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We propose simulation-based forecasting methods for the noncausal vector autore-

gressive model proposed by Lanne and Saikkonen (2012). Simulation or numerical meth-

ods are required because the prediction problem is generally nonlinear and, therefore,

its analytical solution is not available. It turns out that different special cases of the

model call for different simulation procedures. Simulation experiments demonstrate that

gains in forecasting accuracy are achieved by using the correct noncausal VAR model

instead of its conventional causal counterpart. In an empirical application, a noncausal

VAR model comprised of U.S. inflation and marginal cost turns out superior to the best-

fitting conventional causal VAR model in forecasting inflation.
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1 Introduction

The conventional vector autoregressive (VAR) model has become a standard tool in

various fields of applications. In economics and finance the VAR model is typically

used in structural analysis to study the dynamics and interrelationships between

variables of interest. Another application of the VAR model is forecasting. For

instance, economic decision makers, such as central banks and investors in financial

markets, aim to forecast key macroeconomic and financial time series to assess the

future state of the economy and investment opportunities.

The conventional causal VAR model has a moving average representation in

terms of its present and past error terms. A characteristic feature of this model is

that its error terms are not predictable by past values of the involved time series.

In contrast, the moving average representation of the noncausal VAR model re-

cently considered by Davis and Song (2010) and Lanne and Saikkonen (2012) also

involve future error terms. In addition to theoretical advancements these authors

demonstrate the practical usefulness of the noncausal VAR model in economic and

financial applications. As discussed by Lanne and Saikkonen (2012), an import-

ant economic application of the noncausal VAR model is checking the validity of

widely used test procedures based on the causal VAR model in testing economic

hypotheses, especially in models involving expectations.

As yet, the development of the noncausal VAR model is at its early stages

and even the literature of univariate noncausal autoregressive models is scant

(see Breidt et al. (1991), Rosenblatt (2000), Davis and Song (2010), Lanne and

Saikkonen (2011, 2012) and the references therein). The object of this paper is to

devise forecasting techniques for the noncausal VARmodel of Lanne and Saikkonen

(2012). In addition to computing forecasts these techniques are also needed in

computing impulse response functions, and hence in conducting structural ana-

lysis within the noncausal VAR model. Thus, our contribution should widen the

applicability of the noncausal VAR model in empirical research.

In the causal VAR model, forecasting is simple in that explicit formulas are

available. In the noncausal VAR model the situation is different because the pre-
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diction problem is, in general, nonlinear and, consequently, forecasts cannot be

obtained without resorting to numerical methods. Further discussion on this point

is provided by Lanne, Luoto, and Saikkonen (2012b) who develop a simulation-

based forecasting method for the univariate noncausal AR model proposed by

Lanne and Saikkonen (2011). It turns out that forecasts of the considered non-

causal VAR model can be computed analogously only when a suitable condition

on the structure of the model holds. One case where the required condition always

holds is the purely noncausal VAR model whose moving average representation

only involves present and future error terms. In general, the required condition

states that a certain parameter matrix involving the autoregressive coeffi cients

of the model is nonsingular. Due to estimation errors this nonsingularity always

holds in practice but, to avoid potential problems with nearly singular cases, we

develop a forecasting technique which does not depend on the structure of the

model. To achieve this robustness, more demanding computations based on im-

portance sampling are needed (see, e.g., Geweke (1996) for a general discussion of

importance sampling).

We examine the properties of our forecasting techniques by means of Monte

Carlo simulations which also provide guidance for some user-chosen quantities

needed in the application of these techniques. The simulations conducted demon-

strate that our forecasting techniques perform well and that the correct noncausal

VAR model outperforms its causal counterpart in forecast accuracy.

An empirical application to inflation forecasting illustrates the practical useful-

ness of our forecasting techniques. This application is partly inspired by the work

of Lanne, Luoma, and Luoto (2012a) and Lanne et al. (2012b) who find that the

univariate noncausal AR model outperforms its conventional causal counterpart

in forecasting U.S. inflation. We consider a bivariate system consisting of inflation

and the real marginal cost that has often been employed in monetary economics,

especially in studies related to the New Keynesian Phillips Curve (see, e.g., Gali

and Gertler (1999), Nason and Smith (2008), and the references therein). Our

results are similar to those obtained by Lanne et al. (2012a, 2012b) in that a non-
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causal VAR model provides the best in-sample fit and outperforms the best-fitting

causal VAR model in out-of-sample forecasting.

The rest of the paper is structured as follows. Section 2 describes the non-

causal VAR model of Lanne and Saikkonen (2012) and briefly discusses statistical

inference. Section 3 develops the forecasting techniques of the paper, while Sec-

tion 4 illustrates their performance by means of Monte Carlo simulations. Section

5 presents the empirical application. Section 6 concludes. Finally, some technical

details are collected in three appendices.

2 Noncausal VAR model

In this section, we first describe the noncausal VAR model of Lanne and Saikkonen

(2012) and then discuss briefly parameter estimation and statistical inference. Un-

less otherwise indicated, all vectors will be treated as column vectors and, for

notational convenience, we shall write x = (x1, ..., xn) for the (column) vector x

where the components xi may be either scalars or vectors (or both).

2.1 Model

Following Lanne and Saikkonen (2012) we consider the n-dimensional stochastic

process yt (t = 0,±1,±2, ...) generated by

Π (B) Φ
(
B−1

)
yt = εt, (1)

where εt (n× 1) is a sequence of independent, identically distributed random vec-

tors with zero mean and finite positive definite covariance matrix, and Π (B) =

In − Π1B − · · · − ΠrB
r and Φ (B−1) = In − Φ1B

−1 − · · · − ΦsB
−s are n × n

matrix operators with B the usual backward shift operator, that is, Bkyt = yt−k

(k = 0,±1, ...). Moreover, the matrix polynomials Π (z) and Φ (z) (z ∈ C) have

their zeros outside the unit disc, so that

det Π (z) 6= 0, |z| ≤ 1, and det Φ (z) 6= 0, |z| ≤ 1. (2)
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These conditions guarantee the validity of various moving average representations

to be used in our subsequent developments.

If Φj 6= 0 for some j ∈ {1, .., s}, equation (1) defines a noncausal vector autore-

gression referred to as purely noncausal when Π1 = · · · = Πr = 0 (or r = 0). When

Φ1 = · · · = Φs = 0 (or s = 0) the conventional causal model is obtained. Then the

former condition in (2) guarantees the stationarity of the model. In the general

set-up of model (1) the same is true for the process

ut = Φ
(
B−1

)
yt. (3)

Specifically, there exists a δ1 > 0 such that Π (z)−1 has a well defined power series

representation Π (z)−1 =
∑∞

j=0Mjz
j = M (z) for |z| < 1 + δ1. Consequently, the

process ut has the causal moving average representation

ut = M (B) εt =
∞∑
j=0

Mjεt−j, (4)

where M0 = In and the coeffi cient matrices Mj decay to zero at a geometric rate

as j →∞.

Write Π (z)−1 = det (Π (z))−1 Ξ (z) = M (z), where Ξ (z) is the adjoint polyno-

mial matrix of Π (z). Then, det (Π (B))ut = Ξ (B) εt (see (4)) and, by the definition

of ut in (3),

Φ
(
B−1

)
wt = Ξ (B) εt,

where, setting det (Π (z)) = a (z) = 1− a1z − · · · − anrznr,

wt = det (Π (B)) yt = a(B)yt. (5)

Note that Ξ (z) is a matrix polynomial of degree at most (n− 1) r and, because

Π (0) = In, we also have Ξ (0) = In. By the latter condition in (2) one can find a

0 < δ2 < 1 such that Φ (z−1)
−1

Ξ (z) has a well defined power series representation

Φ
(
z−1
)−1

Ξ (z) =
∞∑

j=−(n−1)r

Njz
−j = N

(
z−1
)

(6)

for |z| > 1− δ2. Thus, the process wt has the moving average representation

wt =

∞∑
j=−(n−1)r

Njεt+j, (7)
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where the coeffi cient matrices Nj decay to zero at a geometric rate as j → ∞.

Using the equalities in (6) one can solve these matrices recursively as functions of

the parameters Πj (j = 1, ..., r) and Φj (j = 1, ..., s) (see Appendix A.1).

Finally, from (2) one obtains the moving average representation

yt =
∞∑

j=−∞
Ψjεt−j, (8)

where Ψj (n× n) is the coeffi cient matrix of zj in the Laurent series expansion of

Ψ (z)
def
= Φ (z−1)

−1
Π (z)−1 which exists for 1− δ2 < |z| < 1 + δ1 with Ψj decaying

to zero at a geometric rate as |j| → ∞. The representation (8) implies that yt is a

stationary and ergodic process with finite second moments.

Model (1) is referred to as the VAR(r, s) model. In the conventional causal

case the abbreviation VAR(r) is also used. In the next section, we present the

joint distribution of an observed time series generated by the VAR(r, s) process.

This joint distribution is needed to develop our forecasting methods and it also

facilitates our discussion on parameter estimation and statistical inference.

