BANK OF FINLAND
DISCUSSION PAPERS

10 « 2003

George W. Evans — Seppo Honkapohja

Research Department
14.4.2003

Friedman’s money supply rule
vs optimal interest rate policy

Suomen Pankin keskustelualoitteita
Finlands Banks diskussionsunderlag



Suomen Pankki
Bank of Finland
P.O.Box 160
FIN-00101 HELSINKI
Finland
=® +35891831

http://www.bof.fi



BANK OF FINLAND
DISCUSSION PAPERS

10 « 2003

George W. Evans — Seppo Honkapohja

Research Department
14.4.2003

Friedman’s money supply rule
vs optimal interest rate policy

The views expressed are those of the authors and do not necessarily reflect the views of the
Bank of Finland.

Financial support from the US National Science Foundation, the Academy of Finland, Y1j6
Jahnsson Foundation, Bank of Finland and Nokia Group is gratefully acknowledged.

Suomen Pankin keskustelualoitteita
Finlands Banks diskussionsunderlag



http://www.bof.fi

ISBN 952-462-049-9
ISSN 0785-3572

(print)

ISBN 952-462-050-2
ISSN 1456-6184
(online)

Suomen Pankin monistuskeskus
Helsinki 2003



Friedman’s money supply rule vs optimal interest rate
policy

Bank of Finland Discussion Papers 10/2003

George W. Evans — Seppo Honkapohja
Research Department

Abstract

Using New Keynesian models, we compare Friedman’s k-percent money supply
rule to optimal interest rate setting, with respect to determinacy, stability under
learning and optimality. We first review the recent literature. Open-loop interest
rate rules are subject to indeterminacy and instability problems, but a properly
chosen expectations-based rule yields determinacy and stability under learning,
and implements optimal policy. We then show that Friedman’s rule also can
generate equilibria that are determinate and stable under learning. However, in
computing the mean quadratic welfare loss, we find that for calibrated models
Friedman’s rule performs poorly compared to the optimal interest rate rule.

Key words: monetary policy, determinacy, stability under learning

JEL classification numbers: E52, E31



Friedmanin rahan tarjontasaanto verrattuna
optimaaliseen korkopolitiikkaan

Suomen Pankin keskustelualoitteita 10/2003

George W. Evans — Seppo Honkapohja
Tutkimusosasto

Tiivistelma

Tutkimuksessa vertaillaan Friedmanin k-prosentin rahan tarjontasddntoi ja opti-
maalista korkopolitiitkkaa uuskeynesildisessd mallikehikossa, kun arviointikritee-
reind ovat tasapainon yksikisitteisyys, stabiilius oppimisen suhteen sekd opti-
maalisuus. Aluksi tutkimuksessa tarkastellaan korkosdint6jd. Yksinkertaiset niin
sanotut avoimen silmukan korkosddnndt johtavat sekd tasapainon monikasittei-
syys- ettd epdstabiiliusongelmiin, mutta oikealla tavalla muodostettu odotuksiin
perustuva korkosddnto valttdd monikésitteisyys- ja epéstabiiliusongelmat ja imple-
mentoi optimaalisen rahapolititkan. TyGssd osoitetaan, ettd myo6s Friedmanin
sddnndn vallitessa tasapaino on yksikdsitteinen ja stabiili. Tdmédn jdlkeen tutki-
muksessa todetaan, ettd kun kriteerind kdytetddn hyvinvointitappioiden nelidsum-
maa, Friedmanin sddntd johtaa mallin kalibroiduissa versioissa huonoon loppu-
tulokseen verrattuna optimaaliseen korkosdéntoon.

