman filter.

For the case of perfect knowledge we find that the optimal disinflation is
faster under commitment than discretion. Next, in the commitment case the
disinflation is less gradual, the higher the central bank’s rate of time preference
and – interestingly – the higher the degree of persistence in inflation expectations.

With imperfect knowledge results depend on the learning scheme that is
employed. A novel feature of the passive learning policy – compared to the
central bank’s optimal disinflation policy under perfect knowledge – is that the
degree of monetary accommodation (the extent to which the central bank
accommodates private sector inflation expectations) is no longer constant across
the disinflation, but becomes state-dependent. This means that the central bank’s
behaviour changes during the disinflation as it collects more information.

The remainder of this paper is organized as follows. Section 2 discusses
private sector behaviour regarding the credibility of the central bank’s inflation
target. In section 3 we present the benchmark case of perfect knowledge and
contrast discretion and commitment. Imperfect knowlegde and the Kalman filter
are introduced in section 4. Section 5 analyses disinflation policies under
imperfect knowledge. The plan of the paper is summarised in table 1.1.

Table 1.1 Classification of cases

Perfect knowledge Imperfect knowledge; Learning via
Kalman filter

Static (one-period)
optimisation

Discretion; Section 3.3 Optimal learning; Sections 5.2 and
5.3.1

Dynamic optimisation Commitment; Section 3.4 Optimal and passive learning;
Sections 5.2 and 5.3.2

We conclude in section 6. The appendices contain the derivation of steady state
relationships, the commitment solution, and the derivation of the Kalman filter
equations used in the main text.
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2 The environment

In this section we examine the speed of disinflation that would be chosen by a
central bank in a world in which monetary policy affects real output in the short
run but not in the long run. We use a simple macroeconomic model that combines
nominal wage and price stickiness and slow adjustment of expectations to a new
monetary policy regime. The model has three key equations – for monetary policy
preferences, aggregate supply, and inflation expectations.

The central bank minimizes the following loss function

� �
� �2

t
2

t
0t

t

t *)zz(*)(a
2

EMin
0tt

�����
�

�
�

�
�

�

�

(2.1)

Here � is the inflation (rate) in year t, z is the natural logarithm of output, �* and
z* are the central bank’s inflation and output targets, 0<a<� represents the central
bank’s relative weight on inflation stabilization, while the parameter � (which
fulfils 0<�<1) denotes the discount factor (ie a measure of the policy horizon).
This expectation is conditional on the central bank’s information set in period t. In
what follows we set z* equal to the natural rate of output (which in turn is
normalized to zero).

The model is simple. Aggregate supply exceeds the natural rate of output
when inflation is higher than was expected by agents when nominal contracts
were set. This is captured by equation (2.2) which is a simple short-run Phillips
curve.

t1ttt Êz ����
�

(2.2)

where z is the natural logarithm of the output gap.2 Here the superscript ^
indicates that the expectation of inflation is the subjective expectation (belief) of
private agents. This belief does not necessarily coincide with a rational
expectation.

Private agents believe that inflation will be reduced from its initial level
towards the inflation target, but are not sure by how much. More specific, the
public’s inflation beliefs are given by

tt u*���� (2.3)

                                                
2 It would be straightforward to extend the Phillips curve with an aggregate supply shock. Standard
assumptions on nominal rigidities would then imply that inflation expectations are set before the
shock is observed, while monetary policy would bet set in full knowledge of the shock to output.
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where u is a shock to the inflation rate. So, we assume that equation (2.3) is the
perceived law of motion of private agents.

In order to study changes in inflation expectations, we extend this system with
a stochastic process for u. As in Bullard and Schaling (2001) we use a two-state
process defined by

�
�
�

������
�

��
���� *0where

0sif0

1sif
su 0

b

t

t
b

t
b

t (2.4)

If �b
�0 there is no difference between the two regimes, and so we can think of �b

as scaling the effect of the difference in inflation beliefs in the two regimes. In the
case where the parameter �b

�0, there is a completely credible regime switch.
Thus, �b is a measure for the extent to which the public’s beliefs (and
consequently expectations) about inflation are uncoupled from the intended policy
objective.3 Figure 2.1 illustrates. �̂  is the private sector’s perceived law of motion
of the inflation rate, �0 is the initial inflation rate and aL = �b is the difference in
inflation beliefs in the two regimes.

Figure 2.1 The perceived law of motion for inflation

                                                
3 I have borrowed this terminology from Orphanides and Williams (2002). Or, using a term from
the older time-consistency literature, it can be seen as a measure for the lack of ‘credibility’ of the
CB’s inflation target.
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The unobserved state of the system st takes on a value of zero or one, and follows
a two-state Markov process.4 There is an associated transition probability matrix

�
�

�
�
�

�

�

�
�

qq1

p1p
T , where

� �
� �
� �
� � ,q10S1SobPr
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,p1S1SobPr

t1t

t1t

t1t

t1t
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����

���

�
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�

(2.5)

So the probability of remaining in the high (low) state conditional on being in the
high (low) state in the previous period is p(q), and the probability of switching
from the high (low) to the low (high) state is 1–q(1–p).

As suggested by Hamilton (1989), the stochastic process for equation (2.5)
admits the following AR(1) representation:

1tt1t vs)q1(s
��

����� (2.6)

where � � p + q – 1, and vt is a (discrete) white noise process with mean zero and
variance 2

v� .5

We want to study the dynamics of the system following a switch to a new
regime, which in our model will constitute a switch from one state to the other.
We are particularly interested in the effects of this switch on the dynamics of
private sector inflation beliefs.

                                                
4 We adopt the usual convention that for discrete-valued variables, capital letters denote the
random variable and small letters a particular realization. If both interpretations apply we will use
small letters.
5 For the technical details see Appendix 1.
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3 The perfect knowledge benchmark

To get some straightforward results, we assume that the central bank understands
and observes the process by which private sector inflation expectations are
generated. This is the benchmark case of perfect knowledge. So, in this section we
analyze learning by the private sector, but not by the central bank. We model
least-squares learning by the central bank in section 4.

Consider a switch from a monetary policy regime in which inflation has
averaged �0 to a regime of price stability in which inflation equals the inflation
target �*. What is the optimal transition path? That will depend upon how quickly
private sector inflation expectations adjust to the new regime. Following King
(1996), it is useful to consider two cases: (1) a completely credible policy regime
switch: private sector expectations adjust immediately to the new policy reaction
function – this is the case of rational or model consistent expectations; (2)
‘endogenous learning’: the private sector’s forecasting rule depends on the policy
choices made in the new regime.6

3.1 Fully credible regime switch

With a completely credible regime change, private sector inflation expectations
are consistent with the new inflation target. From equation (2.4) it can be seen that
this is the case where �b = 0, so that we have

*
t1tÊ ���

�

Hence output and inflation are given by

zt = 0

�t = �*

Since the level of output is independent of the inflation rate, policy can aim at
price stability without any expected output loss. The optimal policy is to move
immediately to the inflation target.

                                                
6 We do not consider the case of exogenous learning where expectations are formed independent
of the actual policy choices in the new regime.
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3.2 ‘Endogenous learning’ by the private sector

This is the more general case. King defines endogenous learning as the case where
the private sector’s forecasting rule depends on the policy choices made in the
new regime.

To see that this in fact the relevant situation in our model, we apply )L1( ��

where L is the lag operator )xxL( jtt
j

�

�  to (2.3) and take account of (2.6),

*)1(s)L1()L1( t
b

t ������������ (3.1)

Substituting for ts)L1( ��  from (2.6), we may rewrite equation (3.1) as

tl
b

1tt va)q1(*)1( ��������������
�

(3.2)

Hence, the combination of the private sector’s perceived law of motion (equation
(2.3)) and the AR(1) representation of the inflation state (equation (2.6)) gives rise
to a first-order stochastic difference equation for inflation.