2.2 Joint distribution of the VAR(r, s) process

It is well-known that causal and noncausal autoregressions cannot be distinguished

by second-order properties or the Gaussian likelihood (see Lanne and Saikkonen

(2011, 2012) and the references therein). Therefore, it is necessary to assume that

the error term εt is non-Gaussian. The theoretical results of Lanne and Saikkonen

(2012) assume that the distribution of εt is of a fairly general elliptical form. How-

ever, an inspection of the arguments used in Section 3.1 of that paper reveals that

this assumption is not needed to derive the distribution of the observed data and,

therefore, it is not necessary for our forecasting methods. Thus, unless otherwise

indicated we only assume that the (non-Gaussian) distribution of εt is continuous

with density function f (·), whose possible dependence on (unknown) parameters

is not made explicit.

A detailed derivation of the joint distribution of the observed data can be found

in Lanne and Saikkonen (2012), so here we only describe the final result. To this
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end, define the n× 1 vectors

vk,T−s+k = wT−s+k −
−k∑

j=−(n−1)r

NjεT−s+k+j, k = 1, ..., s, (9)

where the sum is interpreted as zero when k > (n− 1) r, that is, when the lower

bound exceeds the upper bound (this convention will also be used later). Note

also that, by (1) and (7), vk,T−s+k can be expressed as a function of the observed

data y1, ..., yT and that the representation vk,T−s+k =
∑∞

j=−k+1NjεT−s+k+j holds,

showing that vk,T−s+k, k = 1, ..., s, are independent of εt, t ≤ T − s. We also

introduce the vector z = (z1, z2, z3) where z1 = (u1, ..., ur), z2 = (εr+1, ..., εT−s),

and z3 = (v1,T−s+1, ..., vs,T ) are independent in view of the preceding discussion

and (4). These vectors can be expressed as functions of the observed data (and

parameters), and in what follows we use a tilde to make this functional dependence

explicit. Thus, the components of the vectors z̃1 and z̃2 are ũt = Φ (B−1) yt,

t = 1, ..., r, (see (3)) and ε̃t = Π (B) Φ (B−1) yt, t = r + 1, ..., T − s, (see (1)),

respectively. Furthermore, the components of z̃3, ṽk,T−s+k, are defined by replacing

wT−s+k and εT−s+k+j on the right hand side of (9) by a (B) yT−s+k (see (5)) and

ε̃T−s+k+j, j = − (n− 1) r, ....,−k, k = 1, ..., s, respectively.

It is shown in Section 3.1 of Lanne and Saikkonen (2012) that the random vector

z is related to the data vector y = (y1, ..., yT ) according to z = H3H2H1y, where

H1,H2, andH3 (T ×T ) are nonsingular transformation matrices that depend on

the parameters Πj (j = 1, ..., r) and Φj (j = 1, ..., s) with H2 and H3 having unit

determinant. Thus, it follows that the joint density function of the data vector y

is given by (assuming T large enough)

p (y) = hz1 (z̃1) ·
T−s∏
t=r+1

f (ε̃t) · hz3(z̃3) · |det (H1)| . (10)

For our subsequent developments the explicit expression of the matrix H1 is not

relevant because the determinant term |det (H1)| will vanish from our forecasting

formulas. In the purely noncausal case the joint density function p (y) can be

simplified by replacing the first factor hz1 (z̃1) by unity, setting r = 0 and ε̃t =

Φ (B−1) yt in the second factor, and z̃3 = (yT−s+1, ..., yT ) in the third factor.
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We shall now briefly discuss parameter estimation and statistical inference in

the VAR(r, s) model (1). Following Lanne and Saikkonen (2012) we here assume

that the error term εt has an elliptical distribution and use the second factor of

the right hand side of (10) to obtain a computationally feasible approximation for

the likelihood function. Maximizing this function over the permissible parameter

space yields an (approximate) maximum likelihood (ML) estimator. Lanne and

Saikkonen (2012) show that, under appropriate regularity conditions, the resulting

(local) ML estimator is consistent and asymptotically normally distributed and

that conventional methods to compute standard errors for estimated parameters

and to construct likelihood-based tests apply.

The preceding discussion assumes that the orders r and s of the VAR(r, s)

model (1) are known. As in Lanne and Saikkonen (2012) we specify these orders

as follows. First, using least squares or Gaussian ML we find a causal VAR(p) model

that adequately describes the autocorrelation structure of the data with the order

p determined by using conventional procedures such as model selection criteria

and diagnostic checks. Then we check the residuals of this causal VAR(p) model

for Gaussianity and, only when we detect deviations from Gaussianity, we consider

noncausal VAR models. Next we choose a non-Gaussian error distribution, such as

the multivariate t—distribution used in Lanne and Saikkonen (2012), and estimate

all causal and noncausal VAR(r, s) models with the orders r and s summing to

the selected order p. Finally, of these alternative models we choose the one that

maximizes the likelihood function and evaluate its adequacy with conventional

diagnostic tools.

3 Forecasting

In this section, we consider forecasting future observations yT+h (h ≥ 1) and, unless

otherwise stated, we shall assume that the model is not causal and not univariate,

so that s > 0 and n > 1. We let ET (·) signify the conditional expectation operator

given the observed data y = (y1, ..., yT ).

Our starting point is equation (7) which we make operational by approximating
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the infinite sum therein by a finite sum. Specifically, from equations (5) and (7)

we obtain the approximation

ET (yT+h) ≈ a1ET (yT+h−1) + · · ·+ anrET (yT+h−nr) + ET

 M−h∑
j=−(n−1)r

NjεT+h+j

 ,

(11)

where M > 0 is supposed to be “large”. As ET (yT+h−j) = yT+h−j for j ≥ h,

(approximate) forecasts can be computed recursively starting from h = 1 if the

last conditional expectation on the right hand side of (11) can be computed for

every h ≥ 1. In the univariate case (n = 1) considered by Lanne et al. (2012b) this

conditional expectation depends on the error terms εT+1, ..., εT+M only. However,

except for the purely noncausal case (r = 0) this does not happen in our multivari-

ate case where the error terms εT+1−(n−1)r, ..., εT are also involved and the fact that

εT−s+1, ..., εT (s > 0) cannot be expressed as functions of the observed data (see

(1)) causes complications. In the purely noncausal case these error terms vanish

from the right hand side of (11), simplifying the situation and allowing a straight-

forward extension of the forecasting method of Lanne et al. (2012b). Therefore,

and also to help understand the diffi culties in the general case (r > 0, s > 0),

we shall first consider forecasting in the purely noncausal case. The general case

requires a more delicate treatment provided in Section 3.2.

3.1 Purely noncausal case

In the purely noncausal case (r = 0) the approximation (11) reduces to

ET (yT+h) ≈ ET

(
M−h∑
j=0

NjεT+h+j

)
, N0 = In. (12)

To compute the conditional expectation on the right hand side we follow Lanne et

al. (2012b) and derive the conditional density of ε+ = (εT+1, ..., εT+M) given the

data vector y. Recall that now ε̃t = Φ (B−1) yt and z̃3 = (yT−s+1, ..., yT ). Using

the expression of the density function p (y) in (10) and the preceding discussion

one can check that the joint density function of (y, ε+) can be written as

p
(
y, ε+

)
=

T−s∏
t=1

f (ε̃t) · hz3,ε+(y3, ε
+) · |det (H1)| , (13)
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where hz3,ε+(y3, ε
+) is the joint density function of (z3, ε+) and y3 = (yT−s+1, ..., yT )

(in this section we replace z̃3 by the more typical notation y3). From (10) (spe-

cialized to the present case) and (13) we find that the conditional density function

of ε+ given y is

p
(
ε+ | y

)
=
hz3,ε+(y3, ε

+)

hz3(y3)
=

hz3,ε+(y3, ε
+)∫

hz3,ε+(y3, ε
+)dε+

.

The right hand side of (12) can thus be written as

ET

(
M−h∑
j=0

NjεT+h+j

)
=

∫ ∑M−h
j=0 NjεT+h+j · hz3,ε+(y3, ε

+)dε+∫
hz3,ε+(y3, ε

+)dε+
. (14)

As in Lanne et al. (2012b), we now derive a feasible approximation for the

density function hz3,ε+(y3, ε
+). As yt =

∑∞
j=0Njεt+j and N0 = In, we have the

approximate relation

In N1 · · · · · · · · · · · · NM+s−1

0
. . . . . .

...
...

. . . In N1 · · · · · · NM
...

. . . In 0 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · · · · · · · 0 In





εT−s+1
...

εT

εT+1
...

εT+M


≈



yT−s+1
...

yT

εT+1
...

εT+M


or briefly Aε++ ≈ υ. As the matrix A is nonsingular with unit determinant this

yields ε++ ≈ A−1υ or

(εT−s+1, ..., εT , εT+1, ..., εT+M) ≈
(
ε̃T−s+1

(
ε+
)
, ..., ε̃T

(
ε+
)
, εT+1, ..., εT+M

)
,

where ε̃T−s+1 (ε+) , ..., ε̃T (ε+) (n× 1) are the first s (vector) components of the

vector A−1υ, and hence dependent on yT−s+1, ..., yT . Thus, it follows that the

density function hz3,ε+(y3, ε
+) can be approximated as

hz3,ε+(y3, ε
+) ≈

s∏
j=1

f
(
ε̃T−s+j

(
ε+
))
·
T+M∏
t=T+1

f (εt) . (15)

As in Lanne et al. (2012b), we have to compute the values of the two integrals

on the right hand side of (14). More generally, for any function of ε+, say q (ε+),
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we can use (15) to obtain∫
q
(
ε+
)
· hz3,ε+(y3, ε

+)dε+ ≈
∫
q
(
ε+
)
·
s∏
j=1

f
(
ε̃T−s+j

(
ε+
))
·
T+M∏
t=T+1

f (εt) dε
+.

