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Abstract

Statistical data sets often contain observations that differ markedly
from the bulk of the data. These outlying observations, ‘outliers’, have
given rise to notable risks for statistical analysis and inference.
Unfortunately, many of the classical statistical methods, such as
ordinary least squares, are very sensitive to the effects of these
aberrant observations, ie they are not outlier robust. Several robust
estimation and diagnostics methods have been developed for linear
regression models and more recently also for time series models.

The literature on robust identification of time series models is not
yet very extensive, but it is growing steadily. Model identification is a
‘thorny issue’ in robust time series analysis (Martin and Yohai 1986).
If outliers are known or expected to occur in a time series, the first
stage of modelling the data should be done using robust identification
methods. In this thesis, the focus is on following topics:

1. The development of a robust version of the extended
autocorrelation function (EACF) procedure of Tsay and Tiao
(1984) for tentative identification of univariate ARIMA models
and comparison of non-robust and robust identification results.

2. Simulation results for the sample distributions of the single
coefficients of the extended sample autocorrelation function
(ESACF) table, based on classic and robust methods, both in
outlier-contaminated and outlier-free time series.

3. Simulation results for two basic versions of the sample standard
error of ESACF coefficients and the results of the standard error
calculated from simulation replications.

Robust designing concerns two parts of the ESACF method: iterative
autoregression, AR(p), and an autocorrelation function to obtain less
biased estimates in both cases.

Besides the simulation experiments, robust versions of the ESACF
method have been applied to single generated and real time series,
some of which have been used in the literature as illustrative
examples.

The main conclusions that emerge from the present study suggest
that the robustified ESACF method will provide

a) A fast, operational statistical system for tentative identification of
univariate, particularly mixed ARIMA(p, d, q), models
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b) Various alternatives to fit the robust version of AR(p) iteration into
a regression context and use of optional robust autocorrelation
functions to handle both isolated and patchy outliers

c) Robust procedures to obtain more normal-shape sample
distributions of the single coefficient estimates in the ESACF two-
way table

d) The option of combining OLS with a robust autocorrelation
estimator.

Simulation experiments of robust ESACF for outlier-free series show
that, since the robust MM-regression estimator is efficient also for
outlier-free series, robust ESACF identification can always be used
with confidence.

The usefulness of the method in testing for unit roots is obvious,
but requires further research.

Key words: robust tentative identification, robust extended
autocorrelation function, outliers, robust regression estimation, Monte
Carlo simulations, time series models
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Tiivistelmä

Tilastoaineistossa on usein joitakin havaintoja, jotka poikkeavat mer-
kittävästi aineiston muusta osasta. Nämä poikkeavat havainnot
(outlierit) aiheuttavat huomattavia ongelmia tilastollisessa analyysissä
ja päättelyssä. Valitettavasti monet klassisen tilastotieteen menetelmät,
kuten tavallinen pienimmän neliösumman menetelmä, ovat hyvin
herkkiä näiden poikkeavien havaintojen vaikutuksille, eli ne eivät ole
robusteja. Lineaarisille regressiomalleille ja viime aikoina myös aika-
sarjamalleille on kuitenkin kehitetty useita robusteja estimointi- ja
diagnostiikkamenetelmiä. Aikasarjamallien robustia täsmentämistä
koskeva kirjallisuus ei ole vielä kovin laajaa, mutta kasvaa nopeasti.
Mallien täsmentäminen on ”hankala juttu” robustissa aikasarja-
analyysissä (Martin ja Yohai 1986). Jos aikasarjan tiedetään tai
oletetaan sisältävän poikkeavia havaintoja, mallintamisen ensi vaihe
pitäisi suorittaa robustein täsmentämismenetelmin.

Tämän tutkimuksen tavoitteita ovat:

1. Robustin version kehittäminen niin sanotusta laajennetusta auto-
korrelaatiofunktiomenetelmästä (EACF-proseduuri), jonka alun
perin kehittivät Tsay ja Tiao (1984) yhden muuttujan ARIMA-
mallien alustavaksi täsmentämiseksi, ja robustin menetelmän tu-
losten vertailu perinteisen menetelmän antamiin tuloksiin.

2. Laajennetun autokorrelaatiofunktion kertoimien (eli ESACF
-matriisin elementtien) otosjakaumien simulointi klassisin ja
robustein menetelmin sekä puhtaiden että outliereillä saastuneiden
aikasarjojen tapauksissa.