Taking expectations at time t–1 of equation (3.2), where the expectations
operator Ê  refers to agents’ subjective expectations, we obtain

)q1(*)1(Ê b
1tt1t ������������

��

(3.3)

Our main finding is that the private sector’s optimal inflation forecast – in an
environment where the perceived law of motion is one with unobserved regime
shifts – involves a lagged inflation term. More precise, at time t–1 private agents’
inflation expectations for period t are a linear function of the inflation target, the
lagged inflation rate and a constant, where the coefficients are functions of the
structural parameters of the Markov switching process, as shown in equation
(3.3). Thus, indeed the private sector’s forecasting rule depends on the policy
choices made in the new monetary policy regime; this can be seen from the
presence of the �t–1 term.

An important limiting case of equation (3.3) is when � = �b =0. In this case
the shock to inflation becomes serially uncorrelated and the private sector’s
optimal inflation forecast is the inflation target.
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3.3 Discretion

Now we solve the model for the case where the central bank does not internalize
the constraint (3.3). This is equivalent to the case where ��0. In this
discretionary case the minimization problem of the central bank reduces to the
static problem

� �
� �2

t
2

tt *)zz(*)(a
2
1

EMin
t

�����
�

The associated optimal policy is

*
a1

a
x

a1
1

tt �

�

�

�

�� (3.4)

The optimal transition to price stability is to allow inflation to fall gradually. The
inflation rate should decline as a constant proportion of the exogenous expected
inflation rate. That proportion depends on the weight a attached to the importance
of keeping inflation close to the inflation target relative to keeping output close to
its natural rate. The inflation rate moves gradually to the level of the inflation
target, but is always below expected inflation. Figure 3.1 shows an example in
which expectations decline steadily. Note that inflation adjusts to its long-run
value gradually over time.

The optimal path may be contrasted with the two extremes of pursuing price
stability from the outset – a ‘cold turkey’ strategy – and setting the inflation rate
to accommodate inflation expectations – an accommodation strategy. The ‘cold
turkey’ strategy is defined by

t*t ����

Price stability is achieved even during the transition period, but only at the cost of
an expected cumulative output loss of

� ��
�

����

T

1t
t *xCZL

A strategy of full accommodation is defined by
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x
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It is clear that such a strategy eliminates any output loss, but at the cost of
inflation falling only at the exogenous rate of decline of private sector inflation
expectations.

3.4 Commitment

In his discussion of endogenous learning, King (1996, p. 68) says that there are
good reasons for the private sector to suppose that in trying to learn about the
future inflation rate many of the relevant factors are exogenous to the path of
inflation itself. But a central bank may try to convince the private sector of its
commitment to price stability by choosing to reduce its inflation target towards
the inflation target quickly. King calls this ‘teaching by doing’. Then the choice of
a particular inflation rate influences the speed at which expectations adjust to
price stability.

In this section we allow the central bank’s ‘doing’ to affect private sector
learning. Of course, if the CB recognises its potential for active ‘teaching’ its
incentive structure changes. More specific, it should realise that by disinflating
faster, it can reduce the associated output costs by ‘teaching’ the private sector
that it means business. Thus, the dependence of private sector expectations on the
actual inflation rate – equation (3.3) above – should be part of its optimisation
problem. In what follows we refer to this as the case of ‘commitment’.

Now, the central bank’s problem is to

� �
� �2

t
2

t
0t

t

t )z(*)(a
2

EMax
0tt

�����
�

�
�

�
�

�

�

(3.5)

subject to

t1ttt Êz ����
�

(3.6)

and

)q1(*)1(Ê b
1tt1t ������������

��

(3.7)

It is convenient to define t1tt Êx ��
�

 as the state variable and ut = �t as the

control. We solve this problem by the method of Lagrange multipliers.7 Introduce

                                                
7 For a discussion of the relative merits of the methods of dynamic programming and Lagrange,
see Schaling (2001).
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the Lagrange multiplier �t, and set to zero the derivatives of the Lagrangean
expression:
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In Appendix 3, it is shown that the first-order condition for this problem can be
written as8
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�

(3.9)
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From these equations it can be seen that the optimal values of the coefficients are
nonlinear functions of the central bank’s weight on inflation stabilization, the
discount rate and the degree of persistence in inflation expectations.

We now show:9

PROPOSITION 3.1: The higher a the lower the optimal value of the feedback
parameter C1.

For the proof, see Appendix 3. The argument is as follows. A central bank that is
more concerned with inflation will be less concerned with output, and hence will
accommodation inflation expectations to a lesser extent. To give a numerical
example, for our basic parameter configuration (see Table 3.1), C1 	 0.71. If we
increase a to 0.5, say, C1 decreases to 0.55.

                                                
8 See Bullard and Schaling (2001) and Schaling (2002) for examples of the method of solving for
the optimal policy.
9 Additional results (propositions) are presented in Appendix 3.



18

We can also derive a result in terms of the central bank’s degree of time
preference. In Appendix 3 we verify:

PROPOSITION 3.2: If C1 is smaller than an upper bound 1C , the higher � the

lower the optimal value of the feedback parameter C1.

The intuition is that the higher �, the more concerned the central bank is about the
future, ie the longer is its policy horizon (conversely if this parameter is zero, the
central bank only ‘lives for today’). Under a live for today policy, the central bank
is not interested how monetary accommodation today effects inflation
expectations for tomorrow. If it becomes more concerned about the future (higher
�) however, it will start paying attention to expected future ‘expectations
invoices’, and accommodate current inflation expectations to a lesser extent,
hence the monetary accommodation coefficient C1 falls. To give a numerical
example for our basic parameter configuration (see Table 3.1) and � = 0.225,
C1 	 0.81. If we increase � to 0.9, say, C1 decreases to 0.71 (see above).

Let us now look how the central bank responds to less faith in its inflation
target, as proxied by a higher weight placed on past inflation by private agents in
forecasting future inflation. This is the case of more persistence in inflation
expectations. It is easy to show:

PROPOSITION 3.3: If C1 is smaller than an upper bound 1C , the higher � the

lower the optimal value of the feedback parameter C1.

The argument is that the higher �, the better agents ‘remember’ past inflation
rates, and use those to forecast future inflation. If the central bank cares about the
future (� 
 0), it will try to offset this ‘memory effect’ by less monetary
accommodation. In this way it lets the lower inflation outcomes influence the
level of expectations to try to offset the higher persistence of those expectations.
For example, for our basic parameter configuration (see Table 3.1) and � = 0.2,
C1 	 0.83. If we increase � to 0.9, C1 decreases to 0.71.
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3.5 Comparing discretion and commitment: A calibration

We now turn to a calibrated case to illustrate our results. Table 3.1 summarizes
the parameter values used in our calibrated economy.

Table 3.1 Parameter configuration1

Parameter Controls Value
p 0.95
q 0.95
� Persistence in PS inflation expectations 0.9
�

b = �b Difference in PS inflation beliefs 13
�0 Initial inflation rate 20
�* CB’s inflation target 2.5
a 0.2
� 0.9
1 We illustrate our analytical findings using these calibrations.

Using the above parameter values, Figures 3.1 and 3.2 show the discretionary and
commitment disinflation policy respectively.