Avainsanat: rahapolitiikka, tasapainon yksikisitteisyys, stabiilius oppimiskayt-
tdytymisen suhteen

JEL-luokittelu: E52, E31
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1 Introduction

The recent literature on monetary policy has focused on policy rules in which
the interest rate is the chosen policy instrument, and a major finding is
that the form of the interest-rate rule is crucial for inducing key desirable
properties of the economy. For example, setting the interest rate based only
on exogenous fundamental variables leads to instability problems if in fact
private agents do not a priori have rational expectations (RE) but instead
form expectations using standard adaptive learning rules. This was recently
demonstrated by (Evans and Honkapohja 2003) in the context of the New
Keynesian model that has become a standard framework in recent research
on monetary policy.! Another difficulty with such interest-rate rules is that
they imply indeterminacy of rational expectations equilibria (REE). In other
words, there exist other REE near the “fundamental” REE, which can depend
on extraneous factors solely through private expectations, see eg (Bernanke
and Woodford 1997) and (Woodford 1999b). (Evans and Honkapohja 2002a)
provide a survey of the recent literature on learning, determinacy and monetary
policy.

Interest-rate rules that react only to observable exogenous variables can
be viewed as “open-loop” policies, since they do not respond to variables
that are endogenous to the economy. Making the interest rate depend on
lagged endogenous variables, including possibly the lagged interest rate itself,
may or may not provide a remedy to these problems. On this point see
(Evans and Honkapohja 2002b) for the case optimal monetary policy under
commitment and (Bullard and Mitra 2002), (Bullard and Mitra 2001) for the
case of instrument (or Taylor) rules. (Evans and Honkapohja 2003) and (Evans
and Honkapohja 2002b) have argued that interest-rate setting should react to
private forecasts of the endogenous variables, ie to inflation and output gap
forecasts. (Evans and Honkapohja 2002b) show that a reaction function of
this type, with appropriately chosen parameters, can implement the optimal
policy under commitment in a way that ensures both stability under learning
and determinacy of the desired solution. In this paper we first review the
results for this “expectations-based” policy rule.

Our recommended implementation of optimal policy is, by its nature, a
“closed-loop” policy that requires considerable information. In particular,
our policy rule depends on obtaining accurate measurements of both private
expectations and exogenous shocks, and is based on a correct specification of
the structural model and known values of key structural parameters.? These
demanding requirements suggest that it may be worth considering alternative
open-loop policies. Are all open-loop policies subject to indeterminacy and
learning instability? If these problems can be avoided, how satisfactory are
these alternative policies in terms of achieving the policy objectives? To
investigate this issue we here focus on a venerable, simple open-loop policy,
namely Friedman’s k—percent money supply rule.

! (Howitt 1992) raised earlier the same concern, but did not emply the New Keynesian
model.
2(Evans and Honkapohja 2002a) indicate how many of these problems can be treated.



Our results are easily summarized. Based on numerical calculations for
calibrated New Keynesian models, we find that the Friedman k—percent
rule appears to induce both determinacy and stability under learning. Thus
this open-loop money supply rule does meet some key requirements for a
desirable monetary policy. We then turn to consideration of its performance in
terms of the usual policy objective function based on expected quadratic loss.
Comparing its welfare loss to that of the optimal policy, we find substantially
poorer performance of the k—percent rule. Thus Friedman’s rule appears
unsatisfactory in this standard model incorporating monopolistic competition
and price stickiness.

2  The model

We use the standard log-linearized New Keynesian model as the analytical
framework, see eg (Clarida, Gali, and Gertler 1999) for details and references
to the original nonlinear models that lead to this linearization. The model
contains two behavioral equations of the private sector:

xy = —p(iy — Bfm1) + Efzi + g, (2.1)

is the “IS” curve derived from the Euler equation for consumer optimization
and

Ty = )\.Tt + /BE:TH+1 + Uy, (22)

is the price setting rule for the monopolistically competitive firms. Here x;
and 7; denote the output gap and inflation for period ¢, respectively. i;
is the nominal interest rate. Ejx;;; and Ejm., denote the private sector
expectations of the output gap and inflation next period. Since our focus is
on learning behavior, these expectations need not be rational (E; without x
denotes RE). The parameters ¢ and A are positive and 3 is the discount factor
of the firms so that 0 < § < 1.

