
Finanssivalvonta  |  Finansinspektionen  |  FIN-FSA
PL 103, 00101 Helsinki  |  PB 103, 00101 Helsingfors  |  P.O. Box 103, FIN-00101 Helsinki

puhelin 010 831 51  |  telefon 010 831 51  |  phone +358 10 831 51
www.fi nanssivalvonta.fi 

 Tutkimusraportti                     1/2009
 Forskningsrapport
 Research report

 3.3.2009

Modeling shocks in long-term equity returns
Tekijä/Redaktör/EditorTekijä/Redaktör/Editor
Vesa Ronkainen
Juha Alho

Julkaisun nimi/Titel/Title
Modeling shocks in long-term equity returns

Tiivistelmä/Referat/Summary
Kehitämme tässä raportissa mallin osaketuotoille, joka soveltuu erityisesti pitkän aikavälin ennusteisiin 
ja riskienhallintaan. Analysoimme aluksi S&P 500 kokonaistuottoindeksin vuosittaista aikasarjadataa ja 
luomme katsauksen joihinkin yleisiin osaketuottomalleihin. Tämän jälkeen kehitämme Gamma-hyppyjä 
sisältävän satunnaiskulkumallin osaketuotoille ja estimoimme sen käyttäen suurimman uskottavuuden 
menetelmää ja Markovin ketjujen simulointia (MCMC). Lopuksi esitämme mallin tuloksia.

I denna rapport utbildar vi en model för aktiepriser som är riktad till långfristiga prognoser och risk kontrol. 
Vi först analyserar det årliga S&P 500 totalavkastningindexet och granskar några allmänt tillämpade model-
ler för aktiepriser. Sedan utbildar vi en Gamma Jump Random Walk model för aktiepriserna och estimerar 
den med Maximum Likelihood och Markov Chain Monte-Carlo metoderna. Slutligen presenterar vi resul-
tater från modellen.

In this paper we develop a model for equity returns that is aimed at long-term forecasting and risk manage-
ment applications. We fi rst analyse the yearly S&P 500 total return index data and review some common 
models for equity returns. Subsequently we develop a Gamma Jump Random Walk model for equity re-
turns and estimate it through the Maximum Likelihood and Markov Chain Monte-Carlo methods. In the fi nal 
section we present simulations of the model.

Avainsanat/Nyckelord/Keywords
Equity return shocks, jump random walk, risk management

Sarja/nimi ja numero  Tutkimusraportti 1/2009   
Serie/namn och nummer Forskningsrapport 1/2009
Series/name and number Research report 1/2009

ISSN     ISBN
1798-1654    978-952-5841-00-8

Sivumäärä/Antal sidor/Number of pages
19

Kieli/Språk/Language
English

Julkaisija/Utgivare/ PublisherJulkaisija/Utgivare/ Publisher
FinanssivalvontaFinanssivalvonta
FinansinspektionenFinansinspektionen
Financial Supervisory Authority



Modeling shocks in long term equity returns

Vesa Ronkainen, Juha Alho

March 3, 2009



Abstract

In this paper we develop a model for equity returns that is aimed at long-term
forecasting and risk management applications. We first analyse the yearly
S&P 500 total return index data and review some common models for equity
returns. Subsequently we develop a Gamma-jump random walk model for
equity returns and estimate it through the Maximum Likelihood and Markov
Chain Monte-Carlo methods. In the final section we present simulations of
the model.
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1 Introduction

Our goal in equity index modelling is to be able to generate long term simu-
lations up to 75 years that have approximately similar distributional features
that can be observed from the chosen reference data set for equity returns1.
The reference data should form a suitable basis for long-term forecasting and
risk management, and it should give an adequate approximation to a well-
diversified equity portfolio that an insurance company and its clients (in case
of unit linked business) may have.

In this paper we first analyse the S&P 500 equity market data and review
the most common models for equity returns. Subsequently we develop a jump
model for the equity returns and estimate it through the Maximum Likelihood
and Markov Chain Monte-Carlo methods. In the final section we present
simulations of the model.