Figure 3.1 Disinflation under discretion
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Figure 3.2 Disinflation under commitment
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From Figure 3.2 it can be seen that disinflation under commitment is always faster
than under discretion. As King puts it,

‘The general prediction of the learning models is that the inflation rate will
fall faster in the earlier years of the transition and will always lie below
expected inflation.’ (1996, p. 70).

The reason is that the choice of a particular inflation rate influences the speed at
which expectations adjust. In fact, a quicker disinflation policy ‘pays for itself’ by
speeding up the adjustment of expectations. Of course, the central bank takes this
fact into account when deciding on its disinflation program. Another way to think
about this, is that central bank credibility – a crucial variable in defining the
output loss of the disinflation – here is endogenous. In fact, the central bank’s
credibility can be increased by the CB by starting off the disinflation by putting its
money where its mouth is.
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4 Imperfect knowledge, filtering and prediction

The case of perfect knowledge can be represented as follows. First, at time t–1 the
central bank sets its expectation (forecast) for private sector inflation expectations.
Next, also at time t–1 the private sector sets its forecast, xt, of inflation for period
t. Then, the CB sets inflation at time t based on its own forecast, where –
importantly – the forecast turns out to be correct. Figure 4.1 summarizes.

Figure 4.1 Perfect knowledge: timing of events

Time t–1 Time t

Stage 1: Stage 2: Stage 3:

CB forecasts PS inflation
expectations; ie sets Et–1[xt].

PS forecasts inflation using
equation (3.3), ie sets xt.

CB decides on monetary
policy, ie sets �t(Et–1[xt]) =
�t(xt), on the basis of either
discretion or ‘commitment’.

Of course, the idea that the CB can forecast or – what is actually equivalent –
observe xt without error is hardly realistic. This assumption will now be relaxed.

4.1 The Kalman filter

Suppose the CB can no longer observe private agents’ inflation expectations xt

without error. This means it does not observe xt at the time it has to set inflation,
but that the CB has a noisy forecast (signal) yt at time t–1 on xt which it
subsequently uses to set the inflation rate �t at time t.

More specifically, let yt be decomposed into xt and �t,

yt = xt + �t (4.1)

where yt is the central bank’s forecast (signal) of xt, and �t is its forecast error. We
assume the forecast error is white noise, with variance 2

�
� . So, the central bank’s

forecast is unbiased, but not without error. An important limiting case of (4.1) is
when 02

��
�

 and we are back to the previous case of perfect knowledge, ie

yt = xt.
To make the problem more tractable we set � �� � bb q1/*1 ���������� .

Then, �b is no longer a free parameter (on those occasions the symbol �b is used).
This assumption has the advantage of reducing the dimension of the state space in
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the central bank’s optimal filtering problem. In this way we avoid what
Ljungqvist and Sargent (2000) call the ‘curse of dimensionality’.10

Setting �b = �b and defining t1tt Êx ��
�

, equation (3.7) simplifies to

� � )1(wwherew1x 1t1t1t1tt ���������
����

(4.2)

Note that the situation above can be represented as the case where the CB believes
that private sector inflation expectations follow the stochastic process

t1tt wy ����
�

(4.3)

corresponding to the true (actual) law of motion of PS inflation expectations, but
that � is unknown to them (this can be seen by substituting the expression for
private sector inflation expectations (4.2) into equation (4.1)). Thus, here we
assume that the central bank employs a reduced form of the expectations
formation process that is correctly specified.11

So, we assume that equation (4.3) is the perceived law of motion of the central
bank and that the policymaker attempts to estimate �. Following Evans and
Honkapohja (2001), this is our key bounded rationality assumption: we back away
from the rational expectations assumption, replacing it with the assumption that,
in forecasting private sector inflation expectations, the central bank acts like an
econometrician.

The central bank’s estimates will be updated over time as more information is
collected. Letting ct–1 denote its estimate through time t–1, the central bank’s one-
step-ahead forecast at t–1, is given by

1t1tt1t wc]y[E
���

� (4.4)

Under this assumption we have the following model of the evolution of the
economy. Let �t be the central bank’s information set for time t. Suppose that at
time t–1 the central bank has data on the economy from periods 
 = t–1, …, t–n.
Thus the time t–1 information set is � � 1t

nt1t w,y �

������
�� . Imagine that we have

already calculated the ordinary least squares estimate ct–1 of � in the model
),w;y( 2

2t1t ���
�� . Given the new information, which is provided by the

observations yt, wt–1, we wish to form a revised or updated estimate of �. Using

                                                
10 For the technical details see Appendix 4. In addition, we then choose the parameter �0 in such a
way that the inequality 0 < �b < �0 – �* (see equation (2.4)) remains satisfied.
11 Instead – as pointed out by Orphanides and Williams (2002) – the learner may be uncertain of
the correct from and estimate a more general specification, for example, in our case a linear
regression with additional lags of expected inflation which nests (4.3).
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data through period t, the least squares regression parameter for equation (4.3) can
be written in recursive form (see Appendix 4 for details)

)cwy(cc 1t1ttt1tt ���

���� (4.5)

1t1tt1tt pwpp
���

��� (4.6)

The method by which the revised estimate of � is obtained may be described as a
filtering process, which maps the sequence of prediction errors into a sequence of
revisions; and 12

1ttt )(wp �

��
���  may be described as the gain of the filter, ie the

Kalman gain.12 It is notable that, as the value of t increases, the value of �t will
decrease. Thus, the impact of successive prediction errors upon the values of the
estimate of � will diminish as the amount of information already incorporated in
the estimate increases.

4.2 Convergence and limit beliefs

We now have a fully specified dynamic system defined by equations (4.2), (4.4),
(4.5) and (4.6). The question of interest is now whether ct�� as t��. In fact, as
time goes by the Kalman gain will go to zero (see Appendix 4 for technical
details), so that indeed the estimated parameter converges to the true parameter.
However, this result only goes through for the case of an exogenous inflation
(data) sequence; that is the case where the separation principle holds.

For the relevant case here, where inflation sequence is not exogenous, but is
chosen to be the outcome of an optimization problem, the separation principle
does not hold and standard convergence results are not applicable. Thus,
following WieIand (2000b) it remains to discuss the asymptotic properties of
estimates and forecasts on the one hand, and policy actions on the other. In what
follows we use the term beliefs as shorthand for estimates and forecasts. This also
has the advantage of following the terminology in the literature, especially Easley
and Kiefer (1988) and Kiefer and Nyarko (1989) (KN hereafter).

Standard convergence results are not applicable, because along any sample
path for which the parameter estimate converges, the sequence of policy actions
also converges. If actions converge too rapidly, they may not generate enough
information for identifying the unknown parameter and the limit distribution
representing the central bank’s limit belief need not be centred on the true
parameter value. KN show that the process of posterior beliefs converges to a
limit belief c  for any multiple linear regression process under minimal

                                                
12 Equations (4.5) and (4.6) are known as the updating, or smoothing equations.
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distributional assumptions. However, this convergence result does not pin down
the limit belief itself. There may exist multiple limit beliefs that are outcomes of
optimal policy but do not coincide with the true parameter value. Incorrect beliefs
may be self-reinforcing because learning is costly (and the more so, the higher the
value of the parameter a) and actions that would be sub-optimal under the truth,
may be optimal under these subjective incorrect beliefs.

For the case of a simple regression with known error distribution (as is
employed here), KN show that all limit belief and policy pairs ),c( � , whether

correct or not, share three properties, belief invariance, one-period optimization
and mean prediction, which can be used to describe the set of possible limit
beliefs. In our model these pairs are given in Figure 4.2.