For simplicity, the shocks ¢g; and u; are assumed to be observable random
shocks, where

(#)=v(o)(2) .

where

_(#r 0
V_(O p)’

0<|ul <1,0<|p] <1and g ~ iid(0,02), @, ~ iid(0,02) are independent
white noise. g; represents shocks to government purchases and as well as to
potential output. w; represents any cost push shocks to marginal costs other
than those entering through z;. To simplify the analysis, we also assume
throughout the paper that shocks p and p are known (if not, these parameters
could be made subject to learning).



It remains to specify how monetary policy is conducted.® There are two
natural possibilities for the choice of the monetary instrument: the interest rate
and the money supply. We consider each in turn, starting with the former.

3 Optimal interest-rate setting

We consider an interest-rate policy that is derived explicitly to maximize a
policy objective function. This is frequently taken to be of the quadratic loss
form, ie

E; Zﬂs (s — ) + i), (3.1)
5=0

where 7 is the inflation target. This type of optimal policy is often called
“flexible inflation targeting” in the current literature, see eg (Svensson 1999)
and (Svensson 2001). « is the relative weight on the output target and strict
inflation targeting would be the case o = 0. The policy maker is assumed to
have the same discount factor 3 as the private sector.* We remark that the
presence of the two shocks ¢g; and u; makes the problem of policy optimization
non-trivial, since policy has only a single instrument, the interest rate or the
money supply, under its control. The u; shock is particularly troublesome as it
leads to a trade-off between the variability of the output gap and the variability
of inflation.

The literature on optimal policy distinguishes between optimal policy under
commitment and discretion, eg compare (Evans and Honkapohja 2002b) and
(Evans and Honkapohja 2003). Under commitment the policy maker can do
better because commitment can have effects on private expectations beyond
those achieved under discretion. Solving the problem of minimizing (3.1),
subject to (2.2) holding in every period, leads to a series of first order conditions
for the optimal dynamic policy. This policy exhibits time inconsistency, in the
sense that policy makers would have an incentive to deviate from the policy
in the future. However, this policy performs better than discretionary policy.

Assuming that the policy has been initiated at some point in the past and
setting m = 0 without loss of generality, the first-order condition specifies

)\7Tt + Oé(.f[]t — Z'tfl) = 0 (32)

in every period.’ In contrast the corresponding policy under discretion specifies
Ay + axy = 0. We will focus on the commitment case, which delivers superior
performance.

3 As is common, we leave hidden the government budget constraint and the equation for
the evolution of government debt. This is acceptable provided fiscal policy appropriately
accommodates the consequences of monetary policy for the government budget constraint.
The interaction of monetary and fiscal policy can be important for the stability of equilibria
under learning, see (Evans and Honkapohja 2002¢) and (McCallum 2002).

41t is well known that the objective function (3.1) can be interpreted as a quadratic
approximation to the utility function of the representative agent.

*Treating the policy as having been initiated in the past correspond to the “timeless
perspective” described by (Woodford 1999a) and (Woodford 1999b).



Condition (3.2) for optimal policy with commitment is not a complete
specification of monetary policy, since one must still determine an ; rule
(also called a “reaction function”) that implements the policy. It turns out
that a number of interest-rate rules are consistent with the model (2.1)(2.2),
the optimality condition (3.2), and rational expectations. Some of the ways
of implementing “optimal” monetary policy make the economy vulnerable
to either indeterminacy or instability under learning or both, while other
implementations are robust to these difficulties. For an overview see (Evans
and Honkapohja 2002a).