(Here as well as in similar subsequent instances existence and finiteness of the

stated expectations are assumed.) The last expression can be interpreted as the

expectation of the product of the first two factors in the integrand with respect

to the distribution of ε+ = (εT+1, ..., εT+M). Using Monte Carlo simulation, this

expectation can therefore be approximated as∫
q
(
ε+
)
· hz3,ε+(y3, ε

+)dε+ ≈ 1

m

m∑
i=1

q
(
ε+(i)

)
·
s∏
j=1

f
(
ε̃T−s+j

(
ε+(i)

))
, (16)

where ε+(i) = (ε
(i)
T+1, ..., ε

(i)
T+M), i = 1, ...,m, are mutually independent simulated

realizations from the distribution of ε+ so that ε(i)T+1, ..., ε
(i)
T+M are independent

random vectors for every i. As m → ∞, the right hand side of (16) converges

almost surely and provides an approximation for the left hand side that can be

made arbitrarily accurate by choosing m and M large enough.

Applying (16) with q (ε+) =
∑M−h

j=0 NjεT+h+j and q (ε+) = 1 to the numerator

and denominator on the right hand side of (14), respectively, we obtain approx-

imations for the involved integrals, and hence for ET (yT+h). Thus, we get the

(approximate) forecast

ÊT (yT+h) =

∑m
i=1

∑M−h
j=0 Njε

(i)
T+h+j ·

∏s
j=1 f

(
ε̃T−s+j

(
ε+(i)

))∑m
i=1

∏s
j=1 f (ε̃T−s+j (ε+(i)))

, h ≥ 1,

which, for m and M large enough, approximates the true forecast ET (yT+h) ar-

bitrarily closely. Appendix A.1 shows how to compute the coeffi cient matrices Nj

recursively as functions of the parameters Πj (j = 1, ..., r) and Φj (j = 1, ..., s).

Choosing the values of the integers m and M will be discussed in Section 4.

3.2 General case

As already indicated, the general noncausal case seems to require techniques more

burdensome than those in the purely noncausal case (or in the general univariate
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noncausal case). To demonstrate this, consider the joint density of the augmented

data vector (y, ε+) and conclude from the discussion leading to the density function

p (y) in (10) that the joint density of (y, ε+), and hence the conditional density

of ε+ given y, involves the joint density of (z3, ε
+). For simplicity, suppose that

s = 1 so that z3 = v1,T =
∑∞

j=0NjεT+j and z3 ≈
∑M

j=0NjεT+j forM large (see (9)

and the subsequent discussion). In the purely noncausal case we have N0 = In, but

this does not hold in the general case and it is even possible that the matrix N0 is

singular.1 When this happens the random vectors z3 and ε+ = (εT+1, ..., εT+M) are

approximately linearly dependent so that, apart from the approximation error, the

joint distribution of z3 and ε+ is singular. This makes the conventional use of the

joint density of z3 and ε+, employed in the purely noncausal case, inappropriate.

To get an idea how the diffi culty described above can be overcome, infer from

equation (9) that, when s = 1, we have

ṽ1,T − ET

( ∞∑
j=1

NjεT+j

)
= N0ET (εT ) , (17)

where ṽ1,T = wT −
∑−1

j=−(n−1)rNj ε̃T+j is a function of the observed data. Now,

suppose the matrix N0 is nonsingular and that we can compute the conditional

expectation of (a truncated version of) the infinite sum in (17) so that, by the

nonsingularity of N0, we can also compute ET (εT ). Consider the approximate rela-

tion (11) with h = 1 and note that of the error terms εT+1−(n−1)r, ..., εT all except

εT are functions of the observed data (this is because s = 1; see (1)). Thus, if we

can also compute the conditional expectation of
∑∞

j=0NjεT+1+j (or its truncated

version) we can compute the last conditional expectation on the right hand side of

(11) with h = 1, and hence (an approximation for) ET (yt+1). However, when the

matrix N0 is singular this approach does not apply as such but needs to be modi-

fied. The modification to be developed in the next section is generally applicable

but requires the use of importance sampling not needed in the purely noncausal

case considered in the preceding section. In Section 3.2.2 we show how a simpler

1For example, when r = 1 and s = 1, one can infer from Appendix A.1 that the matrix N0 is

singular when Π1 =

 0 0

−3/4 3/4

 and Φ1 =

 2/3 2/3

0 0

.
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technique, similar to that derived in the purely noncausal case, can be obtained

when a suitable condition about the structure of the model holds. When s = 1

this condition requires that the matrix N0 is nonsingular.

3.2.1 Importance-sampling-based forecasting

Consider the general case with s ≥ 1 and r ≥ 1 where the counterpart of equation

(17) is (see (7) and (9))
ṽ1,T−s+1

ṽ2,T−s+2
...

ṽs,T

− ET


∑∞
j=sNjεT−s+1+j∑∞
j=s−1NjεT−s+2+j

...∑∞
j=1NjεT+j

 = ET



∑s−1
j=0NjεT−s+1+j∑s−2
j=−1NjεT−s+2+j

...∑0
j=−s+1NjεT+j

 .

Write the vector on the right hand side as

∑s−1
j=0NjεT−s+1+j∑s−2
j=−1NjεT−s+2+j

...∑0
j=−s+1NjεT+j

 =


N0 N1 · · · Ns−1

N−1 N0 · · · Ns−2
...

. . .
...

N−s+1 N−s+2 · · · N0




εT−s+1

εT−s+2
...

εT

 .

Let N 0, ...,N s−1 (sn× n) signify the s column blocks of the first factor on the

right and, more generally, define the sn× n matrices

N j =


Nj
...

Nj−s+1

 , j = 0, 1, ... .

Furthermore, define the matrix

Q =

 N 0 · · · N sn−1

K0 · · · Ksn−1

 , sn2 × sn2,

where the sn (n− 1) × n matrices K0, ...,Ksn−1 are chosen in such a way that

this matrix is nonsingular. It is demonstrated in Appendix A.1 that the matrix

[N 0 · · · N sn−1] (sn× sn2) is of full row rank, implying that the mentioned choice

of the matrices K0, ...,Ksn−1 is possible and guarantees the nonsingularity of a

12



transformation matrix to be defined below. One possibility that always applies is

to choose the rows of [K0 · · · Ksn−1] (sn (n− 1)× sn2) as basis vectors of the

orthogonal complement of the space spanned by the rows of [N 0 · · · N sn−1]. The

purpose of the matrix Q is to remove the diffi culties discussed above. To illustrate

this, note that when s = 1 we have N 0 = N0 and the upper block of rows of

Q becomes [N0 · · · Nn−1] (n× n2), a matrix of full row rank (this particular case

and the example in Footnote 1 also show that the matrix [N 0 · · · N s−1] (sn× sn)

can be singular).

To obtain a generally workable analog of equation (17) first define the vector

 ζ1
ζ2

 =

 N 0 · · · N sn−1

K0 · · · Ksn−1




εT−s+1
...

εT−s+sn

 , sn2 × 1, (18)

where ζ1 is sn × 1 and ζ2 is sn (n− 1) × 1. As z3 = (v1,T−s+1, ..., vs,T ) with

vk,T−s+k =
∑∞

j=−k+1NjεT−s+k+j (see the discussion following (9)) we find from the

definition of N j that z3 =
∑∞

j=0N jεT−s+1+j, or equivalently,

z3 −
∞∑
j=sn

N jεT−s+j+1 = [N 0 · · · N sn−1]


εT−s+1
...

εT−s+sn

 = ζ1,

where the latter equality is due to (18). Thus, using this fact in (18) and taking

conditional expectations yields the (approximate) relation

 z̃3 − ET (∑M+s−1
j=sn N jεT−s+j+1

)
ET (ζ2)

 ≈
 N 0 · · · N sn−1

K0 · · · Ksn−1



ET (εT−s+1)

...

ET (εT−s+sn)


(19)

If we can forecast
∑M+s−1

j=sn N jεT−s+j+1 and ζ2 on the left, the nonsingularity

of the matrix on the right enables us to obtain forecasts for εT−s+1, ..., εT−s+sn and,

furthermore, for yT+h, h ≥ 1, as will be seen. To obtain forecasts for
∑M+s−1

j=sn N jεT−s+j+1

and ζ2 we consider the extended data vector (y,ξ), where ξ = (ζ2, e
+) with

e+ = (εT−s+sn+1, ..., εT+M), and derive the conditional density of ξ given y.

13



From the expression of the density function of y in (10) and the discussion

preceding it we find that the joint density function of (y,ξ) is

p(y, ξ) = hz1 (z̃1) ·
(

T−s∏
t=r+1

f (ε̃t)

)
· hz3,ξ(z̃3, ξ) · |det (H1)| ,

where now ε̃t = Π (B) Φ (B−1) yt and hz3,ξ(z̃3, ξ) signifies the joint density function

of z3 and ξ (note that here independence of (z1, z2) and (z3, ξ) has also been used).