3. Laajennetun autokorrelaatiofunktion kertoimille simuloitujen
keskivirheiden vertaaminen teoreettisiin estimaatteihinsa.

Robustointi koskee kahta ESACF-proseduurin vaihetta: iteratiivista
autoregressiota, AR(p), ja autokorrelaatiofunktiota, jota käytetään
vähemmän harhaisten estimaattien tuottamiseksi. Simulointikokeiden
lisäksi robusteja versioita ESACF-proseduurista sovelletaan työssä
eräisiin synteettisiin ja aitoihin aikasarjoihin, joista muutamia on
kirjallisuudessa käytetty havainnollisina esimerkkeinä.

Tutkimuksen tulokset viittaavat siihen, että robusti ESACF-prose-
duuri

a) on nopea ja joustava tilastollinen menetelmä yhden muuttujan
ARIMA(p, d, q) -mallien alustavaa täsmentämistä varten
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b) antaa useita robusteja vaihtoehtoja erilaisten iteratiivisten auto-
regressioiden ja autokorrelaatiofunktioiden sovittamiseksi aineis-
toon

c) tarjoaa menetelmiä, joilla saadaan läheisemmin normaalijakaumaa
muistuttavia otosjakaumia yksittäisille ESACF-kertoimille

d) antaa mahdollisuuden käyttää pienimmän neliösumman menetel-
mää ESACF-proseduurin ensimmäisessä vaiheessa, jolloin vasta
toinen vaihe perustuu robustiin autokorrelaatiofunktioon.

Simulointikokeet osoittavat, että koska robusti MM-estimaattori on
tehokas myös outliereitä sisältämättömien aikasarjojen tapauksissa,
tätä robustia ESACF-proseduuria voidaan aina soveltaa. Menetelmästä
saatava tuki robustiin yksikköjuuritestaukseen on ilmeinen, mutta
vaatii lisää tutkimusta.

Avainsanat: robusti täsmentäminen, robusti laajennettu autokorre-
laatiofunktio, outlieri, robusti regressioestimointi, Monte Carlo -simu-
lointi, aikasarjamallit



9

Foreword

Many years ago, the world of robust statistics began to appeal to the
author of this thesis. The occurrence of outlying observations in
different data sets was surprising and their destructive effects on many
traditional statistical estimators and procedures indicated new
challenges to outcome problems caused by outliers. As robust
regression analysis contributed increasingly to time series modelling,
opportunities to robustify these models improved. If the data are
known or expected to include outliers, it is important to use robust
tools in the first step of the modelling process to reduce the risk of
producing a misspecified model. This is the benchmark and the basis
of my thesis.

I wish to acknowledge those who have assisted and encouraged me
during this study. Especially I wish to express my gratitude to
Professor Ruey S. Tsay, another developer of the original ESACF
method, who sent me, years ago, his message via internet:
‘Robustifying ESACF is a fine ideal.’ I thank Professor Erkki Liski
for his encouragement in different phases of my study. I am indebted
to my official examiners, Professors Antti Kanto and Seppo
Pynnönen, for their expertise, useful discussions and guidance.
Professor Jukka Nyblom receives my thanks for his comments and
suggestions for focusing my work.

I wish also to thank my colleagues at the research department of
the Bank of Finland and at the Research Institute of the Finnish
Economy, ETLA. Especially I wish to thank the research department
for use of the simulation program. This program was developed by
Lic. Phil. (mathematics) Marko Laine, who worked inexhaustibly and
created new and practical solutions. Many thanks, Marko. Special
thanks go to Ms Riitta Repo for her skilful editing and writing earlier
versions of this work.

I am grateful for the professional staff of the Bank of Finland for
their efforts in the publication process. Mr Glenn Harma revised the
language of my study, and Päivi Nietosvaara finalised the layout of
the publication.

Finally, I want to warmly thank my dear wife, Riitta, and my sons,
Otto-Juhana and Lauri, for their patience, great empathy and care of
me during the long project.