Figure 4.2 Limit beliefs and policy pairs

Belief invariance: 
)1(

y
c

��

�

One-period optimization: *
c)a1(

a
c)a1(

c
�

��

�

��

��

Mean prediction: � � )1()1(cE �������

First, belief invariance simply follows from the convergence result. For a belief to
be a limit belief it needs to be self-reinforcing, ie given the limit action � ,
updating and predicting according to the Kalman filter equations should again
generate the limit belief c . Thus, limit belief and policy pairs define fixed points
of the Kalman filter equations. Second, with invariant beliefs the dynamic
optimization problem reduces to the static problem of minimizing the expected
one-period loss. Thus, one-period optimization refers to the fact that the limit
action �  minimizes the expected one-period reward conditional on the limit belief
c .13 Third, if the control variable is held constant at �  forever, the central bank
will at minimum learn the associated mean value of private sector inflation
expectations in the limit, which constitutes the mean prediction property of limit
beliefs.

                                                
13 Note that the solution for one-period optimization follows from the discretionary solution (5.11)
if ct–1 is replaced with c , and �t with �
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5 Central bank learning and optimal monetary
policy

We now examine how the nature of monetary policy is affected by learning
considerations. Under imperfect knowledge the central bank minimizes

� �
� �2

ttt
2

t
0t

t

t )y(*)(a
2

EMin
0tt

��������
�

�
�

�
�

�

�

(5.1)

The minimization is subject to the Kalman filter equations (4.4)–(4.6) and
(A4.11):

)1(c]y[E 1t1tt1t ���

��� (5.2)

)yEy(cc t1ttt1tt ��
���� (5.3)14

1t1tt1tt p)1(pp
���

����� (5.4)
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��
�� (5.5)

Now the timing of events is as follows. First, at time t–1 the central bank sets its
expectation (forecast) for private sector inflation expectations according to
equation (5.2). Here the ordinary least squares estimate ct–1 of � in the model

),,w;y( 2
2t1t ���

��  has been calculated on the basis of (5.3) and (5.4); that is using

values for 2t1t1t2t w,y,,c
����

�  (where I have used wt as shorthand for )1( 1t��� ).

Next, also at time t–1 private sector inflation expectations for period t, xt, are
determined by wt–1 and the true parameter � according to equation (4.2).

Then, the CB sets inflation at time t based on its own forecast. Also, in period
t given the new information provided by yt, wt–1, the central bank forms a revised
or updated estimate of �. Figure 5.1 summarizes.

                                                
14 Where I have substituted Et–1yt for ct–1(1+�t–1) using equation (5.2).
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Figure 5.1 Imperfect knowledge: timing of events

Time t–1 Time t

Stage 1: Stage 2: Stage 3: Stage 4:

CB forecasts PS
inflation
expectations using
Ct–1 and wt–1, ie sets
Et–1[xt] = Et–1[yt].

PS forecasts
inflation using wt–1

and �, ie sets xt.

3a) CB decides on
monetary policy, ie
sets �t(Et–1[yt]).

3b) Nature chooses,
�t, and yt = xt + �t

realizes.

3c) CB observes yt

and forms a revised
estimate ct.

Back to stage 1, for
time t = t+1 etc.

Note that the Kalman gain (5.5) is a nonlinear function of the central bank’s
control variable. Hence, the updating equations (5.3) and (5.4) are also nonlinear
in the inflation rate. These updating equations represent the learning channel,
through which the current policy choice �t affects next period’s parameter
estimate ct+1 and the associated prediction Etyt+1.

5.1 Two limiting cases

To obtain some intuition, we now take a closer look at the term 
� �21t1t

2

1p
��

�

��

�
��

in the Kalman gain �t. Here � �21t1t 1p
��

��  is the portion of the prediction error

variance due to uncertainty in ct–1 and 2
�

�  is the portion of the prediction error

variance due to the random shock �t. Thus, it is nothing else than the inverse of the

signal to noise ratio. We can easily see that ,0t
�

��

��
 suggesting that as the

amount of noise in the signal yt increases, relatively less weight is given to new
information in the prediction error, � �t1tt yEy

�
� . This is quite intuitive, since an

increase in the noise may be interpreted as a deterioration of the information
content of � �t1tt yEy

�

�  relative to ct–1. Similarly, if the amount of noise that is

contaminating the signal diminishes, more weight will be given to new
information relative to the previous estimate ct–1.

The model has two important limiting cases. One limiting case is the one
where the noise to signal ratio goes to infinity. Then, new observations are so
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noisy that they are essentially useless, and play no role in updating the previous
estimate. This is the case where the Kalman gain goes to zero, or

0lim
1

1
1

1
lim t

1t

�����

�
��

�

	
�
 ���

�

���

Substituting this expression into the updating equation (5.3) gives ct = ct–1 = c0.
Hence, this is the case where the central bank engages in forecasting or
prediction,

� �1t0t1t 1c]y[E
��

��� (5.6)

but not in updating. Note that in this case the separation principle holds as the
central bank’s optimal estimation of the state �, no longer depends on policy
outcomes. Note that the model can then be solved for either discretion or
commitment.

The mirror image of the previous situation is the case where the new
observations are not polluted by any noise. Then, the central bank should just set
policy based on its most recent observation yt. In this case the relevant limit of the
Kalman gain is given by

1t
t

1t 1
1

lim
1

1
1

1
lim

�

���

�

��� ��
�����

�
�	




����

Substituting this expression into the updating equation (5.3) gives

� �
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In this case at time t–1 the central bank would be able to forecast private sector
inflation expectations perfectly, and then at time t set policy based on its forecast.
So, this case is nothing else but the case of perfect knowledge analyzed in section
3.

5.2 Optimal learning and the value of experimentation

We now turn to the case where estimation and control are not separated. Of
course, estimation and control cannot be separated because parameter updates and
forecasts depend on past monetary policy choices. The effect of policy on future
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estimates and forecasts is also apparent from the Bellman equation associated
with this dynamic programming problem:

� � � �� � � �� �'
t1tt

'
tt

'
tt xVEx,rmaxxV

t
�

�

���� (5.8)

Where the vector of state variables is � �tttt1tt
'
t p,y,,c,yEx ��

�
, � is the control

and r is the one-period return function.
Following Wieland (2000b), it can easily be seen that the two terms on the

right hand side characterize the tradeoff between current control and estimation
(which here is used as an umbrella term to include prediction). The first term is
current expected reward, while the second term is the expected continuation value
in the next period, which reflects the expected improvement in future payoffs due
to better information about the unknown parameter.

Note that if ��0 the central bank only ‘lives for today’, and is not interested
to consider the effects of its policy actions on future payoffs. Then there is no
horse race, and the optimal policy is simply to maximize the one-period return
function. In that case the optimal policy is simply the discretionary solution,
which under imperfect knowledge is presented in section 5.3.1 below.

As shown by Easley and Kiefer (1988) and Kiefer and Nyarko (1989) an
optimal feedback rule exists and the value function is continuous and satisfies the
Bellman equation.15 Policy and value functions can be obtained using an iterative
algortihm based on the Bellman equation starting with an initial guess about
V(.).16 However, analytical solutions are not feasible because the dynamic
contraint of the optimization problem associated with the Kalman filter is highly
nonlinear. As pointed out by Wieland (2000b), there are many examples,
including Wieland (2000a,b), Ellison and Valla (2001) for which no analytical
solutions have been found even though the unknown stochastic process is linear
and the return function is quadratic.