Dividing both sides of the preceding equation by the density function of y (see

(10)) shows that the conditional density function of ξ given y is

p (ξ | y) =
hz3,ξ(z̃3, ξ)

hz3(z̃3)
=

hz3,ξ(z̃3, ξ)∫
hz3,ξ(z̃3, ξ)dξ

.

Thus, we need to derive the joint density of z3 = (v1,T−s+1, ..., vs,T ) and ξ =

(ζ2, e
+). It is shown in Appendix A.2 that this problem can be reduced to the

derivation of hζ1,ζ2(ζ1, ζ2), the joint density function of ζ1 and ζ2. Specifically, we

have

hz3,ξ(z̃3, ξ) ≈ hζ1,ζ2(ζ̃1(e
+), ζ2) ·

T+M∏
t=T−s+sn+1

f (εt) , (20)

where

ζ̃1(e
+) = z̃3 −

M+s−1∑
j=sn

N jεT−s+j+1

with the (n×1 vector) components ζ̃1,k(e
+) = ṽk,T−s+k−

∑M+s−1
j=sn Nj−k+1εT−s+j+1

(k = 1, ..., s). To derive the joint density of ζ1 and ζ2, define the matrix

R =


R1,1 · · · R1,sn
...

...

Rsn,1 · · · Rsn,sn

 =

 N 0 · · · N sn−1

K0 · · · Ksn−1

−1 = Q−1, sn2 × sn2,

where Rj,k (j, k = 1, ..., n) is of order n × n. From (18) it is seen that R is the

matrix of the linear transformation (ζ1, ζ2)→ (εT−s+1, .., εT−s+sn) so that

hζ1,ζ2(ζ1, ζ2) =

sn∏
j=1

f

(
s∑
k=1

Rj,kζ1,k +

sn∑
k=s+1

Rj,kζ2,k

)
· |det (R)| , (21)

where ζ i,k is the kth (vector) component of ζi (i = 1, 2).

14



The preceding derivations can be used to obtain an approximation for the

conditional expectation ET (q(ξ)) with q(ξ) a function of ξ. Specifically, we have

ET (q(ξ)) ≈
∫
q(ξ) · hζ1,ζ2(ζ̃1(e+), ζ2) ·

∏T+M
t=T−s+sn+1 f (εt) dξ∫

hζ1,ζ2(ζ̃1(e
+), ζ2) ·

∏T+M
t=T−s+sn+1 f (εt) dξ

(22)

The integrals in (22) can be computed numerically but techniques more complic-

ated than in the preceding section or in Lanne et al. (2012b) seem to be required.

As in Breidt and Hsu (2005), where an analogous forecasting procedure for (uni-

variate) noninvertible moving average models is developed, one can employ an

importance sampling technique (see, e.g., Sec. 4.3 of Geweke (1996)). To this end,

let ϕ (·) be an sn (n− 1)-dimensional density function whose support contains the

support of the distribution of ζ2. Then write the numerator in (22) as∫
q(ξ) · hζ1,ζ2(ζ̃1(e

+), ζ2) ·
T+M∏

t=T−s+sn+1
f (εt) dξ (23)

=

∫
q(ξ) ·W (ζ̃1(e

+), ζ2) · ϕ(ζ2) ·
T+M∏

t=T−s+sn+1
f (εt) dξ,

where

W (ζ̃1(e
+), ζ2) =

hζ1,ζ2(ζ̃1(e
+), ζ2)

ϕ(ζ2)
.

Similarly, write the denominator in (22) as∫
hζ1,ζ2(ζ̃1(e

+), ζ2) ·
T+M∏

t=T−s+sn+1
f (εt) dξ (24)

=

∫
W (ζ̃1(e

+), ζ2) · ϕ(ζ2) ·
T+M∏

t=T−s+sn+1
f (εt) dξ.

Clearly, the right hand side of (23) is the expectation of q(ξ) ·W (ζ̃1(e
+), ζ2) with

respect to a distribution with density ϕ× f ×· · ·× f (M − sn+ s copies of f) and

the right hand side of (24) is the expectation of W (ζ̃1(e
+), ζ2) with respect to the

same distribution. Thus, the conditional expectation in (22) can be approximated

via Monte Carlo simulation as

ÊT (q(ξ)) =

∑m
i=1 q(ξ

(i)) ·W (ζ̃1(e
+(i))∑m

i=1W (ζ̃1(e
+(i)))

, (25)
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where ξ(i) = (ζ
(i)
2 , ε

(i)
T−s+sn+1, ..., ε

(i)
T+M), i = 1, ...,m, are mutually independent sim-

ulated realizations from a distribution with density ϕ × f × · · · × f (regarding

ζ̃1(e
+(i)), see equation (20)). Thus, ζ(i)2 (sn (n− 1)× 1) is drawn from a distribu-

tion with density ϕ and ε(i)T−s+sn+1, ..., ε
(i)
T+M (n× 1) are drawn independently of

ζ
(i)
2 from a distribution with density f and, similarly to εT−s+sn+1, ..., εT+M , the

random vectors ε(i)T−s+sn+1, ..., ε
(i)
T+M are independent for every i.

Forecasts of yT+h (h ≥ 1) can now be obtained recursively as follows.

Step 1. Apply (25) with q(ξ) =
∑M+s−1

j=sn N jεT−s+j+1 and q(ξ) = ζ2 to obtain

ÊT

(∑M+s−1
j=sn N jεT−s+j+1

)
and ÊT (ζ2), and furthermore (see (19))

ÊT (εT−s+1)
...

ÊT (εT−s+sn)

 = R

 z̃3 − ÊT (∑M+s−1
j=sn N jεT−s+j+1

)
ÊT (ζ2)

 .
Step 2. Apply (25) with q(ξ) =

∑M−h
j=sn−s−h+1NjεT+h+j, h ≥ 1, and compute

recursively (see (11))

ÊT (yT+h) = a1ÊT (yT+h−1) + · · ·+ anrÊT (yT+h−nr) +
−s−h∑

j=−(n−1)r

Nj ε̃T+h+j

+N−s−h+1ÊT (εT−s+1) + · · ·+Nsn−s−hÊT (εT−s+sn)

+ ÊT

(
M−h∑

j=sn−s−h+1

NjεT+h+j

)
, h = 1, 2, ...,

where ÊT (yT+h−k) = yT+h−k for k ≥ h and Nj = 0 for j < − (n− 1) r. Thus,∑−s−h
j=−(n−1)rNj ε̃T+h+j = 0 for s + h > (n− 1) r and N−s−h+1ÊT (εT−s+1) = · · · =

Nsn−s−hÊT (εT−s+sn) = 0 for h+ s− sn > (n− 1) r.

In addition to choosing values for the integers m and M (to be discussed in

Section 4) the application of the preceding procedure requires two choices. First,

one has to choose the matrix [K0 · · · Ksn−1] (sn (n− 1)× sn2) whose rows we

here assume to be formed of the basis vectors of the orthogonal complement of the

space spanned by the rows of [N 0 · · · N sn−1]. Second, one has to choose the sn(n−

1)-dimensional auxiliary density function ϕ(ζ2). As ζ2 =
∑sn−1

j=0 KjεT−s+1+j, a

potentially reasonable choice might be based on the chosen error distribution. In

16



the bivariate special case with s = 1 the random vector ζ2 is also bivariate, and

one could choose ϕ (ζ2) as the density function of the error term εt. In general, as

the dimension of ζ2 is s(n−1) times the dimension of εt, one could similarly choose

ϕ(ζ2) as the density function of (εT−s+1, ..., εT−s+sn), that is, f×· · ·×f (sn (n− 1)

copies). This choice is probably not optimal but, due to its simplicity, will be

used in our subsequent numerical illustrations where the error term is assumed to

have a multivariate t—distribution. Breidt and Hsu (2005) use a somewhat similar

importance sampler in their forecasting procedure.

3.2.2 Forecasting without importance sampling

It is possible to simplify the preceding simulation method if suitable knowledge of

the structure of the matrix [N 0 · · · N sn−1] is available. In particular, as we shall

show below, it is possible to avoid the use of importance sampling if the matrix

[N 0 · · · N s−1] (sn× sn) is nonsingular, for then we can choose

Q =

 N 0 · · · N sn−1

K0 · · · Ksn−1

 def
=

 Q11 Q12

0 Isn(n−1)

 ,
where Q11 = [N 0 · · · N s−1] and Q12 = [N s · · · N sn−1]. In the purely non-

causal case considered in Section 3.1, this choice is always possible because then

Nj = 0, j < 0, and N0 = In, implying that the matrix Q11 is upper triangular

with unit diagonal elements. However, in general this need not be the case (see

the beginning of Section 3 and Footnote 1). On the other hand, in practice the

matrix [N 0 · · · N s−1] is unknown and has to replaced by an estimate which, due

to estimation errors, is necessarily nonsingular (with probability one). Moreover,

a simulated example provided in the next section suggests that, even when the as-

sumed nonsingularity does not hold, the forecasting procedure to be derived in this

section performs well compared to its robust but computationally more demand-

ing alternative developed in the previous section. Note also that in practice one

can assess the potential singularity of the matrix [N 0 · · · N s−1] by examining,

for example, the eigenvalues or determinant of its estimate.