Helsinki, November 2003
Heikki Hella



10



11

Contents

Abstract ................................................................................................. 5

Tiivistelmä (Abstract in Finnish) .......................................................... 7

Foreword ............................................................................................... 9

1 Introduction .................................................................................. 13
1.1 The objective and summary of this thesis .............................. 13

2 Some basic concepts and definitions........................................... 17
2.1 Statistical robustness............................................................... 17
2.2 Outlier robustness ................................................................... 18
2.3 Main concepts of statistical robustness................................... 19
2.4 Definition of outlier ................................................................ 23
2.5 Outliers in an i.i.d. context...................................................... 24
2.6 ARIMA models and basic types of outliers in time series ..... 24

3 EACF method ............................................................................... 30
3.1 Pattern identification methods ................................................ 30
3.2 Standard EACF method .......................................................... 31

3.2.1 Introduction................................................................... 31
3.2.2 Iterative, consistent OLS autoregression...................... 31
3.2.3 Asymptotic EACF coefficients..................................... 36
3.2.4 Vertex of EACF table ................................................... 38
3.2.5 EACF and I(d) nonstationary processes ....................... 39
3.2.6 EACF in the literature................................................... 39

4 Outliers in time series modelling ................................................ 42
4.1 Treatment of outliers............................................................... 42
4.2 Masking, swamping and smearing ......................................... 43
4.3 ARIMA modelling and outliers .............................................. 45

5 Robust EACF procedure ............................................................. 47
5.1 Robustifying the EACF procedure ......................................... 48

5.1.1 Iterative, consistent robust autoregression ................... 48
5.1.2 Robust autocorrelation function ................................... 49
5.1.3 Vertex of the robust ESACF table................................ 50

5.2 Designing the robust ESACF procedure................................. 50
5.2.1 M- and GM-estimator ................................................... 51
5.2.2 The MM-estimator........................................................ 53



12

5.2.3 OLS replaced by robust regression............................... 55
5.2.4 Three robust alternatives of ACF ................................. 57
5.2.5 Combination of OLS and robust ACF.......................... 61

5.3 Standard error of the ESACF coefficients .............................. 62
5.3.1 Standard error based on the white noise assumption ... 62
5.3.2 Bartlett’s asymptotic formula ....................................... 62

5.4 Robust confidence intervals.................................................... 63
5.5 Robust ESACF complementing robust unit root testing ........ 67

6 Monte Carlo experiments ............................................................ 70
6.1 Objectives and design of simulations ..................................... 70
6.2 Main results............................................................................. 73

6.2.1 ARMA(1, 1) and ARIMA (1, 1, 1) processes .............. 74
6.2.2 Outlier-free series ......................................................... 81
6.2.3 The OLS/wacf combination.......................................... 82
6.2.4 Sample distributions for single ESACF coefficients.... 89
6.2.5 Summary of main results .............................................. 94

6.3 Three examples: nonstationarity, outliers and differencing ... 96

7 Applications of some real time series ....................................... 104
7.1 Some illustrative examples from the literature..................... 104
7.2 Three monetary time series................................................... 108
7.3 Five real exchange rate series ............................................... 114

8 Concluding remarks and suggestions for further research ... 117

References ......................................................................................... 121

Appendix 1 ........................................................................................ 137
Appendix 2 ........................................................................................ 143
Appendix 3 ........................................................................................ 146
Appendix 4 ........................................................................................ 149
Appendix 5 ........................................................................................ 150
Appendix 6 ........................................................................................ 152
Appendix 7 ........................................................................................ 156



13

1 Introduction

1.1 The objective and summary of this thesis

Statistical data sets often contain observations that differ widely from
the rest of the observations. These ‘outliers’ give rise to notable risks
for statistical analysis and inference. Hampel et al (1986, p. 26–28)
argue that the occurrence of outliers in routine databases is the rule
rather than the exception, ie about 1–10% of observations. Nowadays
one can apply many kinds of statistical procedures to handle these
observations. With modern methods we are able to detect and estimate
outliers, and protect against them.

The development of linear regression theory supported by fast and
efficient computers has created the benchmark for a great number of
new robust statistical procedures. Several robust estimation and
diagnostics methods have been developed for linear regression models
and more recently also for time series models.