5.3 The case of passive learning

In order to get some analytical results, we now consider the case of passive
learning. This is the case where the central bank disregards the effect of current
policy actions on future estimation and prediction. In this case the policy maker

                                                
15 As pointed out by Wieland (2000b), one can use standard dynamic programming methods and
show that Blackwell’s sufficiency condition – monotonicity and discounting – are satisfied. Thus,
equation (5.8) has a fixed point in the space of continuous functions, which is the value function
V(x�).
16 A typical algorithm is described in Ljunqvist and Sargent (2000), Chapter 3.
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treats control and estimation separately. As pointed out by Bertocchi and Spagat
(1993) in this case learning is passive in the sense that there is no
experimentation.

The central bank will first choose �t to minimise the expected loss based on
its current parameter estimate. After observing yt, the central bank will proceed by
updating its estimate and selecting next period’s control. As pointed out by
Wieland (2002b) this behaviour is myopic since it disregards the effect of current
policy actions on future predictions and estimates.

5.3.1 Discretion

As before first we consider the case where the central bank does not internalise
internalize its ‘teaching by doing’, that is the case where ��0.

Time t: Control

In this discretionary case the central bank will choose �t to minimise the expected
one-period loss
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Where I have decomposed yt as � �t1ttt1tt yEyyEy
��

���  and noted that the

prediction variance � � 1tt
2

t1tt1t fyEyE
���

��  (see Appendix 4). The optimal policy

rule is the one where the central bank should partially accommodate its forecast of
private sector inflation expectations.
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Using equation (5.6) in the expression above, this policy can also be expressed in
terms of a response to the determinants of this forecast, namely past inflation and
the central bank’s initial estimate of the degree of persistence of inflation
expectations.
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Which is identical to the discretionary policy under perfect knowledge if the
parameter � is replaced by its estimate ct–1.

A novel feature of the passive learning policy – compared to the central
bank’s discretionary disinflation policy under perfect knowledge – is that the
degree of monetary accommodation (the extent to which the central bank
accommodates private sector inflation expectations) is no longer constant across
the disinflation, but becomes state-dependent. This means that the central bank’s
behaviour changes during the disinflation as it collects more information. This can
be easily seen from equation (5.11) where the monetary accommodation
coefficient is now time-varying.

Time t: Prediction and estimation

Having solved its control problem, after observing yt the central bank will replace
its previous estimate ct–1 with ct using the smoothing equations (5.3) and (5.4) and
the Kalman gain (5.5). Next, its forecast at time t for private sector inflation
expectations at time t + 1, is given by

� � ��
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Time t + 1: Control

Then, the central bank sets policy at time t + 1 based on the state 1ttyE
�

. The

solution is similar to (5.11).

Time t + 1: Prediction and estimation

Having solved its control problem, after observing yt+1 the central bank will
replace its previous estimate ct with ct+1 using the smoothing equations and the
Kalman gain.
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(5.13)

Note that this gain depends on the inflation rate chosen by the monetary authority
two periods earlier.

5.3.2 Commitment

Now we turn to the case where the central bank internalizes the effects of today’s
monetary accommodation on tomorrow’s inflation expectations.

Time t: Control

To solve this problem, first we derive the central bank’s policy rule � �*,yE t1tt ��
�

,

which selects an action based on the current state t1t yE
�

. Given a specification of

the central bank’s forecast, given by the Kalman filter equations this policy rule
can be derived analytically. Formally, the central bank’s control problem is now
to
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It is convenient to define ]y[Ex t1tt �

�  as the state variable and ttu ��  as the

control. We solve this problem by the method of Lagrange multipliers. Introduce
the Lagrange multiplier �t, and set to zero the derivatives of the Lagrangean
expression:
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Following a line of reasoning similar to the corresponding case of perfect
knowledge (for details see Appendix 3), it can easily be shown that the first-order
condition can be written as
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Again, a novel feature of the passive learning policy – compared to the central
bank’s optimal disinflation policy under perfect knowledge – is that the degree of
monetary accommodation (the extent to which the central bank accommodates
private sector inflation expectations) is no longer constant across the disinflation,
but becomes state-dependent. This means that the central bank’s behaviour
changes during the disinflation as it collects more information. This can be easily
seen from equation (5.16) where the coefficients are now time-varying.

Time t: Prediction and estimation

Having solved its control problem, after observing yt the central bank will replace
its previous estimate ct–1 with ct using the smoothing equations (5.3) and (5.4) and
the Kalman gain (5.5). Next, its forecast at time t for private sector inflation
expectations at time t + 1, is given by

� �� �1t,21t1t1t,1t1tt C1cC1c]y[E
�����

����� (5.19)
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Time t + 1: Control

Then, the central bank sets policy at time t + 1 based on the state 1ttyE
�

. The

solution is similar to (5.16).

Time t + 1: Prediction and estimation

Having solved its control problem, after observing yt+1 the central bank will
replace its previous estimate ct with ct+1 using the smoothing equations and the
Kalman gain.
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Note that this gain depends on the inflation rate chosen by the monetary authority
two periods earlier.

5.3.3 Incomplete learning and limit beliefs

As pointed out by Wieland (2000a), under a policy of passive learning – here for
the cases of either discretion or commitment – there is the real possibility of
incomplete learning that has been investigated in the theoretical literature on
Bayesian learning. The basic intuition behind this possibility is simply the
following: if the policy instrument – the lagged inflation rate – which is the right-
hand side variable in the regression (4.3), does not exhibit enough variation, it
may not be possible to correctly identify the unknown parameter �.

For the case of our simple regression (4.3) Kiefer and Nyarko (1989) have
shown that that all limit belief and policy pairs ),c( � , whether correct or not,

share three properties, belief invariance, one-period optimization and mean
prediction, which can be used to describe the set of possible limit beliefs. These
properties imply a system of equations with multiple solutions that is summarized
in Table 5.1. Each solution represents a belief that is self-reinforcing under the
passive learning policy. In this case the passive learning policy induces many
observations on private sector inflation expectations that are not very informative
and do not lead the central bank to revise his incorrect beliefs. An example of
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such an incorrect limit belief and policy pair for our calibrated economy is given
in Table 5.1.

Table 5.1 An incorrect limit belief and policy pair

Parameter Value(s)
c 0.5
�* 2.5
a 0.2
y 1.2143
� 1.4285

In his sensitivity analysis, Wieland (2000a) shows that under passive learning
policies

1. the frequency with which a sustained policy bias (ie persistent deviations of
the state variable from its target) occurs depends on how close the initial
belief is to a self-reinforcing incorrect limit belief.

2. the more confident the central bank becomes about its initial (incorrect)
parameter estimate, less weight is given to new data in revising his beliefs.
Therefore the likelihood of a sustained policy bias due to incorrect beliefs
increases.

Regarding the second point, in terms of our model the relevant concept is the

noise to signal ratio 
� �21t1t

2

1p
��

�

��

�
��  in the Kalman gain �t. Here � �21t1t 1p

��

��

is the portion of the prediction error variance due to uncertainty in ct–1 and 2
�

�  is

the portion of the prediction error variance due to the random shock �t. Thus, it is
nothing else than the inverse of the signal to noise ratio. We already know that as
the amount of noise in the signal yt increases, relatively less weight is given to
new information in the prediction error, � �t1tt yEy

�
� . Similarly, if the amount of

noise that is contaminating the signal diminishes, more weight will be given to
new information relative to the previous estimate ct–1.

Thus, under a passive learning policy a lower signal to noise ratio – other
things equal – increases the likelihood of a sustained policy bias (ie persistent
deviations of the state variable from its target) due to incorrect beliefs.