When the matrix Q is as above, we have ζ2 = (εT+1, ..., εT−s+sn) (see (18)) and

17



R = Q−1 is of the same form as Q or, specifically,

R =

 R11 R12

0 Isn(n−1)

 =

 Q−111 −Q11Q12

0 Isn(n−1)

 .
Thus, in this case the joint density function of ζ1 and ζ2 becomes (see (21))

hζ1,ζ2(ζ1, ζ2) =
s∏
j=1

f

(
s∑
k=1

Rjkζ1,k +
sn∑

k=s+1

RjkεT−s+k

)
·

sn∏
j=s+1

f (εT−s+j) · |det (R)| ,

and the approximate relation (22) can be written as

ET (q (ξ)) ≈

∫
q (ξ) ·

∏s
j=1 f

(∑s
k=1Rjkζ̃1,k(e

+) +
∑sn

k=s+1RjkεT−s+k

)
·
∏T+M
t=T+1 f (εt) dξ∫ ∏s

j=1 f
(∑s

k=1Rjkζ̃1,k(e
+) +

∑sn
k=s+1RjkεT−s+k

)
·
∏T+M
t=T+1 f (εt) dξ

,

where ζ̃1,k(e
+) is defined below (20). Thus, as now ξ = (ζ2, e

+) = (εT+1, ..., εT+M),

the integral in the numerator is the expectation of

q (ξ) ·
s∏
j=1

f

(
s∑
k=1

Rj,kζ̃1,k(e
+) +

sn∑
k=s+1

Rj,kεT−s+k

)
with respect to a distribution with density f × · · · × f (M copies) whereas the

integral in the denominator is the expectation of
s∏
j=1

f

(
s∑
k=1

Rj,kζ̃1,k(e
+) +

sn∑
k=s+1

Rj,kεT−s+k

)
with respect to the same distribution.

The preceding discussion shows that we can approximate the conditional ex-

pectation ET (q (ξ)) via Monte Carlo simulation as

ÊT (q (ξ)) =

∑m
i=1 q(ξ

(i)) ·
∏s
j=1 f

(∑s
k=1Rj,kζ̃1,k(e

+(i)) +
∑sn

k=s+1Rj,kε
(i)
T−s+k

)
∑m

i=1

∏s
j=1 f

(∑s
k=1Rj,kζ̃1,k(e

+(i) +
∑sn

k=s+1Rj,kε
(i)
T−s+k

) ,

(26)

where ξ(i) = (ε
(i)
T+1, ..., ε

(i)
T+M) = ε+(i), i = 1, ...,m, are independent draws from

a distribution with density f × · · · × f (M copies). Forecasts can be obtained

by modifying the two steps in the forecasting procedure of the previous section

as follows. The vector ζ2 in Step 1 is defined as ζ2 = (εT+1, ..., εT−s+sn) and the

simulation scheme (26) is used in place of (25) in both steps. This simulation

procedure is similar to that derived in the purely noncausal case in Section 3.1 to

which it, in fact, reduces in that special case, as demonstrated in Appendix A.3.
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4 Simulation study

4.1 Simulated processes

In this section, we examine the performance of our forecasting techniques by using

Monte Carlo simulations and data generation processes (DGPs) based on bivari-

ate models estimated for real data. The same data, comprised of quarterly U.S.

inflation and the real marginal cost, is also used in the next section to provide an

illustration of our forecasting techniques. As mentioned in the Introduction, infla-

tion and the real marginal cost are variables extensively studied in the previous

literature on inflation (see, e.g., Gali and Gertler (1999), Canova (2007), Nason

and Smith (2008), and the references therein).

Our quarterly data set, from the Federal Reserve Bank of St. Louis FRED

databank, covers the period from 1955:1 to 2010:3. Inflation is computed as the

log-difference of the seasonally adjusted GDP implicit price deflator and the real

marginal cost is approximated by the real unit labor cost (for details, see Lanne

and Luoto (2012)). We use the period from 1955:1 to 1989:4 to estimate VAR(r, s)

models that will serve as DGPs in the subsequent Monte Carlo simulations.2

To specify a potentially noncausal VAR model we proceed along the lines dis-

cussed in Section 2.2 and first consider a Gaussian VAR(p) model. The conven-

tional model selection criteria AIC and BIC and autocorrelation functions of the

residuals suggested the order p = 2. However, the assumption of Gaussian errors

could be rejected by the Q—Q plots of the residuals and, given uncorrelated resid-

uals, by the clear autocorrelation in the squared residuals of the inflation equation.

Thus, we consider second-order models, that is, VAR(r, s) models with r + s = 2

and, to capture the fat tails of the residual distribution, we choose the (bivariate)

t—distribution for the errors.

Of the second-order models the VAR(0, 2) model maximizes the likelihood func-

tion but only marginally compared to the VAR(1, 1) model, whereas in terms of

2GAUSS 10 and its BHHH optimization routine in the CMLMT package are employed in

estimation, simulation, and forecasting.
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residual diagnostics the VAR(1, 1) model performs slightly better, as the residuals

of the VAR(0, 2) model appear conditionally heteroskedastic. In the VAR(1, 1)

model, the estimates of the parameters Π1,12 and Φ1,12 appear small compared to

their standard errors and the same applies to the estimates of the parameters Φ1,12

and Φ2,12 in the VAR(0, 2) model (we use Φk,ij to signify the (i, j) element of the

matrix Φk with a similar notation used for Πk). Restricting these parameters to

zero also seems reasonable according to the likelihood ratio test (p—values 0.271

and 0.083 in the VAR(1, 1) and VAR(0, 2) models, respectively) and, in the case of

the VAR(0, 2) model, their imposition considerably improves the rather poor es-

timation accuracy of the degrees-of-freedom parameter of the t—distribution. The

restrictions have no marked effect on the residual diagnostics of the two models

but, interestingly, the maximum value of the likelihood function of the restricted

VAR(1, 1) model turns out to be slightly greater than that of the VAR(0, 2) model.

All in all, both of these restricted models perform reasonably well and they will

be used as DGPs in our simulation experiments and in the forecasting exercise of

the next section. The estimation results are presented in Table 1. For comparison,

we shall also consider the conventional causal VAR(2) model and, to see how our

forecasting procedures work in a higher order case, a fourth-order model will be

briefly discussed later.

It may be worth noting that the restrictions employed in the noncausal models

in Table 1 are imposed on purely statistical grounds. As they imply that neither

leads nor lags of the marginal cost (y2t) appear in the equation of inflation (y1t), one

might think that the marginal cost has no effect on inflation forecasts. However,

one should be cautious about making such an interpretation. To see the reason for

this, consider the VAR(0, 2) model whose moving average representation is such

that y1t (inflation) depends on ε1,t+j, whereas y2t (marginal cost) depends on both

ε1,t+j and ε2,t+j (j ≥ 0). Thus, as ε1,t+j affects both inflation and the marginal cost,

one cannot rule out the possibility that the marginal cost can help forecast ε1,t+j

and thereby inflation (see the (approximate) forecasting formula (12)). A similar

argument applies to the VAR(1, 1) model.
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4.2 Simulation set-up

We simulate 10 000 realizations of length T+8 from the DGPs defined by in Table 1

(100 observations are discarded from the beginning and end of the simulated series

to eliminate the impact of initialization effects). We estimate a causal VAR(2)

model as well as the correct noncausal VAR(1,1) or VAR(0,2) models from the first

T observations in each realization. Note that the estimated models are unrestricted,

i.e., the restrictions Φ1,12 = Φ2,12 = 0 and Π1,12 = Φ1,12 = 0 discussed above are

not taken into account. Next, point forecasts 1—8 periods ahead are constructed

as described in Section 3. The sample size T is set to 300, and the number of

simulated realizations m employed in the noncausal forecasting procedures ranges

from m = 10 000 to m = 500 000. Based on the findings of Lanne et al. (2012b),

the value of the truncation parameter M is set at 50 (essentially the same results

are obtained with M = 30 and M = 100).

When forecasts are based on the noncausal VAR(1, 1) model and importance

sampling is used we have to choose the auxiliary density function ϕ (ζ2). Following

the discussion at the end of Section 3.2.1, our choice is the density function of

(εT , εT+1) with the independent εT and εT+1 having the bivariate t—distribution

shown in Table 1 (Panel B). In the case of the forecasting procedure derived in

Section 3.2.2 the assumed nonsingularity boils down to the nonsingularity of the

matrix N0 (see the beginning of Section 3.2.2 and note that now n = 2 and s = 1).

Using the estimates in Table 1 and formulas in Appendix A.1 we find that the

determinant of N0 is 0.173, showing that the required nonsingularity holds.

4.3 Results

Table 2 presents the mean squared forecast errors (MSFEs) of the VAR(0, 2) model

shown in Table 1 when the forecast horizon ranges from 1 to 8 periods. For each

forecast horizon, we report the MSFEs separately for both variables as well as the

determinant of the MSFE matrix (cf., e.g., Athanasopoulos and Vahid (2008)).

The results show that there is a clear improvement in forecasting accuracy when

the number of simulated realizations m increases from 10 000 to 100 000 or 200
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000. This can be seen especially in the first variable (y1t). The improvement is

much smaller when m increases from 200 000 up to 500 000.