The literature on robust identification of time series models is not
yet extensive, but it is growing steadily. Model identification is still a
‘thorny issue’ in robust time series analysis (Martin and Yohai 1986).
As Chang (1982, p. 232–233) remarks: ‘We need to protect not only
the parameter estimation process against the adverse effect of
exogenous interventions but also the model identification process so
that appropriate model forms for the underlying time series can be
specified in the very first place.’ The author of this thesis would add:
and we can always begin to model data by robust methods, since we
have available the robust regression estimation method, which appears
to perform efficiently also with outlier-free data. Here our goal is to
find at the start of the modelling process the most appropriate
candidates for modelling ARIMA processes.

The objectives of this thesis are to:

1. develop the robust version of the extended autocorrelation function
(EACF) procedure of Tsay and Tiao (1984) for identification of
univariate ARIMA models

2. study simulation results on sample distributions of the single
coefficients of the extended sample autocorrelation function
(ESACF) table, based on standard and robust methods, both in
outlier-contaminated and outlier-free time series

3. analyse simulation results of sample standard errors of single
ESACF coefficient estimates
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Robust designing concerns the two stages of the ESACF method:
autoregressive AR(p) fitting and the autocorrelation function. Besides
the simulations, the robust versions of the ESACF method have been
applied to the real time series, some of which have been used as
illustrative examples in the literature.

Our goal is to have the robustified ESACF method provide

a) a fast, operational system for identification of ARIMA(p, d, q)
models

b) some robust versions which are able to encounter both isolated and
patchy outliers

c) an improved procedure to obtain more symmetric and closer-to-
normal sample distributions of single coefficient estimates of the
ESACF two-way table.

Main results

The main results that emerge from the present study show that the
robustified ESACF method provides

e) a fast, operational system for identification of univariate ARIMA
models (flow chart of united robust and standard ESACF
procedure given in Figure 1) that is able to handle both isolated
and patchy outliers.

f) robust procedures to achieve more normal-shaped sample
distributions of the single coefficient estimates for the ESACF
table; then the most important estimate has the vertex of a triangle
of asymptotic zeros; some normalising effect is also found in the
sample distributions of other coefficient estimates of the ESACF
table

g) new and valuable information about the sample standard errors of
the single ESACF coefficient estimates; generally the robust
coefficients based on simulation repetitions have the greatest
standard errors and the asymptotic estimator, (n-k-j)–½ gives
underestimates

h) different robust estimates of the ordinary SACF as the first row of
the robust ESACF table; the standard errors (based on simulations)
of these robust SACF estimates

The outline of the thesis is following: Chapters 1 and 2 contain the
introduction and definitions of the main concepts of the statistical
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Figure 1. Flow chart of the United ESACF
identification procedure

                                 United  E S A C F  Procedure

      Iterative robust estimation and ACF
      * AR(p) fitting by robust regression
      * Robust ACF of W(t) series    

                                     Data  Input Process                               (i), (ii)
                                       * Transformation incl. differencing
                                       * No transformation 

     Iterative standard estimation and ACF
     * AR(p) fitting by OLS
     * Standard ACF of W(t) series

                     Computer Running Process
                     1. Optional: standard and/or robust with single series 
                     2. Both estimations via Monte Carlo experiments 

                         Robust ESACF               (iii)               Standard ESACF

       Standard ESACF Pattern Estimates
        Two-way matrix

        Robust ESACF Pattern Estimates
        Two-way matrix

            Simplified X,0 two-way matrix
            based on +/-C*std error
            [C = 2 at risk level = 0.05]

         Simplified X,0  two-way matrix
         based on +/-C*std error
         [C = 2 at risk level = 0.05] 

         Comparison of results
          * option to change confidence interval
            ie risk level and/or std error                  (iv)        

          Suggestion of ARMA model candidates 
          based on coordinates of vertex        

           Standard ESACF           Robust ESACF

                           Differencies and similarities

                          Tentative ARIMA Structure(s)

(i) real or generated series: choice of robust methods and estimators
(ii) simulation experiments: choice of robust methods and estimators, summaries and

graphics
(iii) robust alternatives of regression estimation, robust autocorrelation functions and

scale estimators
(iv) single series case: not necessarily symmetric (+ -) intervals, may be different in

standard and robust case
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robustness theory, ARIMA models and two basic outlier types in time
series. The theory of the standard (original) ESACF procedure is
presented in Chapter 3. Treatment of outliers and the main influences
of outliers on time series are considered in Chapter 4. The theoretical
design of the robust ESACF method with different robust regression
and autocorrelation configurations is presented in Chapter 5.
Simulation experiments for the standard and robust ESACF
procedures and their applications to single generated and real time
series are considered in Chapters 6 and 7. The main conclusions and
suggestions for further research are presented in Chapter 8.
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2 Some basic concepts and
definitions

2.1 Statistical robustness

The concept of robustness is old in the history of statistics. However,
the word robust, which by dictionary definition means ‘strong,
vigorous’, is a relatively young term in statistics. Box (1953) first
gave the word a statistical meaning. Since then, rapid development of
the theory of robustness has given rise to alternative approaches to
robust statistical theory.