Finally, Wieland (2000b) shows that the optimal extent of experimentation, ie
using the ‘active’ rather than the passive learning policy is largest in the
neighbourhood of the above incorrect limit beliefs.
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6 Conclusions and suggestions for further research

In this paper we have analyze disinflation in two environments. One in which the
central bank has perfect knowledge, in the sense that it understands and observes
the process by which private sector inflation expectations are generated, and one
in which the central bank has to learn the private sector inflation forecasting rule.

For the case of perfect knowledge we found that the optimal disinflation is
faster under commitment than discretion. Next, in the commitment case the
disinflation is less gradual, the higher the central bank’s rate of time preference
and the higher the degree of persistence in inflation expectations.

With imperfect knowledge results depend on the learning scheme that is
employed. A novel feature of the passive learning policy – compared to the
central bank’s optimal disinflation policy under perfect knowledge – is that the
degree of monetary accommodation (the extent to which the central bank
accommodates private sector inflation expectations) is no longer constant across
the disinflation, but becomes state-dependent. This means that the central bank’s
behaviour changes during the disinflation as it collects more information.

There are a number of ways the paper can be extended. One limitation of the
present analysis is that there is no rational learning of private agents about the
monetary policy regime. It would be more plausible if agents also update their
beliefs about the evolution of inflation following observations about actual
monetary policy choices.17

An example of a paper that looks at the case where the private sector is
learning about central bank behavior is Andolfatto, Hendry and Moran (2002).
Using a standard monetary dynamic stochastic general equilibrium model, they
embed a learning mechanism regarding the interest-rate-targeting rule that the
monetary authorities follow. There the learning mechanism enables optimizing
economic agents to distinguish between transitory shocks to the policy rule and
occasional shifts in the inflation target of the monetary policy authorities. We see
this as one potential avenue for further work.

                                                
17 This is modelled by Hoeberichts and Schaling (2000), using Bayesian learning.
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Appendix 1

Steady state equilibrium

The innovation sequence {Vt} in equation (2.6) satisfies

� �
� �
� �
� � q10SqVobPr

,q0S)q1(VobPr

,p11SpVobPr

,p1S)p1(VobPr

t1t

t1t

t1t

t1t

����

�����

�����

����

�

�

�

�

(A1.1)

with 0VE 1tt �
�

 and )p1)(q1(qp)p1(p)V(Ê 2
t

2
v ������� . (where I have used

that )q1p1/()q1(p ����� )18

From (A1.1) we see that 0VÊ t0 �  for all t > 0. Using this fact, and iterating

(2.6) into the future, we can write

)1(
)1)(q1(

SÊSÊ
t

00
t

t0
��

���
��� (A1.2)

where 0Ê  denotes the private sector expectation conditional on information

available at date zero (which need not include observation of s0). Observing that

t0SÊ  can be interpreted as the probability that St = 1 given information at time

zero (denoted � �1SP t0 � ), (A1.2) can be rewritten

� � )pp(p1SP 0
t

t0 ����� (A1.3)

where � �1SPp 000 �� .

From equation (A1.3) we can see that for large t the economy is expected to
be in the high inflation state (state 1) with probability p , in which case u would

be �b. Similarly, the economy will be in the low inflation state (state 0) with
probability p1� , in which case u would be zero. Hence, the expected long-run

level of u (denoted as u ) is

bpu ��� (A1.4)

                                                
18 For more details see Hamilton (1989, 360–363).
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From equation (2.3) it then follows that the (unconditional mean) steady state
level of inflation )(� , is

bp* ������ (A1.5)

Appendix 2

The private sector’s optimal predictor for the credibility of
the inflation target

Taking expectations at time t – 1 of equation (3.2), where the expectations
operator Ê  refers to agents’ subjective expectations, we obtain

)q1(*)1(Ê b
1tt1t ������������

��

(A2.1)

However, from equation (2.3) it follows that

t1tt1t uÊ*Ê
��

���� (A2.2)

Hence, consistency requires that t1t
b

1t uÊ)q1(*)1(
��

�������������  or

)q1(*)(uÊ b
1tt1t ���������

��

(A2.3)

Appendix 3

The commitment solution

The central bank’s problem is to

� �
])z(*)(a[

2
EMax 2

t
2

t
0t

t

t
0tt

�����
�

�
�

�
�

�

�

(A3.1)

subject to

t1ttt Êz ����
�

(A3.2)
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and

)q1(*)1(Ê b
1tt1t ������������

��

(A3.3)

It is convenient to define t1tt Êx ��
�

 as the state variable and ut = �t as the

control. We solve this problem by the method of Lagrange multiplier. Introduce
the Lagrange multiplier �t, and set to zero the derivatives of the Lagrangean
expression:

� � � �� �

� ���)q1(*u)1(ux

xu*uua
2

EL

b
t1t1t

1t

0t

2
tt

2
t

t

0

�����������

�
�

�

	


�

����
�

�

��

�

�

�

� (A3.4)

The central bank’s first-order conditions take the form

0E)xu(*)uu(a 1ttttt ���������
�

(A3.5)

� �ttt xu ��� (A3.6)

First, we find an expression for 1ttE
�

� . Leading (A3.6) by one period and taking

expectations we get:

)xEuE(E 1tt1tt1tt ���
��� (A3.7)

Substituting (A3.7) into (A3.5), we can derive the Euler equation

� � 0xEuE)xu(*)uu(a 1tt1ttttt ���������
��

(A3.8)

In the case of a policy of strict inflation reduction, the rule would be

*uut � (A3.9)

Similarly, in the case of full accommodation of expectations, the rule would be

tt xu � (A3.10)

Thus, it appears that in case of flexible inflation targeting the rule will be a linear
combination of (A3.9) and (A3.10), that is *u)c1(cxu tt ��� , where 1c0 �� .

Or alternatively,
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2t1t CxCu �� (A3.11)

which is equation (3.9) in the main text (where I have substituted t1tt Êx ��
�

 and

ttu �� ).

Here the coefficients C1 and C2 remain to be determined, and the prior is that
1C0 1 ��  and *u)C(C0 12 �� . Now we identify the coefficients C1 and C2.

Expectations for the state at period t + 1 follow from the constraint in (A3.4),
combining the latter with the decision rule for  , we can write:

)q1(*u)1(CxCxE b
2t11tt ����������

�
(A3.12)

From (A3.11) it follows that

2
b

2t1121tt11tt C)]q1(*u)1(CxC[CCxECuE �������������
��

(A3.13)

Substituting (A3.12) and (A3.13) into the Euler equation (A3.8) above, and
equating constant terms and coefficients on the state variables yields the following
expressions for C1 and C2 in terms of the structural parameters of the model

� �
� �1C

a1

1
C 2

1
2

21 ���
����

� (A3.14)

� �� � � � � �� �� �
a1

*au1C*u1q1
C

a1
11C

C 1
b

2
1

2 �
���������

�
�

�����
� (A3.15)

Equation (A3.14) implicitly defines the value of C1. It can be written as
C1 = F(C1). Note that the function F(C1) on the right hand side with domain <0,1>

is monotonically increasing in C1, that 
21

0C )a1(
1

)C(Flim
1 ����

�
�

,

2

2

1
1C )a1(

1
)C(Flim

1 ����

���
�

�

. We realize that there is a unique positive solution C1,

which fulfills 
2

2

12 )a1(
1

C
)a1(
1

����

���
��

����
. It can be solved analytically:
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2
1
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Similarly, Equation (A3.15) implicitly defines the value of C2. It can be written as
C2 = G(C2). Note that the function G(C2) on the right hand side with domain
<0,u*> is monotonically increasing in C2. Again, we realize that there is a unique
positive solution *

2C . It can be solved analytically:

� � � �
� � � �1)1C(a1

*ua)1)(1C()q1()1C(
C

1

1
b

1
2

�������

������������
� (A3.17)

Moreover, it can be easily established that 0Clim 2
0a

�

�

 and that *uClim 2
a

�

��

.