Tables 3 and 4 report results similar to those in Table 2 obtained for the

VAR(1, 1) model with the two forecasting procedures developed in Sections 3.2.1

and 3.2.2. Whether importance sampling is used (Table 3) or not (Table 4) has

only a minor effect on the MSFEs and the determinants of the MSFE matrices.

By and large, forecasts based on the correct assumption of the nonsingularity of

the matrix N0 are slightly more accurate. As in the case of the VAR(0, 2) model, a

clear improvement in forecasting accuracy is achieved by increasing the number of

simulated realizations from 10 000 to 100 000 or 200 000 whereas further increases

in the value of this parameter have only a marginal impact. Altogether the results

of Tables 2—4 suggest that, in practice, m = 200 000 is a reasonable choice. This

is much more than needed in the univariate case where Lanne et al. (2012b) found

the choice m = 10 000 to be suffi cient.

Table 5 shows the relative MSFEs obtained by dividing the MSFEs of the

(correct) VAR(0, 2) or VAR(1, 1) model in Tables 2—4, respectively, by those of

a (misspecified) causal VAR(2) model with Gaussian errors (using t—distributed

errors instead of Gaussian errors yields very similar results). In addition to the

forecasts of the VAR(1, 1) model based on importance sampling (indicated by IS),

we also report those obtained by (correctly) assuming the nonsingularity of the

matrix N0. The number of simulated realizations employed is m = 200 000. The

relative determinants of the MSFE matrices are always below unity, demonstrating

that gains in the forecasting accuracy of the two variables can be achieved by

using the correct noncausal model instead of its causal representation. However, an

inspection of the MSFEs of each variable indicates that gains are mainly achieved

in forecasting the first variable y1t, whose relative MSFEs are below unity, whereas

those of the second variable y2t lie around unity ranging between 0.995 and 1.004.

As a small illustration of the potential consequences of (incorrectly) using the

forecasting procedure of Section 3.2.2 when the matrix N0 is singular we consider

the bivariate VAR(1, 1) model with the coeffi cient matrices given in Footnote 1
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(see the beginning of Section 3.2). Table 6 reports the relative MSFEs between

the two forecasting procedures with the number of simulated realizations m =

200 000. The results show that the differences between the two procedures are

minor (the figures range between 0.993 and 1.003). This admittedly very limited

simulation experiment suggests that, at least in the first-order case (r = s = 1),

falsely relying on the nonsingularity assumption and employing the forecasting

procedure of Section 3.2.2 is not critical. More evidence on this matter is needed,

however, before any far-reaching conclusions can be drawn.

We also examined a fourth-order model to see how the two forecasting proced-

ures derived in Section 3.2 perform in a higher-order case. The DGPs are again

estimated from the same data (AIC suggests order four for causal models with

t—distributed errors). Of the (Gaussian) fourth-order models, a VAR(1, 3) model

maximizes the likelihood function. However, according to estimation results, this

model appears overparameterized and does not perform well in terms of residual

diagnostics. As the parameters Π1,12 and Φj,12, j = 1, 2, 3, are rather imprecisely

estimated we restrict them to zero. These restrictions correspond to those used in

the VAR(0, 2) and VAR(1, 1) models above, and when they are imposed a reason-

able fit is obtained. Thus, we used this restricted VAR(1, 3) model as a DGP in

the higher-order case. The auxiliary density function ϕ (ζ2) needed in importance

sampling was chosen as described at the end of Section 3.2.2 (in this case, four times

the density function of the bivariate t—distributed error term εt). Qualitatively the

simulation results were similar to those obtained with the VAR(1, 1) model (details

are available upon request). In particular, whether importance sampling was used

or not had no substantial effect on the forecasting accuracy, and compared to the

causal VAR(4) model the forecasts were more accurate.

5 Empirical illustration

In this section, we consider out-of-sample forecasting with the bivariate noncausal

VAR models introduced in Table 1 as well as their causal counterparts. An issue of

special interest is whether U.S. inflation forecasts can also in the VAR framework
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be improved by allowing for noncausality, in accordance with the findings of Lanne

et al. (2012a, 2012b) based on univariate AR models. Their results may reflect the

fact that omitted factors predictable by lagged values of inflation are contained

in the error term of a univariate AR model and the error term of the noncausal

AR model is predictable unlike its causal counterpart. As the real marginal cost

included in our bivariate model could be such an omitted factor, it is of interest to

see how inflation forecasts behave when the real marginal cost is explicitly included

in the model.

We compute forecasts by using an expansive window of observations such that

the models are re-estimated at each date with the estimation period augmented

by one observation. Following Lanne et al. (2012b), the starting point of the out-

of-sample forecasting period is set to 1990:1 and the last forecasts are computed

for 2010:3, so that forecasts are computed for 83 quarters. Based on the simulation

results of the previous section, the number of simulated realizations m used in

forecasting with noncausal VAR(r, s) models (s ≥ 1) is set at m = 200 000.

Table 7 presents the MSFEs and determinants of the MSFE matrices for

the causal VAR(2) models with Gaussian (VAR(2)-N) and t—distributed errors

(VAR(2)-t), and for the noncausal VAR(1, 1) and VAR(0, 2) models (see Table 1).

Note that now the restrictions Φ1,12 = Φ2,12 = 0 and Π1,12 = Φ1,12 = 0 are imposed

on the VAR(1, 1) and VAR(0, 2) models, respectively. In the causal VAR(2) model

no restrictions are employed, as in model selection reasonable restrictions were not

found (this particularly applies to the restrictions Π1,12 = Π2,12 = 0).

First consider the inflation forecasts that we are mostly interested in. Table

7 shows that the VAR(1, 1) model yields the smallest MSFEs except for the

two-quarter horizon where it is slightly outperformed by the VAR(0, 2) model.

Moreover, irrespective of the forecast horizon, the VAR(1, 1) model outperforms

the two causal VAR(2) models of which the VAR(2)-N model performs better and

it also performs quite well in comparison with the VAR(1, 1) model when the fore-

cast horizon is short. However, when the forecast horizon is four quarters or more

the VAR(1, 1) model is clearly superior. In line with the simulation results of the
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previous section, the differences between the two forecasting methods in the case

of the VAR(1, 1) model are negligible.

As far as forecasting the marginal cost is concerned, especially the Gaussian

VAR(2) model performs slightly better than the noncausal models with the ex-

ception of one-quarter forecasts where the VAR(0, 2) yields the smallest MSFE.

However, the determinants of the MSFE matrices reported in Table 7 show that

the noncausal models produce the best overall forecasts. In particular, in terms

of this criterion, the purely noncausal VAR(0, 2) model yields the most accurate

forecasts for one and two quarters ahead whereas the VAR(1, 1) model is the best

when the forecast horizon is longer.

To sum up, the results show that the noncausal models produce more accurate

forecasts for U.S. inflation than their causal alternatives, and this also holds for

the bivariate system consisting of inflation and the marginal cost. However, causal

models, especially the Gaussian model, perform slightly better than the noncausal

models in forecasting the marginal cost.

6 Conclusion

In this paper, we have developed forecasting methods for the noncausal VARmodel

of Lanne and Saikkonen (2012). To our knowledge, this is the first attempt to

make forecasting in noncausal VAR models practically feasible. Due to the non-

linear nature of the prediction problem explicit formulas to compute forecasts

are not available and, therefore, our forecasting methods exploit simulation-based

techniques. The needed techniques turned out to be more complex than in the

univariate case of Lanne et al. (2012b) with the extent of complexity depending

on the structure of the model. However, according to the simulation experiments

conducted, the proposed forecasting methods perform quite well even in the most

complicated case, where importance sampling is employed. They also appear feas-

ible in practice, as illustrated by our empirical application where noncausal VAR

models performed well in comparison with their causal counterparts.

By making forecasting in the noncausal VAR model of Lanne and Saikkonen
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(2012) feasible in practice this paper has paved the way for developing meth-

ods for structural analysis within these models, including the computation of im-

pulse response functions. Lanne and Saikkonen (2012) have also pointed out that

noncausality is closely related to possible nonfundamental solutions of theoretical

economic and financial models such as Dynamic Stochastic General Equilibrium

(DSGE) models. As nonfundamentalness implies dependence on future error terms,

it would be interesting to use the noncausal VAR model instead of the causal VAR

model as a benchmark in assessing forecasting ability of DSGE models (cf. Ru-

baszek and Skrzypczynski, 2008).

Appendix: Technical details

A.1: Structure of the matrices Nj in (7)

In this appendix, we demonstrate that the matrix [N 0 · · · N sn−1] (sn× sn2) is of

full row rank sn. First, conclude from the identity Φ (z−1)
−1

Ξ (z) = N (z−1) that

N−(n−1)r = −Ξ(n−1)r

N−(n−1)r+1 = Φ1N−(n−1)r − Ξ(n−1)r−1
...

N−(n−1)r+s = Φ1N−(n−1)r+s−1 + · · ·+ ΦsN−(n−1)r − Ξ(n−1)r−s
...

N−1 = Φ1N−2 + · · ·+ ΦsN−s − Ξ1.

Here, as well as elsewhere, Nk = 0 for k < − (n− 1) r. Furthermore, the matrices

Nk, k ≥ 0, satisfy

N0 = Φ1N−1 + · · ·+ ΦsN−s + In

Nk = Φ1Nk−1 + · · ·+ ΦsN−s, k ≥ 1.