Expectations-based optimal rules are advocated in (Evans and Honkapohja
2002b), who argue that observable private expectations should be
appropriately incorporated into the interest-rate rule. If this is done, it can be
shown that the REE will be stable under learning and thus optimal policy can
be successfully implemented. The desired rule is obtained by combining the
IS curve (2.1), the price setting equation (2.2) and the first-order optimality
condition (3.2), treating the private expectations as given. Eliminating x;
and m; from these equations, but not imposing the rational expectations
assumption, leads to an interest-rate equation

it = 6L1L't_1 + 67rE:7Tt+1 + 61E£kl't+1 + 5ggt + 6uut (33)
under commitment with coefficients
—
op = ———,
" pla+ 2
A
57r:1+7627 6x:<10_17
ola+ X9)
A
Sg =@, 6y = —F——.
Y oo + A%

Given the interest-rate rule (3.3) we can obtain the reduced from of the model
and study its properties. The reduced form is

A8 *
Tt O _W Et .Z't+1
— a g + 3.4
(ﬁ) (0 an\z ) (Eﬂftﬂ (3:4)
ﬁ 0 Ti—1 + 0 _a+/\)\2 9t )
aiﬁ? 0 Tt—1 0 af/\z Uy

Defining

. Xt - Gt
yt_(m) andvt—<Ut>

the reduced form (3.4) can be written as

y = MEy .1+ Ny, 1 + Py (3.5)

for appropriate matrices M, N and P.

We are interested in the determinacy (uniqueness) of the stationary RE
solution and the stability under learning of the REE of interest. The next
section outlines these concepts and the methodology for assessing determinacy
and stability under learning for multivariate models such as (3.4).
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3.1 Methodology: determinacy and stability under learning
3.1.1 Determinacy

The first issue of concern is whether under rational expectations the system
possesses a unique stationary REE, in which case the model is said to be
“determinate.” If instead the model is “indeterminate,” there exist multiple
stationary solutions and these will include undesirable “sunspot solutions”, ie
REE depending on extraneous random variables that influence the economy
solely through the expectations of the agents.’

Formally, in the determinate case the unique stationary solution for the
model (3.5) takes the “minimal state variable” (or MSV) form

Yy = a+ by;_1 + cuy, (3.6)

for appropriate values (a,b,¢) = (0,b,¢). In the indeterminate case there
are multiple stationary solutions of this form, as well as non-MSV REE. The
general methodology for ascertaining determinacy is given in the Appendix
to Chapter 10 of (Evans and Honkapohja 2001). The procedure is to rewrite
the model in first-order form and compare the number of non-predetermined
variables with the number of roots of the forward looking matrix that lie inside
the unit circle.

For reduced form (3.4) we make use of the fact that the second column
of N is zero. Writing M = ( T ) and N = ( m 0 ), assuming

Mot M2 ny 0

rational expectations, introducing the new variable ' = z; 1, and noting that
for any random variable z;1 we have E;z1 = 241 + €7, where Eief, | =0,
we can rewrite (3.5) as

1 0 —npy Ty my; miz 0 Tyl
0 1 —N12 Tt = mo1 M2 0 Tt41 + other,
10 0 zl 0 0 1)\,

where “other” includes terms that are not relevant in assessing determinacy.
Assuming nq; # 0 this can be rewritten as

Tt Tt41
m | =J | 71 | + other (3.7)
th th+1
where
1 0 —nn o mi1 miz 0
J = 01 —MN12 mo1 Mo9 0
10 0 0 0 1

6The possibility of interest rate rules leading to indeterminacy was demonstrated in
(Bernanke and Woodford 1997), (Woodford 1999b) and (Svensson and Woodford 1999) and
this issue was further investigated in (Bullard and Mitra 2002), (Evans and Honkapohja
2003) and (Evans and Honkapohja 2002b).

11



Because this model has one predetermined variable, ie xL, the condition for
determinacy is that exactly two eigenvalues of J lie inside the unit circle and
one eigenvalue outside. If one or no roots lie inside the unit circle (with the
other roots outside), the model is indeterminate.

3.1.2  Stability under learning

The second basic issue for models of the form (3.5) concerns stability under
adaptive learning. If private agents follow an adaptive learning rule, will the
RE solution of interest be stable, ie reached asymptotically by the learning
process? If not, the REE is unlikely to be reached because the specified policy
is potentially destabilizing.” As is usual in the literature, we specifically model
learning by agents as taking the form of least squares estimates of parameters
that are updated recursively as new data are generated.