1We restrict our attention solely to equity market data and do not consider any other
explanatory economic variables.
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2 Data on equity returns

2.1 General characteristics of long term eq-
uity returns

The data series we have chosen for the equity returns is the S&P 500 Total
Return Index at the end of year 1925-2006 as given in Table 5-1 on pages 102-
103 of Morningstar (2007). This index, denoted here by SP500, is expressed
in nominal values (starting at 1.00 at the end of 1925 and reaching 3077.33
at the end of 2006), and it includes the effect of reinvested dividends. The
SP500 consists of 500 large U.S. stocks, which are weighted by their market
values monthly1.

In Figure 2.5 the yearly return series of SP500 is given, approximated by
the difference of successive values of natural logarithm of the index. A his-
togram of these so called log-returns is given in Figure 2.1. The summary
statistics of SP500 log-returns are as follows: the sample mean is 0.099, stan-
dard deviation 0.192, skewness -0.853, and kurtosis 3.893. From the histogram
and the skewness statistic we observe that that the returns are skewed to the
left, and kurtosis indicates a higher probability than a normally distributed
variable of extreme values.

The autocorrelations and partial autocorrelations of SP500 log-return se-
ries are given in Figures 2.3 and 2.4, and the autocorrelations of the squared
log-returns in Figure 2.2. From these data we observe that autocorrelation is
weak for the log-returns but significant for the squared log-returns.

Koskela et al. (2008) have analysed in chapter 4 the data in detail using
various ARIMA and GARCH models. Their findings can be summarized as
follows:

1. For the yearly data from 1925-2006 the following ARCH(1) model gives
a better fit than any linear model when judged by the information
criteria AICC or AIC or BIC2:

(2.1) pt − pt−1 = 0.1163 + εt,

where pt is the log of SP500 value for t = 1, . . . , 82, εt = zt
√
ht with

independent zt ∼ N(0, 1), and ht = 0.0183 + 0.5829ε2t−1.

2. The yearly data from 1955-2006 appear to be uncorrelated and the best
model is ARIMA(0,1,0):

(2.2) pt − pt−1 = 0.1002 + εt,

1For more details see Chapter 3 in Morningstar (2007).
2These terms are defined for instance in Brockwell & Davis (2002) on page 173.

4



 

x

F
re

q
u

e
n

c
y

−0.6 −0.4 −0.2 0.0 0.2 0.4

0
2

4
6

8
1

0

Figure 2.1: Histogram of SP500
log-returns for 1926-2006
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Figure 2.2: ACF of squared
SP500 log-returns for 1926-
2006
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Figure 2.3: ACF of log-returns
of SP500 for 1926-2006
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Figure 2.5: SP500 log-returns for 1926-2006

where εt ∼ N(0, 0.0234). 3

We conclude that the sample period matters. From 1955 onwards a linear
model gives a good description of the data. On the other hand, by analysing
the series where part of the data has been deleted, we find that it is approx-
imately the first 10 years, i.e. the period from 1926 to 1935, that caused the
ARCH(1) model to be chosen in point 1 above. However, the problem with
the ARCH(1) model is its symmetry: it treats both the losses and the profits
in the same way. This is not what we observe in the data (cf. Figures 2.5 and
2.1 and the skewness statistic). Therefore we conclude that the possibility
of very bad losses is necessary to be taken into account for risk management
purposes, but in our view it is better addressed by an asymmetric model than
a symmetric ARCH-model. We now turn to models that are able to describe
downward jumps.

2.2 Review of jump models for equity returns
Infrequent equity market crashes cause discontinuity in the data that can be
modelled by a jump process. The classical example of this approach is the
model of Merton (1976), which is specified in continuous time. It adds to a
diffusion process lognormally distributed jumps according to a Poisson pro-
cess. Maximum likelihood based comparative analysis of this and other jump
model classes has been carried out for weekly and monthly equity market data

3For the monthly data from 1955-2006 a GARCH(1,1) model is the best.
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from June 1973 to December 1983 in Jorion (1988). His analysis concludes
that a simple diffusion model is chosen for monthly stock returns over a jump
diffusion, a jump-ARCH and an ARCH model, and that for weekly data the
jump-diffusion model is a significant improvement over the simple diffusion
model.

A simplified modelling approach in discrete time has been suggested for
stock returns by Ball & Torous (1983). In their approach the Bernoulli process
is used for the jump times instead of the Poisson process, and the resulting
model is a Bernoulli mixture of Gaussian densities for the daily stock returns.