Note that in the pure noncausal case only the matrices Nj, j ≥ 0, are relevant

and the preceding equations apply with Nj = 0, j < 0. Because the matrices
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Ξj, j = 1, ..., (n− 1) r, are functions of the parameters Π1, ...,Πr the preceding

equations show how the coeffi cient matrices Nj can be computed as functions of

the autoregressive parameters.

Define the matrix

Φ =



Φ1 Φ2 · · · Φs−1 Φs

In 0 0

0
. . . . . . 0

...
. . . . . . . . .

...

0 · · · 0 In 0


(sn× sn) .

Then, using the definition of the matrix N k (see the beginning of Section 3.2.1)

we have

N k = ΦN k−1 = ΦkN 0, k ≥ 1.

First we demonstrate that the rows of the infinite dimensional matrix [N 0 N 1 · · · ]

are linearly independent. As the spectral density matrix of yt is positive definite

there can be no exact linear dependences between the components of the data

vector y. Thus, as the vector z is obtained from y by a nonsingular linear trans-

formation (see the discussion preceding (10)) it follows that there can be no exact

linear dependences between the components of z. Hence, the same is true for

z3 = (v1,T−s+1, ..., vs,T ) and, as vk,T−s+k =
∑∞

j=−k+1NjεT−s+k+j, we have


v1,T−s+1

...

vs,T

 = [N 0 · · · N s−1 N s · · · ]



εT−s+1
...

εT

εT+1
...


.

From this it follows that the rows of the infinite dimensional matrix [N 0 N 1 · · · ]

are linearly independent.

Now we can proceed as in Hannan and Deistler (1988, p. 44-45). By the Caley-

Hamilton theorem, the matrixΦ satisfies its characteristic equation det (µIsn −Φ) =

0, which is of degree sn, so that Φsn = c1Isn + c2Φ + · · · + csn−1Φ
sn−1 for
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some scalars c1, ..., csn−1. Thus, as N k = ΦkN 0, k ≥ 1, we also have N sn =

c1N 0+c2N 1+ · · ·+csn−1N sn−1, implying that the columns of the matrixN sn can

be expressed as linear combinations the columns of the matrix [N 0 · · · N sn−1].

This fact can be extended inductively to the columns of anyN k, k ≥ sn. Thus, the

matrix [N 0 · · · N sn−1] must be of full row rank sn because otherwise we could

find a vector c (sn× 1) such that c′ [N 0 N 1 · · · ] = 0.

Note that the preceding discussion also shows that the matrix N 0 must be

nonzero because otherwise we would have Nk = 0 for all k ≥ 0, implying that the

matrix [N 0 · · · N sn−1] is zero.

A.2: Joint density in (20)

In this appendix, we derive the joint density of z3 = (v1,T−s+1, ..., vs,T ) and ξ =

(ζ2, e
+) needed in Section 3.2.1. First recall that ζ1 = z3−

∑∞
j=snN jεT−s+j+1 (see

the discussion following equation (18). Thus, as ε+ = (εT−s+sn+1, ..., εT+M), we get

the approximate relation 
ζ1

ζ2

ε+

 ≈ C

z3

ζ2

ε+

 ,
where

C =



Isn 0 −N sn −N sn+1 · · · −NM+s−1

0 Isn(n−1) 0 0 · · · 0

0 0 In 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 0 · · · · · · 0 In


.

The matrixC is clearly nonsingular with unit determinant. Thus, it follows that, to

a close approximation, the joint density function of z3 and ξ = (ζ2, e
+) is as given

in (20) (note that here independence of (ζ1, ζ2) and e
+ = (εT−s+sn+1, ..., εT+M) is

also used).
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A.3: Simulation procedure in Section 3.2.2 when r = 0

In this appendix, we demonstrate that in the purely noncausal case (r = 0) the

forecasting technique derived in Section 3.2.2 reduces to that derived in Section

3.1. To simplify notation, we give details in the case s = 1 only.

When s = 1 one can readily check that (see the beginning of Section 3.2.2)

R = Q−1 =



In −N1 −N2 · · · −Nn−1
0 In 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . 0

0 · · · · · · 0 In


.

This implies that det (R) = 1 and, as now R1,1 = In and R1,k = −Nk (k = 2, ..., n),

the density function hζ1,ζ2(ζ1, ζ2) employed in Section 3.2.2 takes the form

hζ1,ζ2(ζ1, ζ2) = f

(
ζ1,1 −

n∑
k=2

NkεT−1+k

)
n∏
j=2

f (εT−s+j) .

Here we need to replace ζ1,1 by ζ̃1,1(e
+) = ṽ1,T −

∑M
j=nNjεT+j with ṽ1,T = yT (see

(5) and (9)). Thus, consider the expression

f

(
ζ̃1,1(e

+)−
n∑
k=2

NkεT−s+k

)
= f

(
yT −

M∑
j=1

NjεT+j

)
= f

(
ε̃T
(
ε+
))
,

where the latter equality is obtained by specializing the definition of ε̃T (ε+) to the

case s = 1 (see the arguments leading to (15) in Section 3.1). As now ξ = ε+, the

Monte Carlo approximation (26) in Section 3.2.2 becomes

ÊT (q (ξ)) =

∑m
i=1 q(ε

+(i))f
(
ε̃T
(
ε+(i)

))∑m
i=1 f (ε̃T (ε+(i)))

,

which with q (ξ) =
∑M−h

j=0 Njε
(i)
T+h+j equals the expression obtained for ÊT (yT+h)

in Section 3.1 in the case s = 1. This shows the desired result (note that now

Step 1 can be skipped because the error terms εT−s+1, ..., εT are not involved in

the computation of forecasts).

When s > 1 the matrix Q is of the form

Q =

 Q11 Q12

0 Isn(n−1)

 ,
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where Q11 is upper triangular with unit diagonal elements. Computing the inverse

of Q and using arguments similar to those above one can again show the desired

result. Details are omitted.

References

Athanasopoulos, G., Vahid, F., 2008. VARMA versus VAR for macroeconomic

forecasting. Journal of Business and Economic Statistics 26, 237—252.

Breidt, F.J., Davis, R.A., Lii, K.S., Rosenblatt, M., 1991. Maximum likelihood es-

timation for noncausal autoregressive processes. Journal of Multivariate Analysis

36, 175—198.

Breidt, F.J., Hsu, N.J., 2005. Best mean square prediction for moving averages.

Statistica Sinica 15, 427—446.

Canova, F., 2007. G-7 inflation forecasts: Random walk, Phillips curve or what

else? Macroeconomic Dynamics 11, 1—30.

Davis, R., Song, L., 2010. Noncausal vector AR processes with application to fin-

ancial time series. Unpublished manuscript, Columbia University, New York.

Gali, J., Gertler, M., 1999. Inflation dynamics: A structural econometric approach.

Journal of Monetary Economics 44, 195—222.

Geweke, J., 1996. Monte Carlo simulation and numerical integration. In: Amman,

H., Kendrick, D., Rust, J. (Eds.), Handbook of Computational Economics. North-

Holland, Amsterdam, pp. 731—800.

Hannan, E.J., Deistler, M., 1988. The Statistical Theory of Linear Systems. Wiley,

30



New York.

Lanne, M., Luoto, J., 2012. Autoregression-based estimation of the new Keynesian

Phillips curve. Journal of Economic Dynamics and Control, forthcoming.

Lanne, M., Saikkonen, P., 2011. Noncausal autoregressions for economic time

series. Journal of Time Series Econometrics 3, article 2.

Lanne, M., Saikkonen, P., 2012. Noncausal vector autoregression. Econometric

Theory, forthcoming.

Lanne, M., Luoma, A., Luoto, J., 2012a. Bayesian model selection and forecasting

in noncausal autoregressive models. Journal of Applied Econometrics 27, 812—830.

Lanne, M., Luoto, J., Saikkonen, P., 2012b. Optimal forecasting of noncausal

autoregressive time series. International Journal of Forecasting 28, 623—631.

Nason, J.M., Smith, G.W., 2008. Identifying the new Keynesian Phillips curve.

Journal of Applied Econometrics 23, 525—551.

Rosenblatt, M., 2000. Gaussian and Non-Gaussian Linear Time Series and Ran-

dom Fields. Springer-Verlag, New York.

Rubaszek, M., Skrzypczynski, P., 2008. On the forecasting performance of a small-

scale DSGE model. International Journal of Forecasting 24, 498—512.

31



Tables

Table 1: Estimation results of the VAR(0,2) and VAR(1,1) models for the U.S. inflation and real

marginal cost.

Panel A: VAR(0,2) model

0.618 0 0.271 0 1.260 0.152

Φ1 (0.094) (-) Φ2 (0.090) (-) Σ (0.209) (0.091)

0.064 0.999 -0.142 -0.065 0.152 0.609

(0.063) (0.088) (0.061) (0.086) (0.091) (0.101)

λ 5.801 logL -371.741

(1.743)

Panel B: VAR(1,1) model

-0.347 0 0.915 0 1.178 0.581

Π1 (0.088) (-) Φ1 (0.032) (-) Σ (0.202) (0.311)

-0.257 0.929 0.562 0.041 0.581 0.868

(0.119) (0.033) (0.253) (0.089) (0.311) (0.317)

λ 5.305 logL -371.222

(1.619)

Notes: The numbers in the parentheses are standard errors based on the Hessian of the log-

likelihood function. In the table, λ is the degrees-of-freedom parameter of the multivariate t-

distribution and logL is the value of the maximized log-likelihood function.
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Table 2: Mean-squared forecast errors (MSFEs) of the VAR(0,2) model described in Table 1.