To examine stability under least squares learning we treat (3.6) as the
Perceived Law of Motion (PLM) of the agents, ie as the form of their
econometric model, and assume that agents estimate its coefficients a, b, ¢
using the available data. (3.6) is a vector autoregression (VAR) with exogenous
variables v;, and the estimates (ay, b, ¢;) are updated at each point in time by
recursive least squares. Using these estimates, private agents form expectations
according to Efy; 1 = ap+bi(ar+byys—1 + crvy) + ¢V o, (where we are assuming
for convenience that V' is known), and y; is generated according to (3.5).
Then at the beginning of ¢t + 1 agents use the last data point to update
their parameter estimates to (a;;1, by, cey1), and the process continues. The
question is whether over time (as, b, c;) — (0,b,¢). It can be shown that the
E-stability principle gives the conditions for local convergence of least squares
learning. In what follows, we exploit this connection between convergence of
learning dynamics and E-stability.®

To define E-stability we compute the mapping from the PLM to the Actual
Law of Motion (ALM) as follows. The expectations corresponding to (3.6), for
given parameter values (a,b, c), are given by

Efyi1 =a+bla+ by 1+ cvp) + cVy, (3.8)

where we are treating the information set available to the agents, when forming
expectations, as including v; and y;_; but not y;. (Alternative information
assumptions are straightforward to consider). This leads to the mapping from
PLM to ALM given by

T(a,b,c) = (M(I + b)a, Mb* + N, M(bc + cV) + P), (3.9)

E-stability is determined by local asymptotic stability of REE (0, b, ¢) under
the differential equation
d
E(a, b,c) =T(a,b,c) — (a,b,c), (3.10)
"This is the focus of the papers by (Bullard and Mitra 2002), (Bullard and Mitra 2001)
(Evans and Honkapohja 2003), (Evans and Honkapohja 2002b) and others.
8(Evans and Honkapohja 2001) provides an extensive analysis of adaptive learning and
its implications in macroeconomics.

?

12



and the E-stability conditions govern stability under least squares learning.
The stability conditions can be stated in terms of the derivative matrices

DT, = M(I +10) (3.11)
DT, =V ® M+ I® Mb (3.12)
DT, =V'® M + 1 ® Mb, (3.13)

where ® denotes the Kronecker product and b denotes the REE value of b.
The necessary and sufficient condition for E-stability is that all eigenvalues of
DT, — I, DT, — I and DT, — I have negative real parts.’

3.2 Results for optimal interest-rate setting

Monetary policy that is based on the optimal interest-rate rule (3.3) will lead to
both determinacy and stability and learning. (Evans and Honkapohja 2002b)
prove the following results to this effect.

Proposition 1 Under the expectations-based reaction function (3.3) the REE
is determinate for all structural parameter values.

It is clearly a desirable property of our proposed monetary policy rule that it
does not permit the existence of other suboptimal stationary REE. However,
having a determinate REE does not ensure that it is attainable under learning
and we next consider this issue for the economy under the interest-rate rule

(3.3).

Proposition 2 Under the expectations-based reaction function (3.3), the
optimal REFE is stable under learning for all structural parameter values.

We remark that the expectations-based rule (3.3) obeys a form of the Taylor
principle since 6, > 1. Partial intuition for Proposition 2 can be seen from the
reduced form (3.4). An increase in inflation expectations leads to an increase in
actual inflation that is smaller than the change in expectations since a3/ (a +
)\2) < 1, where the dampening effect arises from the interest-rate reaction to
changes in E}m;; and is a crucial element of the stability result.!”

9We are excluding the exceptional cases where one or more eigenvalue has zero real part.

10We remark that an alternative information assumption, which allows forecasts to be
functions also of current endogenous variables, is sometimes used in the literature. Stability
under the expectations-based reaction function continues to hold for this case.