Ramezani & Zeng (1998) apply in continous time an asymmetric jump-
diffusion process to equity prices. Their model assumes that good news and
bad news arrive according to two Poisson processes, and that the jumps sizes
are Pareto and Beta distributed. Another, more recent jump model speci-
fication of this type is the double exponential Poisson jump diffusion, first
proposed by Kou (2002) for option pricing applications. In the context of
modelling the default risk in corporate bonds when the asset values may
have jumps, Hilberink & Rogers (2002) model only negative jumps with an
Exponential distribution.

Our model to be developed below is tailored in discrete time for the yearly
equity return index, which is in contrast to the above mentioned models that
are designed for shorter term applications and use more frequently sampled
data. As in Ball & Torous (1983), we use the Bernoulli process for the jump
times. We apply a similar idea as in Hilberink & Rogers (2002) in that we
only consider negative returns in the jump term. However, in our model there
is a coefficient to eliminate the effect of jump years from the normal years (cf.
(1 - Jt) in (3.1)), which is not used in the above mentioned models. Moreover,
our model is formulated for Gamma-distributed jumps.
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3 Model specification and esti-
mation

3.1 Definition of the model
Denote the log of SP500 index value with pt, t = 1925,...,2006, so that yearly
log-returns are xt = pt − pt−1. We specify the jump model as follows:

(3.1) xt = (1− Jt)(µ+ σεt)− JtYt

where now t = 1,...,T, T=81, and µ is the mean, σ is the standard deviation,
and εt are independent and identically distributed (iid) random variables from
N(0, 1) distribution. For the jump process we assume that the jump times are
iid Bernoulli random variables: Jt ∼ Be(q), 0<q<1; and that the jump sizes
are iid Gamma variables: Yt ∼ Gamma(α, β), α, β > 0. Moreover, we assume
that these three random variables are independent.

Because in the model the yearly returns x1, ..., xT are assumed indepen-
dent, we can write the likelihood function L as

(3.2) L(θ) =
T∏
t=1

f(xt; θ)

where

(3.3) f(xt; θ) = (1− q) 1√
2πσ

e−(xt−µ)2/2σ2

+ q
βα

Γ(α)
(−xt)α−1eβxt1{xt<0}

Here 1{xt<0} is the indicator function that equals 1 when the yearly return
is negative and is 0 otherwise as we only wish to model the negative jumps
with the last term in (3.1). In addition we have used the independency of
jump times and jump sizes, and the product rule of probability with the fact
that the jump probability is E[Jt] = q. Thus our model can be described as
a Bernoulli-mixture of N(µ, σ2) and Gamma(α, β) distributions.

In this model the mean is

(3.4) E[xt] = (1− q)µ− qα/β

By taking expectations from the square of (3.1) we get

(3.5) E[x2
t ] = (1− q)(µ2 + σ2) + qα(1 + α)/β2
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and using V ar[xt] = E[x2
t ]− E[xt]

2 we find that the variance is

(3.6) V ar[xt] =
{

(1− q)(µ2 + σ2) + qα(1 + α)/β2
}2 − {(1− q)µ− qα/β}2

3.2 Maximum Likelihood Estimation
The log-likelihood function l corresponding to (3.2) is

(3.7) l(θ) =
T∑
t=1

ln[(1− q) 1√
2πσ

e−(xt−µ)2/2σ2

+ q
βα

Γ(α)
(−xt)α−1eβxt1{xt<0}]

We have maximized (3.7) directly by R’s unrestricted optimization function
optim() with the Nelder-Mead simplex method1.

The Gamma(α, β) distribution is able to produce a rich variety of func-
tional shapes. This feature together with the observed bi-modality of the
empirical distribution of SP500 log-returns (cf. Figure 2.1) have motivated us
to analyse several specifications for the equity return model. The summary
results of these calculations are given in Table 3.1.

Model 1 is based on the maximum likelihood estimates (MLE) with un-
restricted α parameter. This model is highly bi-modal as is seen in Figure
3.2. This does not seem logical. Namely the probability density function has
two spikes in its graph: a local maximum at -0.0227, and a local minimum
at zero2, and its first derivative is discontinuous at these points. We conclude
that bi-modality is not easily explained, it brings undesirable features to the
density, and thus it should not form a basic feature of the model. Indeed, this
bi-modality is not observed in the mid-year index data. The same conclu-
sions regarding the bi-modality problem apply to more parsimonuous Model
6, where α=1, corresponding to the Exponential distribution (cf. Figure 3.1).