Horizon 1 2 3 4 5 6 7 8

m MSFE, y1t

10 000 1.727 2.447 3.176 3.638 4.188 4.513 4.881 5.042

100 000 1.719 2.437 3.154 3.611 4.168 4.498 4.860 5.016

200 000 1.720 2.439 3.148 3.610 4.166 4.494 4.862 5.021

500 000 1.720 2.437 3.152 3.611 4.165 4.488 4.856 5.010

m MSFE, y2t

10 000 1.036 2.124 3.166 4.097 4.855 5.547 6.166 6.626

100 000 1.028 2.113 3.163 4.093 4.851 5.537 6.151 6.604

200 000 1.027 2.116 3.160 4.095 4.857 5.537 6.153 6.611

500 000 1.026 2.109 3.156 4.093 4.849 5.537 6.152 6.606

m Det

10 000 1.774 4.974 9.724 14.397 19.816 24.650 29.779 33.178

100 000 1.751 4.927 9.643 14.276 19.700 24.512 29.576 32.884

200 000 1.751 4.936 9.623 14.269 19.712 24.487 29.592 32.959

500 000 1.749 4.921 9.626 14.273 19.681 24.453 29.555 32.860

Notes: The entries are based on 10 000 replications. The sample size is 300 (T = 300) and m

is the number of simulated realizations (see Section 3). The truncation parameter M is set at

50 (see, e.g., (11)). The MSFEs are reported separately for the components of yt = (y1t, y2t)
′
.

Det denotes the determinant of the mean-squared forecast error matrix. The correct noncausal

VAR(0,2) model is estimated without taking the restrictions in the DGP (see Table 1) into

account.
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Table 3: Mean-squared forecast errors (MSFEs) of the VAR(1,1) model described in Table 1.

Forecasts based on importance sampling.

Horizon 1 2 3 4 5 6 7 8

m MSFE, y1t

10 000 1.884 2.617 3.345 4.043 4.476 4.954 5.422 5.749

100 000 1.830 2.594 3.310 4.014 4.451 4.920 5.385 5.705

200 000 1.842 2.589 3.319 4.014 4.453 4.918 5.376 5.699

500 000 1.837 2.587 3.305 4.014 4.448 4.898 5.366 5.691

m MSFE, y2t

10 000 0.986 2.045 2.967 3.901 4.696 5.393 6.153 6.669

100 000 0.979 2.035 2.940 3.871 4.675 5.358 6.116 6.615

200 000 0.980 2.039 2.945 3.878 4.668 5.345 6.091 6.606

500 000 0.980 2.033 2.941 3.870 4.660 5.340 6.097 6.597

m Det

10 000 1.809 4.994 9.005 14.083 18.445 23.296 28.711 32.970

100 000 1.741 4.915 8.835 13.833 18.199 22.881 28.253 32.433

200 000 1.753 4.922 8.878 13.872 18.222 22.864 28.129 32.389

500 000 1.748 4.903 8.826 13.846 18.150 22.741 28.079 32.271

Notes: See the notes to Table 2. The auxiliary density function ϕ(ζ2) is chosen as discussed in

Section 4.2.
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Table 4: Mean-squared forecast errors (MSFEs) of the VAR(1,1) model described in Table 1.

Forecasts based on assuming nonsingularity of the matrix N0.

Horizon 1 2 3 4 5 6 7 8

m MSFE, y1t

10 000 1.813 2.587 3.304 4.011 4.449 4.901 5.358 5.681

100 000 1.812 2.580 3.300 4.000 4.433 4.901 5.361 5.683

200 000 1.812 2.578 3.300 4.001 4.440 4.900 5.364 5.688

500 000 1.811 2.579 3.300 4.003 4.435 4.898 5.365 5.686

m MSFE, y2t

10 000 0.985 2.050 2.964 3.893 4.691 5.366 6.114 6.613

100 000 0.976 2.029 2.937 3.869 4.655 5.335 6.095 6.599

200 000 0.978 2.030 2.938 3.866 4.652 5.332 6.088 6.593

500 000 0.976 2.029 2.937 3.866 4.653 5.331 6.088 6.594

m Det

10 000 1.734 4.939 8.879 13.941 18.271 22.870 28.103 32.263

100 000 1.716 4.882 8.802 13.801 18.075 22.729 28.057 32.224

200 000 1.719 4.881 8.802 13.784 18.082 22.700 28.025 32.219

500 000 1.716 4.881 8.801 13.795 18.066 22.701 28.045 32.224

Notes: See the notes to Table 3.
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Table 5: Relative mean-squared forecast errors (MSFEs) of the VAR(1,1) and VAR(0,2) models

described in Table 1 relative to the Gaussian causal VAR(2) model.

Model Horizon

1 2 3 4 5 6 7 8

MSFE, y1t

VAR(1,1), IS 0.987 0.990 0.992 0.986 0.985 0.989 0.989 0.988

VAR(1,1) 0.971 0.986 0.987 0.983 0.982 0.985 0.987 0.986

VAR(0,2) 0.964 0.985 0.987 0.991 0.997 0.997 0.995 0.999

MSFE, y2t

VAR(1,1), IS 1.002 1.005 1.001 1.003 1.002 0.999 0.996 0.997

VAR(1,1) 0.999 1.000 0.999 1.000 0.999 0.997 0.996 0.995

VAR(0,2) 1.000 1.003 1.004 1.004 1.002 0.996 0.996 0.997

Det

VAR(1,1), IS 0.990 0.994 0.995 0.989 0.987 0.987 0.985 0.986

VAR(1,1) 0.970 0.986 0.986 0.983 0.979 0.980 0.982 0.981

VAR(0,2) 0.966 0.989 0.993 0.996 1.001 0.995 0.992 0.997

Notes: See the notes to Tables 2—4. Entries below unity indicate the superiority of the noncausal

models. IS refers to importance-sampling-based forecasts. The number of simulated realizations

is m=200 000.

Table 6: Relative mean-squared forecast errors (MSFEs) of the VAR(1,1) model obtained with

importance sampling and incorrectly assuming the nonsingularity of the matrix N0.

Horizon

1 2 3 4 5 6 7 8

MSFE, y1t 0.996 0.993 0.995 0.996 0.996 0.995 0.997 0.999

MSFE, y2t 1.003 1.003 0.998 0.996 0.997 0.997 0.995 0.997

Det 0.999 0.998 0.995 0.994 0.995 0.994 0.995 0.996

Notes: The values of the autoregressive coeffi cients are given in Footnote 1. The error term has a

t-distribution with covariance matrix

 1 0.5

0.5 1

 and the value of the degree-of-freedom parameter
5.00. The entries above unity indicate larger MSFEs for importance-sampling-based forecasts.

The number of simulated realizations is m=200 000.
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Table 7: Mean-squared forecast errors (MSFEs) of the second-order causal and noncausal

VAR(r, s) models for the U.S. inflation and marginal cost data.

Model Forecast horizon (quarters)

1 2 3 4 5 6 7 8

MSFE, inflation

VAR(2)-N 1.073 1.426 1.694 2.075 2.769 3.379 3.969 4.387

VAR(2)-t 1.080 1.455 1.756 2.168 2.908 3.554 4.209 4.655

VAR(1,1), IS 1.068 1.373 1.499 1.777 2.365 2.800 3.188 3.436

VAR(1,1) 1.066 1.371 1.518 1.789 2.371 2.817 3.216 3.464

VAR(0,2) 1.077 1.368 1.675 2.123 2.806 3.372 3.882 4.290

MSFE, marginal cost

VAR(2)-N 0.838 1.346 2.210 3.053 4.414 5.921 7.463 9.286

VAR(2)-t 0.849 1.351 2.234 3.106 4.518 6.103 7.744 9.698

VAR(1,1), IS 0.849 1.384 2.319 3.223 4.622 6.173 7.675 9.482

VAR(1,1) 0.844 1.383 2.316 3.218 4.631 6.170 7.686 9.491

VAR(0,2) 0.831 1.397 2.335 3.259 4.675 6.248 7.804 9.607

Det

VAR(2)-N 0.887 1.779 2.984 4.731 8.709 13.358 18.990 24.595

VAR(2)-t 0.904 1.817 3.088 4.916 9.113 13.960 20.026 25.856

VAR(1,1), IS 0.902 1.779 2.829 4.302 7.877 11.650 16.062 20.435

VAR(1,1) 0.896 1.771 2.868 4.290 7.869 11.682 16.190 20.542

VAR(0,2) 0.883 1.765 3.066 5.008 9.039 13.580 19.075 24.634

Notes: The entries are the MSFEs and determinants of the MSFE matrices of causal VAR(2)

and noncausal VAR(1,1) and VAR(0,2) models. N and t denote Gaussian and t-distributed

errors, respectively. IS refers to importance-sampling-based forecasts. The number of simulated

realizations is m=200 000.
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