The earliest discussions and applications of robustness go back as
far as the eighteenth-nineteenth century (Hampel et al 1986, Barnett &
Lewis, 1994). For instance, as regards astronomical observations,
there was concern about ‘unrepresentative’, ‘rogue’ or ‘outlying’
observations, ie outliers. It is noteworthy that already in those days, in
the early 1800s, scientific debate was concerned with the effects of
outlying observations on estimates calculated by ordinary least
squares (OLS)1.

Robustness, in general, refers to the ability of a procedure or an
estimator to produce results that are insensitive to departures from
ideal assumptions. This definition of robustness covers all scientific
research. When the ideal assumptions pertain to statistical
distributions, we speak about distributional robustness and in the
context of outliers we refer to outlier robustness. The practicality
aspect is always an essential part of robustness. As Lucas (1996, p. 1)
remarks, robustness to researchers is an intriguing subject both from a
theoretical and practical point of view. In reference to general
robustness theory, Hampel et al (1986, p. 6) define statistical
robustness as follows:

In a broad informal sense, robust statistics is a body of knowledge,
partly formalized into ‘theories of robustness’, relating to
deviations from idealized assumptions in statistics.

                                          
1 A.M. Legendre developed the method of least squares (1805) and published it in the
book ‘Nouvelles pour la Determination des Orbites des Comets’, Courcier, Paris. Besides
Legendre, C.F. Gauss contributed crucially (1809) to the theory of this method.
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In time series analysis, the essential concept is resistance, which is
related to the notion of robustness from a data-oriented point of view.
This concept has the important advantage that, on the one hand, it can
be applied without special assumptions about the model and, on the
other hand, observations can be dependent or non-identically
distributed (see Martin and Yohai 1985, Stockinger and Dutter 1987).
A more detailed definition of resistance is presented below in section
2.3.

2.2 Outlier robustness

In this thesis we focus on outlier robustness. Outliers can be classified
in statistics as outlying observations in linear regression, time series
analysis, survey, directional and contingency table data (Barnett and
Lewis 1994). Outliers always entail both theoretical and practical
problems. Usually, depending on our goal(s), we need one or more
procedures that are robust, to protect against and detect outlying
observations in the data. For instance, in the case of a forecasting
model, it is of utmost importance to be able to detect, estimate the
effects of, and interpret outliers. In some cases, outliers in a residual
series may indicate omission of an explanatory variable from the
model. Furthermore, the robust regression estimates are less biased
than OLS and provide estimates of outliers that are more strikingly
seen in residual series.

The concept of an outlier is generally used rather informally. The
literature provides a rich menu of informal definitions, but we still
lack a mathematically strict, unique and generally accepted definition.
Recently some researchers have attempted to construct a more formal
definition of an outlier (eg Gather and Becker 1997). One of the main
features (and ‘problems’) of outlier robustness in a time series context
is that outliers are ‘model dependent’. As a consequence, it may be
that an observation is considered an outlier in respect of one model but
a regular observation in respect of another.

Outlier analysis can be divided into three distinct parts: the i.i.d.
(independent, identically distributed observations) regression context,
the time series context, and survey data. The basic theory of
robustness is developed in the i.i.d. context. In time series modelling,
accounting for (the effects of) outliers is complicated because of the
structure of the adjacent correlated observations. In addition, in time
series, the influences of outliers can be shown to depend on their type,
relative position, number and magnitude and – as mentioned before –
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on the model structure underlying the time series. In the regression
context, outliers are classified as y- and x-outliers. Outlier types
occurring in survey data are considered eg by Barnett and Lewis
(1994). In considering the features which robust estimators should
possess, Huber (1972) presents an interesting approach: ‘to view
robustness as a kind of insurance problem’2.