We are now ready to prove:

PROPOSITION A3.1: The higher a the lower the optimal value of the feedback
parameter C1.

Proof: 
� �

0
)a1(

)1C(
a
F

2

2
1

2

�
����

���
��

�
�

, this implies that when a goes up, the function

F(C1) shifts downward. As a consequence, the equilibrium value of C1 decreases.

PROPOSITION A3.2: If C1 is smaller than an upper bound 1C , the higher � the

lower the optimal value of the feedback parameter C1.

Proof: 
� �

� �22

2
1

2

)a1(

1)a1(CF

����

���
�

��

�
. Note that the nominator of this expression is

negative if the above condition is satisfied. It can be written as 11 CC � , where

a1
1

C1
�

� .

Numerical results indicate that for our basic parameter configuration (see
Table 3.1), the above condition is satisfied for the entire range of inflation
aversion preferences (0 < a < �).
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PROPOSITION A3.3: If C1 is smaller than an upper bound 1C , the higher � the

lower the optimal value of the feedback parameter C1.

Proof: 
� �

� �22

2
1

)a1(

1)a1(C2F

����

����
�

��

�
. Note that the nominator of this expression is

negative if the above condition is satisfied. For more details see Proposition A3.2
above.

Numerical results indicate that for our basic parameter configuration (see
Table 3.1), the above condition is satisfied for the entire range of inflation
aversion preferences (0 < a < �).

PROPOSITION A3.4: If )1)(1C(a 1 ������� , the higher u* the higher the

value of the constant C2.

Proof: 
� �

� � � �1)1C(a1
a)1)(1C(

*u
C

1

12

�������

������
�

�

�
. The nominator of this expression is

positive if the above condition is satisfied.

PROPOSITION A3.5: The higher a the higher the value of the constant C2.

Proof: 
� �

� � � �� �
0

1)1C(a1

)q1()1C(*u)C1(
a

C
2

1

b
112 �

�������

���������
�

�
�

.

To give a numerical example, for our basic parameter configuration (see Table
3.1), C2 � 0.48. If we increase a to 0.5, say, C2 increases to 0.90.

PROPOSITION A3.6: The higher �b the lower the value of the constant C2.

Proof: 
� � � �

0
1)1C(a1

)q1)(1C(C

1

1
b
2 �

�������

����
�

��

�
.
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PROPOSITION A3.7: If C2 is greater than a lower bound C2, the higher � the
higher the value of the constant C2.

Proof: 
� �� �� �

a1
C)/C()1C(C*u)1()q1(G

2112
b

�

���������������
�

��

�
. The

nominator of this expression is positive if the above condition is satisfied. It can

be written as 22 CC � , where 
� �� �

� �� �1)/C()1C(
)/C()1C(*u)1()q1(

C
11

11
b

2 ��������
������������

�
�

.

For plausible parameter values this condition is likely to be satisfied.
To give a numerical example for our basic parameter configuration (see Table

3.1) and � = 0.225, C2 � 0.45. If we increase � to 0.9, say, C2 increases to 0.48.

PROPOSITION A3.8: If C2 is greater than a lower bound C2, the higher � the
higher the value of the constant C2.

Proof:
� �� � � �

a1
C*uC)1C()/C()1C()1(*u)q1(CG 22111

b
2

�

���������������������
�

��

� .

The nominator of this expression is positive if the above condition is satisfied. It
can be written as 22 CC � , where

� � � �
� �1)/C()1C(2

)1C(*u)1(*u)q1()/C()1C(
C

1
2

1

1
b

11
2

���������

�����������������
� . For plausible

parameter values this condition is likely to be satisfied.
For example, for our basic parameter configuration (see Table 3.1) and

� = 0.2, C2 �0.27. If we increase � to 0.9, C2 increases to 0.48.
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Appendix 4

The central bank’s optimal filtering problem

In this appendix we derive the central bank’s optimal forecasting rule for private
sector inflation expectations by applying the Kalman filter.

State space form

The policymaker’s estimation problem can be put into state-space form by
defining the state vector as the parameter �. Then the (state) transition equation is

1tt �

��� (A4.1)

However, the state is not observed directly. Instead the state of the system is
conveyed by an observed variable (signal) yt, which is subject to contamination by
noise (measurement error) �t. Thus, the measurement equation is

t
'
ttt zy ���� (A4.2)

where the scalar )1(wz 1t1t
'
t ��

���� , and �t is a serially uncorrelated disturbance

with mean zero and variance 2
�

� , that is 0)(E t ��  and 2
t )(Var

�
��� .19

The Kalman filter

The technique of the Kalman filter depends on the system that consists of (A4.1)
and (A4.2) and its aim is to find unbiased estimates of the sequence of the state �t

via a recursive process of estimation.20

The process starts at time t = 1 say; and it is assumed that prior information on
the previous state vector �0 is available in the form of an unbiased estimate c0,
which has been drawn from a distribution with a mean of �0 and variance p0.
Depending on the uncertainty surrounding the initial estimate, large (small) values
should be attributed to p0 to reflect the low (high) precision of the initial estimate.

                                                
19 Note that (A4.2) is in the form of an ordinary regression equation.
20 A process of estimation which keeps pace with the data by generating an estimate of the current
state variable with each new observation yt is described as filtering. The retrospective

enhancement of a state estimate, using data – which has arisen subsequently – is described as
smoothing. The estimation of a future state variable is described as prediction.
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In the terminology of Bayesian statistics, this is a matter of attributing a diffuse
prior distribution to �0.

The basic filter is described by four equations governing prediction, (namely
equations (A4.3), (A4.5), (A4.6) and (A4.7)), and two for updating/smoothing
(namely equations (A4.10) and (A4.13)). These equations are derived below.

In each time period, new information on the system is provided by the
variable yt; and estimates of �t may be formed both before and after the receipt of
this information. The estimate of the state at time t formed without knowledge of
yt will be denoted by 1ttc

�

; the estimate that incorporates the information of yt

will be denoted by ct.
In the absence of information of yt, the estimate 1ttc

�

 of �t comes directly

from equation (A4.1) where �t–1 is replaced by ct–1. Thus

1t1tt cc
��

� (A4.3)

Equation (A4.3) is the state prediction equation.
The mean-square error of this estimator will be denoted by

})c{(Ep 2
1ttt1tt ��

��� , whilst that of the updated estimator ct will be denoted by

})c{(Ep 2
ttt ��� . To derive the expression for 1ttp

�

 in terms of pt–1, we subtract

equation (A4.3) from equation (A4.1) to give

1t1t1ttt cc
���

����� (A4.4)

It follows that the prediction variance is

� � � � 1t
2

1t1t
2

1ttt1tt p)c(E)c(Ep
�����

������� (A4.5)

Before learning its value, we may predict yt from equation (A4.2) by replacing �t

by its estimate 1ttc
�

 and replacing �t by 0)(E t �� . This gives the observation

prediction equation

1tt
'
tt1t czyE

��

� (A4.6)

The mean-square-error of this prediction is })yEy{(Ef 2
t1tt1tt ��

�� . To express

1ttf
�

 in terms of 1ttp
�

, we subtract equation (A4.6) from equation (A4.2) to give

the prediction error t1ttt
'
tt1ttt )c(zyEye �������

��

. Then, since )c( 1ttt �

��

and �t are statistically independent, and since 2
t )(Var

�
��� , it follows that the

prediction variance is
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2
1tt

2'
t1tt p)z(f

���
��� (A4.7)

The business of incorporating the new information provided by yt into the
estimate of the state variable may be regarded as a matter of estimating the
parameter �t in the system
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.