13



4  Friedman’s money supply rule

Friedman’s rule stipulates that the nominal money supply is increased by a
constant percentage k from one period to the next. In logarithms the nominal
money supply M; must thus satisfy

where M is a constant, k is the percentage increase in money supply and w;
denotes a random noise term, which is assumed to be white noise for simplicity.

The demand for real balances is assumed to depend positively on the output
gap z; and negatively on the nominal interest rate i; and a possible iid random
shock e;. The money market equilibrium or LM curve can then be written as

M + kt +w, — py = Oz — 07 iy + e,
where p; is the log of the price level. This yields the formula
iy = nbxy + npy — nkt — M + n(e; — wy) (4.2)

for the nominal interest rate. Substituting (4.2) into the IS curve (2.1) leads
to the expression

zy = —pnbxy — pnpy + E T (4.3)
+ nkt + Efzi1 + onM — pn(e, — wy) + gu,

which together with the New Phillips curve (2.2) and the definition of the
inflation rate

Pt =T+ Pr1 (4.4)

yield the model to be analyzed.
We first consider the perfect foresight steady state when there are no
random shocks. It is easily computed as

= N1 —p)k, 7 =k and p, = a + kt,

where a = M — O\ (1 — B)k.

The next step to write the model in deviation form from the non-stochastic
steady state. Using the same notation z;, m; and p; for the deviated variables
we have the matrix form

1+end 0 on Ty
0 -1 1 Py
1 Y2 0 E:ZL'H_l 000 Ti—1 gt
=10 4 0 Eimee | +1 0 00 T |+ w |,
0 0 0 Efpeq 0 01 Pi—1 0

where §; = g: — ¢n(e; — wy). The inverse of the matrix on the left hand side of
(4.5) is

r —pnr —pnr

Ar (14 ond)r AT ,

Ar (L+@nd)r (14 end)r

14



where 71 = 14+ np(6 + \), and so we get the system

Ty r ro(1 — Fn) 0 Efxi
m | = rA rAe+ 81 +n0p)] 0 Efrmiq (4.6)
Dt A r[Ap+ B(1+n0p)] 0O Eipiia
00 NP Ti_1
+{ 0 O rnAg T 1
0 0 r(14nby) Di_1

r —ner _
+ [ A (1 +npd)r ( 9t ) :
Ar (14 ned)r

Introducing the vector notation

Tt
Zt = Tt 9
Dt

we write (4.6) in the general form

z2=FE 2.1+ Gz 1+ Ho,. (4.7)

4.1 Determinacy

Analysis of determinacy of the model can be done using the same general
methodology that was outlined in Section 3.1.1 for study of the model with
interest-rate setting. Examining the reduced form (4.6) we note that the model
has one predetermined variable p; ;. Thus we introduce a new variable ¢, =
pr—1 and write (4.6) as

1 00 —rne Ty
010 —rnip ue
4.

00 1 —r(1+nbyp) Dt (4.8)
0 01 0 qt

r ro(1 — On) 00 Efr,

rA r[Ap+ B(1+nbp)] 0 0 BTy

rA r[Ae+ (1 +nbp)] 0 0 Eipiia

0 0 0 1 Efqi

or in symbolic form
Ay = BE; i1,

where §; = (z¢, 7, pt, @) and the matrices A and B are those specified by (4.8).
Determinacy obtains when exactly three eigenvalues of the matrix A='B are
inside the unit circle.

It is evident from (4.8) that it would be difficult to obtain general theoretical
results on determinacy, and we thus examine the issue numerically.!! We use

1 The Mathematica routines are available on request.
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two different sets of the calibrated parameter values, respectively suggested
by (Woodford 1996) and (McCallum and Nelson 1999). Thus consider the

examples:

Calibrated Examples:
W:n=0.053,0=1,p=1, A=0.3, 5=0.95.
MN: n = 0.090, § = 0.930, ¢ = 0.164, A = 0.3, 5 = 0.99.