2.3 Main concepts of statistical robustness

In statistical theory, robustness can be classified into two main parts:
qualitative and quantitative. Hampel (1971, Theorem1) introduced the
concept of qualitative robustness. The main idea is to complement the
notion of differentiability (influence function, see below) with
continuity conditons, with respect to the Prohorov distance (definition
in Hampel 1971, p. 1888). Hampel et al 1986 (Section 2.2b)
considered the relationship of continuity to qualitative robustness.
Two other concepts for judging the robustness performance of an
estimator are efficiency robustness and min-max robustness, which
are also directly applicable to time series data (see eg Martin and
Yohai 1985, Huber 1996). Quantitative robustness builds on the
concept of a breakdown point, whereas infinitesimal robustness
incorporates the influence function as the critical concept.

Influence function

The influence function (IF) is a local robustness measure. By
definition, an IF measures the change in the value of an estimator
when outliers are added to the sample. Following Hampel et al (1986),
the influence function is defined as follows. Let �x denote the
probability measure which puts the unit mass at the point x, ie the
c.d.f. with a point mass at x. The influence function of an estimator H
at F is given by

� �
�

������
�

��

)F(HF)1(H
lim)F,H,x(IF x

0
(2.1)

                                          
2 ‘…I am willing to pay a premium (a loss of efficiency of, say, 5 to 10% at the ideal
model) to safeguard against ill effects caused by small deviations from it; although I am
happy if the procedure performs well also under large deviations…’ (Huber 1972,
p. 1047).
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at those x where the limit exists. In (2.1) H(F) denotes the value of the
estimator of the original distribution F. Similarly, H[(1–�)F+��x]
denotes the value of this estimator of the slightly contaminated
distribution (1–�)F+��x. � refers to the fraction of the perturbation,
0<�<1. The influence function IF is the first derivative of a statistic H
of an underlying distribution F. If the IF is bounded, then the effects
of a small number of outliers are also bounded. As for its
interpretation, one can say that IF measures the asymptotic
(standardised) bias of the estimator H caused by contamination of F.

There are also some studies in the literature on finite-sample
versions of the influence function, ie the empirical influence function
(EIF) and sample influence function (SIF) (see eg Lee 1990). Not all
estimators have an influence function, but all of them have a
breakdown point.

Breakdown point

The breakdown point (BP) is a global measure of the reliability of a
statistic. The BP is also an asymptotic concept. As such, this measure
is complementary to the IF. The finite-sample breakdown point of the
estimator Hn for the sample (x1,...,xn) is given by

})z,...,z(Hsupmax:mmax{
n
1

:)x,...,x;H(

n1ny,...,yi,...,i

n1n
*
n

m1m1
���

�

(2.2)

where the sample (z1,...,zn) is obtained by replacing the m data points

m1 ii x,...,x  by the arbitrary values y1,...,ym (Hampel et al 1986, Section

2.2a, definition 2.)3. In general, taking the limit of *
N�  as n�� we

obtain the asymptotic breakdown point. The breakdown point takes
values between 0 and 1. The literature has introduced some variants of
this definition of the breakdown point definition and of its finite-
sample versions (Hampel et al 1986, p. 97).

The breakdown point is essentially the largest fraction of
contamination which does not ruin an estimate. Note that the
definition of the BP contains no probability distributions. For
example, the BP of the arithmetic mean, standard error and OLS

                                          
3 Professor Hannu Oja has remarked that in (2.2) definition the �Hn(z)� is usually replaced
by the �bias� of the Hn(z). In the literature, see eg Huber (1996, p. 9).
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estimator is of value zero, for the median it is 0.5 and for the �-
trimmed mean �. A zero value for the BP reflects extreme sensitivity
of an estimator to outliers.

In practice, the influence function and breakdown point provide
complementary bits of information about the estimator. The bias can
be approximated by the IF, and the neighbourhood in which this
approximation is useful can be measured by the BP. In addition, the
gross-error sensitivity of an estimator can be defined in terms of the
IF. The gross-error sensitivity �* is defined as the supremum of the IF
with respect to x:

)F,H;x(IFsup)F,H( x
*

�� (2.3)

which contains information on the maximum relative change in the
value of the estimator caused by a small change in x. A finite value of
�* is desirable.