To add more realism into our model, we now fix α and then carry out the
maximum likelihood estimation. We note that when α is increased, the bi-
modality decreases. In Figure 3.3 α is 2, and in Figure 3.4 it is 3. These models
have less bi-modality but still seem implausible. When alpha is between 3.5
and 4, the bi-modality problem gradually disappears, as is observed in Figures
3.5 and 3.6.

In conclusion, the MLE result (Model 1), which has the best fit according
to the likelihood value, as well as the simpler Exponential model (Model 6),
have the serious problem of bi-modality. Therefore we have analysed above
several specifications for the model, and we cannot say with certainty which
would be the right specification to use. However, it seems to us that the
Gamma distribution with α between 3.5 and 4 would provide a reasonable
class of approximate models. Our preferred choice of α=4 also takes into
account our original idea that the jumps should be relatively rare as then

1Using the version 2.6.0.
2We also note that f(0)=0.872, but f(-0.0001)=0.995.
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Figure 3.1: Log-returns of the
model when α=1
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Figure 3.2: Log-returns of the
model when α=1.41
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Figure 3.3: Log-returns of the
model when α=2
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Figure 3.4: Log-returns of the
model when α=3
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Figure 3.5: Log-returns of the
model when α=3.5
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Figure 3.6: Log-returns of the
model when α=4
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Table 3.1: Comparison of 6 models with Gamma jumps.
Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
µ 0.177 0.171 0.162 0.152 0.131 0.178
σ 0.121 0.125 0.131 0.138 0.153 0.121
q 0.229 0.208 0.176 0.143 0.071 0.235
α 1.41 2 3 3.5 4 1
β 8.65 11.4 15.45 16.17 12.79 6.29
l 24.77 24.5 23.58 23.04 22.86 24.36

q=0.071, i.e. on average there would be a negative jump of equity returns
once in every 14 years. This feature of rare but large negative jumps is in our
view desirable as it allows to model catastrophic losses for risk management
purposes. Most of the time the returns thus come from the Normal distri-
bution part according to an ARIMA(0,1,0) or a random walk with a drift
process, which is the workhorse model for equity returns in economic theory
and practice3.

In the final part of our MLE procedure we have calculated the confi-
dence intervals for the parameters. We have done this by the profile likeli-
hood method, which is based on the likelihood ratio test and its asymptotic
distribution. Using this approach we search for the lower and upper bound
for each parameter such that 2(l(θ̂) - l∗(θ̃)) is approximately 3.84, i.e. the 5th
percentile of the chi-squared distribution with 1 degree of freedom. Here the
log-likelihood function l is evaluated at the maximum point θ̂, and the other
term, l∗(θ̃), is calculated by optimizing the log-likelihood for the remaining
parameters while keeping one parameter fixed. By gradually changing the
fixed value and re-running the optimization, the lower and upper bounds
are found. This process is applied to each term of the parameter vector in
turn. The optimization algorithm is the same as was applied to the maximum
likelihood estimation.

To determine the profile likelihood 95 percent confidence intervals for the
chosen Model 5, we first fixed α=4, and then calculated the following confi-
dence intervals for the remaining parameters: µ ∈[0.09,0.19], σ ∈[0.11,0.19],
q ∈[0.01,0.27], β ∈[5.2,26]. We note from the size of confidence intervals that
the parameter uncertainty is high. This is not particularly surprising when
considering the complex nature of equity returns and their jump process,
which depend not only on the economic climate but also on other exogenous
factors and human behavior. Although the joint analysis of the parameter
uncertainty is difficult, there are methods available for that purpose, which
we consider next.

3For a practically oriented discussion on this topic see Malkiel (2007).
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3.3 Parameter uncertainty via Markov Chain
Monte-Carlo

Our goal is to simulate future equity returns and include the parameter un-
certainty in the calculations. Resorting to the so called Markov Chain Monte-
Carlo (MCMC) approach is the most convenient way to achieve that. We
implement MCMC via the so called Gibbs sampler, which uses conditional
distributions of the parameters to specify the Markov Chain having the target
joint density as its stationary distribution. For a comprehensive discussion on
MCMC see Gelman et al. (2004) and Gilks et al. (1996), and for an accessible
introduction see Greenberg (2008).