For the shocks we assume that © = p = 0.4 and that there are no monetary
shocks. For the W and MN parameter values the eigenvalues of A~'B are:
W: 0, 0.563, 0.950 and 1.687;

MN: 0, 0.843, 0.902 and 1.284.

We conclude:

Result 3 The Friedman k—percent rule leads to determinacy of equilibria.

We have expressed this as a “result” rather than a proposition because it has
been verified only for the two calibrated examples.

4.2 Stability under learning

As discussed above in Section 3.1.2, we can focus on E-stability of the
(determinate) REE in model (4.6) to determine the stability of the REE under
adaptive learning.

We first derive convenient expressions for the REE. Since the model has
only one lagged endogenous variable p; ; we guess that the MSV REE takes
the form!?

2z = Czi_1 + Kuy, (4.9)
0 0 ¢

C=10 0 ¢
0 0 ¢

Guessing that the REE has this form, we obtain that the REE must satisfy
the equations

Cp = TCzCr + 7"(70(1 - ﬁn)cﬂcp + e,
Cr = rACCr + T[A@ + B(1 + nby)|cre, + A, (4.10)
Cp = TACyCr + T[Ap + B(1 4+ nbp)]crc, + r(1 +nbyp)

and
I—(I®FC)—(V®F)vecK = vecH,

where vec refers to vectorization of the matrix. For the calibrated examples
above the stationary RE solution is for W calibration

¢, = 0.592837, ¢, = 0.407163, ¢, = 0.592837,

12Note that the shocks can be written as v; since the monetary shocks were assumed away.
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1.17984 —0.76523
K= 035156 0.76523
0.35156  0.76523

and for MN calibration
¢z = 0.169118, ¢, = —0.221386, ¢, = 0.778614,

1.49239 —0.28026
K = 054389 0.54389
0.54389  0.54389

To study E-stability one postulates that the agents in the economy have
perceived law of motion (PLM) that takes the form

zi=a+ Cz_1+ Kuy,

where the parameter vector a and the matrices C' and K are in general not
equal to the REE values. Agents forecast using the PLM, which leads to
forecast functions!

Efziy = I+ Ca+ C*z_ 1 + (CK + KV)u,.

This forecast function is substituted into (4.7), which yields the temporary
equilibrium given the forecasts or the actual law of motion (ALM)

2z =F(I+C)a+ (FC? + G)zy1 + [F(CK + KV) + H]v.
The E-stability condition is that all eigenvalues of the matrices
FI+0),C@F+I2FCand I FC+V ®F

have real parts less than one. ® again denotes the Kronecker product.

Analytical results on E-stability cannot be obtained in view of the
complexity of the model. We thus evaluated numerically the eigenvalues
of these matrices using the calibrated examples specified above. For W
calibration the eigenvalues of F(I + C) are —7.85046 x 10717, 0.576656 and
0.913702. The eigenvalues of ' ® F 4+ I @ FC are —0.661714, 0.307057 +
0.0595477i, 3.44306 x 10716 and four eigenvalues equal to zero. The eigenvalues
of I ® FC +V ® F are 0.21117, —0.01206 and 0 where each of these is a
double root. For MN calibration the eigenvalues of F(I + C) are 0, and
0.8687194:0.0490926i. The eigenvalues of C'® F+1® FC are —0.27847 (twice),
0.645542 £ 0.07172224, and five eigenvalues equal to zero. The eigenvalues of
I® FC+V ® F are 0.27627, 0.251457 and 0 where each of these is a double
root.

We conclude:

Result 4 Under the Friedman k—percent rule the REFE is stable under learning.

13As was done earlier, it is assumed that the agents do not see the current value of z
when they form expectations. This is a standard assumption in the literature.
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4.3 Welfare comparison

We now compare the performance of the Friedman rule to optimal policy under
commitment. (The Appendix below outlines the method of calculating welfare
losses.) In this comparison we assume that the monetary shocks are both zero.
Monetary shocks would feed into the behavior of output gap and inflation
through the term g, in (4.5) under the Friedman rule. In contrast, monetary
shocks play no role under an interest-rate policy, since both money demand
and supply are then endogenous but do not affect the welfare loss.