Maximal bias curve

The essential property of a good robust estimator is that the resulting
bias is quantified and is under control. Then the problem in most cases
is to evaluate the consistency, as well as the bias, of an estimator. In
practice, we must always put up with some amount of bias in an
estimator.

The bias curve of an estimator plots its maximun bias against the
fraction of contamination, given the underlying distribution.
Following Hampel et al (1986), the maximal bias curve of the
estimator H is given by

)F(H)GF)1((Hsup
G

����� (2.4)

where G is an arbitrary distribution.
The main advantage of the bias curve over the BP is that the bias

curve is more ‘operational’, ie it provides more information. Given
some degree of contamination, we can read from the curve the
corresponding maximum bias of the estimator. The form of the bias
curve in the neighbourhood of the breakdown bound of an estimator
can be quite informative for analysts (for the bias curve of the median,
see Lucas 1996, Fig. 2.2). We can compare the robust sensitivity of
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different estimators via their bias curves (see eg Martin and Yohai
1991 in an AR(1) model).

Outlier robustness in time series context

The influence function, the breakdown point and the bias curve
comprise the main practical concepts (tools) of statistical robustness.
However, we have no complete or general theory of robustness for
time series. The literature contains many different suggestions for
these concepts as regards specific stochastic processes and estimators.
The research activity has been surprisingly brisk, as the following list
shows: Martin (1979, 1980, 1981), Künsch (1984), Papantoni-
Kazakos (1984), Martin and Yohai (1984, 1985, 1986), Boente,
Fraiman and Yohai (1987) and Genton and Lucas (2000). These
contributions include both influence functions and breakdown points
of different time series processes. Martin and Yohai (1986) can be
considered the epoch-making (milestone) comprehensive article on
robust time series analysis and a ‘robust bridge’ between the classic
i.i.d. and time series contexts. There is a steady growth of theoretical,
practical and experimental results, eg Rousseeuw and Yohai 1984,
Hampel et al 1986, Rousseeuw and Leroy 1987, Chan 1989, Chen
1994, Lucas 1996, Meintanis and Donatos 1999, You 1999 and Ma
and Genton 2000.

Quality robustness seems to be the most important challenge for
theoretical research. Martin and Yohai (1985) argue that the
previously mentioned resistance and qualitative robustness are the
most important forms of robustness in the time series context. They
define (p. 121) resistance as follows:

An estimate Tn is called resistant, if ‘small’ changes in the data
result in only small changes in Tn, where ‘small’ changes in the
data means (i) large changes in a small fraction of the data and/or
small changes in all the data.

Boente, Fraiman and Yohai (1987) proposed a new approach to
qualitative robustness, based on the concept of resistance. These
concepts are developed mostly for autoregressive processes and their
structure and effects are strongly dependent on the type of outlier
configuration and the structure of the time series model. For example,
in the case of stationary autoregressive models, the GM-estimator has
the breakdown point of 1/(p+1) where p is the order of an AR(p)
process (Rousseeuw and Leroy 1987). The breakdown point of the M-
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estimator is zero while the MM-estimator is 0.5 (Yohai 1987). It
should be noted that the GM- and MM-estimators are not qualitatively
robust in case of the ARMA(p, q; q>0) processes (eg Martin and
Yohai 1985, p. 136 and 139). The reason is that each residual depends
on all the previous observations and hence the effect of an outlier
propagates, in principle, to all the residuals.

2.4 Definition of outlier

The literature contains many informal definitions of an outlier but
only a few, recently published, more formal ones. One commonly
used informal definition (Barnett and Lewis 1994) is:

An outlier in a set of data is an observation or a patch of
observations which appears to be inconsistent with the remainder
of that set of data.

The inconsistency refers to the case where this outlying (aberrant)
observation (or group of observations) is generated by some
mechanism other than that of the rest (ie the majority) of the data4.
Recently, some formal, mathematical definitions of an outlier have
been proposed (see eg Becker & Gather 1999). Becker and Gather
consider a wide range of outlier generating models, outlier
identification rules (outlier identifier) and performance criteria for this
identification in the i.i.d. context. In the time series context, Fox
(1972) first developed two basic forms (models) of aberrant
observations.