By applying the method of generalised least squares (see eg Pollock (1999)),
we obtain an estimating equation for �t in the form of
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where
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1
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��� (A4.9)

is the variance of the estimator.
To give equation (A4.8) a form, which is amenable to a recursive procedure,

we consider the identity
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Using this on the RHS of equation (A4.8), and noting that from (A4.3)

1t1tt cc
��

� , gives
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where 1
1tt1t1t

1
1tt

'
t1t

1
1tt

'
t1tt

12'
ttt fwpfzpfzp)(zp �

���

�
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�
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�
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described as the Kalman gain. Equation (A4.10) is equation (4.5) in the main text.
Using (A4.9), we can show that
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where 2'
t1tt )z(p

�
 is the portion of the prediction error variance due to uncertainty

in 1ttc
�

 and 2
�

�  is the portion of the prediction error variance due to the random

shock �t. We can easily see that

,0
))z(p( 2'

t1tt

t
�

�

��

�

suggesting that as uncertainty with 1ttc
�

 increases, relatively more weight is given

to new information in the prediction error, 1t
'
tt czy

�

� . This is quite intuitive, since

an increase in uncertainty in 1ttc
�

 may be interpreted as a deterioration of the

information content of 1ttc
�

, relative to that of 1t
'
tt czy

�

� .

Equation (A4.9) can be rewritten as

1tt
'
t
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1tt
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'
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�
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����
���� (A4.12)

Combining equation (A4.12) with (A4.11), and noting that from (A4.5)

1t1tt pp
��

� , the so-called Ricatti equation – which provides a means for

generating the variance of the state prediction – can be written in recursive form
as

1t1tt1t1t
'
tt1tt pwppzpp

�����

������ (A4.13)

which is equation (4.6) in the main text.



BANK OF FINLAND DISCUSSION PAPERS

ISSN 0785-3572, print; ISSN 1456-6184, online

1/2003 Tanai Khiaonarong  Payment systems efficiency, policy approaches, and the
role of the central bank. 2003. 69 p. ISBN 952-462-025-1, print; ISBN 952-

462-026-X, online. (TU)

2/2003 Iftekhar Hasan – Heiko Schmiedel  Do networks in the stock exchange
industry pay off? European evidence. 2003. 44 p. ISBN 952-462-027-8, print;

ISBN 952-462-028-6, online. (TU)

3/2003 Johanna Lukkarila  Aasian, Venäjän ja Turkin rahoituskriisien vertailua.
2003. 57 p. ISBN 952-462-029-4, print; ISBN 952-462-030-8, online. (KT)

4/2003 Samu Peura – Esa Jokivuolle  Simulation-based stress testing of banks’
regulatory capital adequacy. 2003. 41 p. ISBN 952-462-035-9, print;

ISBN 952-462-036-7, online. (RM)

5/2003 Peik Granlund  Economic evaluation of bank exit regimes in US, EU and
Japanese financial centres. 2003. 60 p. ISBN 952-462-037-5, print;

ISBN 952-462-038-3, online. (TU)

6/2003 Tuomas Takalo – Otto Toivanen  Equilibrium in financial markets with
adverse selection. 2003. 45 p. ISBN 952-462-039-1, print; ISBN 952-462-040-

5, online. (TU)

7/2003 Harry Leinonen  Restructuring securities systems processing – a blue print
proposal for real-time/t+0 processing. 2003. 90 p. ISBN 952-462-041-3,

print; ISBN 952-462-042-1, online. (TU)

8/2003 Hanna Jyrkönen – Heli Paunonen  Card, Internet and mobile payments in
Finland. 2003. 45 p. ISBN 952-462-043-X, print; ISBN 952-462-044-8, online.

(RM)

9/2003 Lauri Kajanoja  Money as an indicator variable for monetary policy when
money demand is forward looking. 2003. 35 p. ISBN 952-462-047-2, print;

ISBN 952-462-048-0, online. (TU)

10/2003 George W. Evans – Seppo Honkapohja  Friedman’s money supply rule vs
optimal interest rate policy. 2003. 22 p. ISBN 952-462-049-9, print; ISBN

952-462-050-2, online. (TU)



11/2003 Anssi Rantala  Labour market flexibility and policy coordination in a
monetary union. 2003. 48 p. ISBN 952-462-055-3, print;

ISBN 952-462-056-1, online. (TU)

12/2003 Alfred V. Guender  Optimal discretionary monetary policy in the open
economy: Choosing between CPI and domestic inflation as target variables.
2003. 54 p. ISBN 952-462-057-X, print; ISBN 952-462-058-8, online. (TU)

13/2003 Jukka Vauhkonen  Banks’ equity stakes in borrowing firms: A corporate
finance approach. 2003. 34 p. ISBN 952-462-059-6, print;

ISBN 952-462-060-X, online. (TU)

14/2003 Jukka Vauhkonen  Financial contracts and contingent control rights. 2003.

33 p. ISBN 952-462-061-8, print; ISBN 952-462-062-6, online. (TU)

15/2003 Hanna Putkuri  Cross-country asymmetries in euro area monetary
transmission: the role of national financial systems. 114 p.

ISBN 952-462-063-4, print; ISBN 952-462-064-2, online. (RM)

16/2003 Kari Kemppainen  Competition and regulation in European retail payment
systems. 69 p. ISBN 952-462-065-0, print; ISBN 952-462-066-9, online. (TU)

17/2003 Ari Hyytinen – Tuomas Takalo  Investor protection and business creation.
32 p. ISBN 952-462-069-3, print; ISBN 952-462-070-7, online. (TU)

18/2003 Juha Kilponen  A positive theory of monetary policy and robust control.
26 p. ISBN 952-462-071-5, print; ISBN 952-462-072-3, online. (TU)

19/2003 Erkki Koskela – Rune Stenbacka  Equilibrium unemployment under
negotiated profit sharing. 28 p. ISBN 952-462-073-1, print; ISBN 952-462-

074-X, online. (TU)

20/2003 Eric Schaling  Learning, inflation expectations and optimal monetary
policy. 49 p. ISBN 952-462-075-8, print; ISBN 952-462-076-6, online. (TU)


	Learning, inflation expectations and optimal monetary policy
	Abstract
	Tiivistelmä
	Contents
	1 Introduction
	2 The environment
	3 The perfect knowledge benchmark
	3.1 Fully credible regime switch
	3.2 'Endogenous learning' by the private sector
	3.3 Discretion
	3.4 Commitment
	3.5 Comparing discretion and commitment: A calibration

	4 Imperfect knowledge, filtering and prediction
	4.1 The Kalman filter
	4.2 Convergence and limit beliefs

	5 Central bank learning and optimal monetary policy
	5.1 Two limiting cases
	5.2 Optimal learning and the value of experimentation 
	5.3 The case of passive learning
	5.3.1 Discretion
	5.3.2 Commitment
	5.3.3 Incomplete learning and limit beliefs


	6 Conclusions and suggestions for further research
	References
	Appendix 1: Steady state equilibrium
	Appendix 2: The private sector's optimal predictor for the credibility of the inflation target
	Appendix 3: The commitment solution
	Appendix 4: The central bank's optimal filtering problem
	Bank of Finland Discussion Papers