We need to fix some additional parameters for this computation and choose
a=0.1,02 = 1 and g2, = 0.5%. For the two calibrations we get following values
for the loss function under the Friedman rule (denoted as Wi,) and under the
optimal expectations-based rule with commitment (denoted as Wgp)

W : Wg, = 0.423826, Wgp = 0.172182

MN : Wg, = 0.830019, Wgp = 0.169408.

Compared to the optimal policy the Friedman rule delivers quite poor welfare
results, at least for these calibrations.'

5 Concluding remarks

We began by reviewing the results on optimal interest-rate policy, and
presented an implementation that achieves both determinacy and stability
under learning of the optimal REE. This optimal policy rule relies on strong
feedback from the expectations of private agents, and also requires knowledge
of key structural parameters for the economy. Clearly, these are strong
informational requirements. However, simpler open-loop interest-rate rules,
for example those depending only on exogenous shocks, fail to be stable under
learning and also suffer from indeterminacy problems.

Friedman’s money supply rule has a major advantage in terms of simplicity.
We first examined whether the Friedman k—percent money supply rule leads
to determinacy of equilibria. Due to the complexity of the model, analytical
results were not obtainable. However, numerical analysis indicated that
Friedman’s rule does lead to determinate equilibria. We then considered
whether the unique stationary REE is stable under learning. Here we employed
the concept of E-stability which is known to provide necessary and sufficient
conditions for convergence of least squares learning rules. Again, numerical
analysis showed that Friedman’s money supply rule delivers an REE that is
stable under learning.

Finally, we studied the performance of Friedman’s rule in terms of the
quadratic objective function that can approximate the welfare loss of the
economy. In both calibrations of the model, Friedman’s rule leads to high

14Tn fact even the optimal discretionary policy does much better than the Friedman rule
for these parameter settings, yielding welfare losses of W = 0.205592 and W = 0.20999 for
the W and MN calibrations, respectively.
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welfare losses relative to those that are attained when monetary policy is
conducted in terms of the optimal interest-rate rule.

We conclude that, while Friedman’s money supply rule performs well in
terms of determinacy and stability under learning, its performance is relatively
poor in terms of welfare loss. According to these results, the choice of the
monetary instrument presents a dilemma. If a simple open loop policy is
desired, the money supply provides a superior instrument relative to the
interest rate since the latter fails the basic tests of determinacy and learnability.
Yet in terms of welfare loss, an open loop money supply policy delivers poor
results. There may exist simple money supply feedback policies that are much
better in terms of attained welfare, but whether they would pass the basic tests
of determinacy and learnability is a question that would need to be explicitly
examined.

19



A Appendix

A.1 Welfare computation

We calculate the expected welfare loss of the stationary REE, whichis 1/(1—/)
times

W = E(az? + 73).

In the case of the interest-rate rule (3.3) the REE solution y; = ?_)yt,l + ¢v; can
be written as

Ye | _ b &V Yt—1 c \ -~
()= (o v ) () ()

where ¥ = (;,%;)" and b and ¢ are the REE values under the specified
interest-rate rule, or

G = RGy + 50,

where ¢, = (yi,v}). Letting ¥ = Var(?,) denote the covariance matrix of the
shocks 7, the stationary covariance matrix for £, satisfies

Var(¢,) = RVar(¢,)R + SXS’
or in vectorized form
vec(Var(¢,)) = [I — R® R] tvec(SLS). (A1.1)

The variance of output gap and inflation can be read off from (A1.1).
In the case of the money supply rule (4.1) we instead use the MSV solution
(4.9) with C = C and K = K, so that

() =(5 )G ) (h)e

and ¢ ; = (z;,v}) is used in place of ¢} in the computations.
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