We specify the Gibbs algorithm for our model in 2 steps as follows:

1. First we assume the jumps J = Jt and the data X = xt , t=1,...,T,
known and write down the conditional likelihood L|J . Then the con-
ditional distributions for the remaining parameters: L(β|J,X, µ, σ2, q),
L(1/σ2|J,X, µ, β, q), L(µ|J,X, σ2, β, q), L(q|J,X, µ, σ2, β) are derived
by picking only those terms that include the parameter in question (the
other terms are constants and can be neglected in the Gibbs algorithm).

2. In the second step we generate new jumps when all the other parameters
are known.

We assume the following independent priors: q ∼ Beta(aq, bq), µ ∼ N(0, σ2
µ),

τ = 1/σ2 ∼ Ga(aτ , bτ ) and β ∼ Ga(aβ, bβ). The parameters should be chosen
so that they allow appropriately wide range of values to occur. Based on both
visual and empirical analysis we proceed as follows4:

• aq = bq = 1, which leads to a non-informative uniform distribution on
(0,1).

• σµ = 0.8, which is 4 times the observed standard deviation (0.192) of
log-returns.

• aτ = 3, bτ = 0.05, which gives mean=0.15 and standard deviation=0.05
for σ, while its MLE was 0.15 and the 95 % profile likelihood confidence
interval was [0.11, 0.19].

• aβ = 1.5, bβ = 0.1, which gives mean=15.0 and standard deviation=12.2,
while the MLE was 12.8 and the 95 % profile likelihood confidence in-
terval was [5.2, 26.0].

We conclude that the priors above are rather non-informative and thus cover
a broad enough range of values for our purposes.

The conditional joint density for the observations and parameters is
4Testing with other reasonable parameters did not change the MCMC results.
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L|J =
∏
Jt=1

β4

Γ(4)
eβxt(−xt)31{xt<0}(3.8)

×
∏
Jt=0

τ 1/2

√
2π
e−

τ
2
(xt−µ)2

× 1√
2πσµ

e−µ
2/2σµ2

× τaτ−1e−τbτ

baττ Γ(aτ )

× βaβ−1e−βbβ

b
aβ
β Γ(aβ)

Note that α=4 by our assumption made earlier, and that the form of this
likelihood is simpler and much better suited for simulation than (3.2) because
here we use the conditional L|J , i.e. we assume J known.

Now the conditional distributions required for the Gibbs simulation can
be derived in the following manner.

L(β|J,X, µ, σ2, q) ∝

{∏
Jt=1

β4eβxt1{xt<0}

}
βaβ−1e−βbβ(3.9)

= β4n1+aβ−1exp

{
−β(bβ −

∑
Jt=1

xt1{xt<0})

}
.

Thus, Ga(4n1 + aβ, bβ −
∑

Jt=1 xt1{xt<0}) is the posterior of β.

L(τ |J,X, µ, β, q) ∝

{∏
Jt=0

τ 1/2e−
τ
2
(xt−µ)2

}
τaτ−1e−τbτ(3.10)

= τn0/2+aτ−1exp

{
−τ(bτ +

1

2

∑
Jt=0

(xt − µ)2

}
.

Thus, Ga(n0/2 + aτ , bτ + 1
2

∑
Jt=0 (xt − µ)2) is the posterior of τ .

L(µ|J,X, σ2, β, q) ∝

{∏
Jt=0

e−
τ
2
(xt−µ)2

}
e−µ

2/2σµ2(3.11)

= exp

{
−τ

2

∑
Jt=0

(xt − µ)2 − µ2

2σµ2

}
.
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Thus, N(( 1
σ2
µ

+ n0τ)−1τ
∑

Jt=0 xt, (
1
σ2
µ

+ n0τ)−1) is the posterior of µ.

L(q|J,X, µ, σ2, β) ∝ qaq−1(1− q)bq−1qn1(1− q)n0 .(3.12)

Thus, Beta(aq + n1, bq + n0) is the posterior of q.
In the equations above n0 and n1 denote the number of no-jump (Jt = 0)

and jump (Jt = 1) years respectively. The relation (3.11) follows from an
analoguous result on page 76 in Gilks et al. (1996), or by using completing
the square technique5.

In the second step we update the jump process as follows. For xt < 0,
t=1,...,81, we have by (3.3)

(3.13)

P (Jt = 1|µ, τ, β, q, xt) =
qβ4eβxt(−xt)3/Γ(4)

(1− q) τ1/2
√

2π
exp

{
− τ

2
(xt − µ)2}+ qβ4eβxt(−xt)3/Γ(4)

Using these probabilities for each xt < 0 with updated parameters we generate
a new jump process realisation from the Bernoulli distribution. Thereafter we
start a new round of iteration (step 1 → step 2 etc) until the convergence of
iteration is adequate.

5See e.g. the opening page of Finney (2001).
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4 Generation of future equity
returns

In this section we generate forecasts from our model with both the MLE and
the MCMC parameters derived above and compare the results. The method
to generate equity returns proceeds as follows. We take one parameter vector
at the time from the MCMC sample (after the burn-in period) and plug
them into the basic equation (3.1) as constants, while for the MLE-based
forecast we use the MLE parameters. Using 750 000 sampled observations
(corresponding to a forecast for 75 years repeated 10 000 times), we get the
empirical distributions for the equity returns as shown in Figure 4.1. As initial
values for the MCMC iteration we used the MLE results but also other values
were tested and they did not change the outcome.

We note from the histogram that the two methods give rather similar
distributional results, which indicates that parameter estimation is not the
main source of uncertainty in the modelling. However, in the area where the
returns are between -0.4 and 0, we see systematic difference as the MCMC
method gives there more probability mass. In fact this seems to result in a
return distribution that resembles the case where the value of α is between
3.5 and 4, as we suggested earlier. These findings are made more explicit
in Table 4.1, where we have included the MLE figures of Model 4 (where
α=3.5), and both the MLE and the mean MCMC estimates for our preferred
model 5 (where α=4). We note that the jump probability q and Gamma rate
parameter β are higher in the MCMC estimation, which imply that jumps
occur more often and they are smaller. We have also included in the table
the MLE 95 % confidence intervals calculated earlier by the profile likelihood
method, and the 2.5th and 97.5th quantiles of the MCMC results. These
confidence intervals are very similar. We also note asymmetry except for σ
parameter.

Table 4.1: Comparison of Model 4 and the MLE and mean MCMC parameters
of Model 5, and the lower and upper 95 % MLE confidence intervals (CI) and
the respective MCMC quantiles for Model 5.

Variables Model 4 MLE MCMC CI-left CI-right 2.5% 97.5%
µ 0.152 0.131 0.14 0.09 0.19 0.09 0.19
σ 0.138 0.153 0.15 0.11 0.19 0.12 0.19
q 0.143 0.071 0.11 0.01 0.27 0.02 0.25
β 16.17 12.79 15.3 5.2 26 6.6 25.1

We conclude that both the MLE and MCMC methods are suitable for esti-
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Figure 4.1: Comparison of MLE (dashed) and MCMC (dotted) based equity
return simulations

Table 4.2: Posterior correlations of model parameters.
Variables µ σ q β

µ 1 -0.50 0.58 0.47
σ 1 -0.58 -0.40
q 1 0.60
β 1

mation and that they give consistent results. The MCMC parameters partially
cancel the jump features that we subjectively preferred when choosing α=4.
On the other hand MCMC allows more realistic dependence modelling. We
have plotted in Figure 4.2 simulated µ against σ, in 4.3 µ against q, and in
4.4 q against β. The posterior correlations of simulated model parameters are
listed in Table 4.2.

From these statistics we conclude that the model parameters generally
are correlated. For instance we note from the high correlation (0.6) between
q and β that the more frequent the jumps, the smaller the amount (cf. (3.4)).
We also observe that µ, q, and β are pairwise positively correlated, while σ
is negatively correlated with µ, q and β.

In the final Figure 4.5 we have compared the MCMC results with the
histogram of empirical log-returns of SP500. We observe the smoothness and
wider range of values of the modelled returns, which are desirable for the
simulations.
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Figure 4.2: Simulated µ against σ
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Figure 4.3: Simulated µ against q
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Figure 4.5: Comparison of the histogram of empirical log-returns and MCMC
based simulations
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