I.i.d. regression and time series models have their own types of
outliers. Furthermore, an extreme observation of a set of data need not
be an outlier and vice versa. So, since an outlier need not be large
relative to the scale of the Xt process, it is important to compare an
outlier to the scale of the residuals (ideally uncorrelated N(0, �2))
innovations of the estimated model. In the following we consider
briefly the basic forms of outliers in an i.i.d. and in a time series
context. The focus will be on the two basic outlier types of time series.

                                          
4 For more on outliers, their history, handling and examining, see Barnett and Lewis
(1994, Chapters 2 and 3). On outliers in time series, see the literature mentioned in
Section 2.6. of this thesis.
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2.5 Outliers in an i.i.d. context

In the classification of regression outliers we follow the presentation
of Hampel et al (1986). Regression outliers can be classified into
a) ‘gross errors’ and b) outliers due to model inadequacy and failure.
Gross errors occur in the form of different recording errors due to
technical difficulties or partly completed questionnaires,
misinterpreted questions etc. The second main group includes outliers
due to econometric or statistical model failure (see Hampel et al 1986,
Section 1.2, Lucas 1996, Section 2.1.2).

We can classify y- and x-regression outliers as follows:

a) vertical outlier (outlier in y-direction),
b) good leverage point (outlier in x-direction)
c) bad leverage point (outlier in x-direction).

More on the classification, structure and effects of these regression
outliers can be found in Chatterjee & Hadi (1986), Rousseeuw and
Zomeren (1990) and Ryan (1997). We do not consider here
‘influential observations’ (Peña 2001) and interactions between them
and outliers.

2.6 ARIMA models and basic types of outliers
in time series

In this section we first introduce the ARIMA models and basic types
of outliers in the time series context. After this we consider briefly the
distributional forms of outliers and the distribution of outlier
contaminated time series. The effects of outliers on the sample
autocorrelation function of ARIMA processes are considered in
Section 5.2.4.

Autoregressive integrated moving average (ARIMA) models

ARIMA processes are the most common family of time series models.
Box and Jenkins (1970, 1976), in their seminal book, presented a
systematic presentation of the structure and use of these time series
models.
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The general class of univariate ARIMA models takes the form

n,...,1ta)B(CY)B( tt ����� (2.5)

where

d
d1

p
p1 BU...BU1)B(U,B...B1)B()B(U)B( �������������

is a nonstationary factor; dp
dp1 B...B1)B( �

�

�������  is the

autoregressive and q
q1 B...B1)B( �������  the moving average

polynomial of degree p–d and q in B; and the characteristic equations
0)B( ��  and 0)B( ��  have all roots outside the unit circle. The

autoregressive part of order p, AR(p), is then stationary and the
moving average part of order q, MA(q), is invertible, ie it can be
written in terms of AR(�) representation (Box and Jenkins 1976,
p. 52–53, 67).

All the roots of U(B) are on the unit circle, d is here assumed to be
a non-negative integer (in practice often 1). If U(B) = 1, ie d = 0, we
have a stationary ARMA(p, q) process; �(B) and 	(B) are assumed to
have no common roots; {Yt} is the observable time series, {at} is a
Gaussian white noise process N(0, 2

a� ) and C is a constant. B is the
backshift operator, ie BZt = Zt–1.

The ARIMA family consists of non-seasonal and multiplicative
seasonal models (for the basic structure of the seasonal model, see
Box and Jenkins 1976, Chapter 9). We focus in this thesis only on
non-seasonal ARIMA models.

The classic autocorrelation function

Suppose a stationary stochastic process Zt has mean 
, variance �2 and
autocovariance �(�) where � is the lag. The theoretical autocorrelation
function (ACF) of Zt is then

2

)(
)0(
)(

)(
�

��
�

�

��
��� (2.6)

Note that 1)0( �� .
The autocorrelation function has the following properties:

)()( ������  and 1)( ��� . The sample autocorrelation function
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(SACF), )(ˆ �� , is calculated via the sample statistics )(ˆ ��  and 2
�̂ . It is

well known that the classic autocorrelation function is very non-
robust, and its breakdown point is zero. This means that just one
clearly outlying observation is able to destroy the information content
of the SACF.

Two basic types of outliers in time series

Fox (1972) first investigated outlier types and their modelling in the
time series context. He defined two types of outliers: Type I and II,
which are now known as additive (AO) and innovational (IO) outliers.
The basic structures of these outliers are as follows:

Let {Yt} be a time series following an ARIMA model:

,N,...,1Ta
)B()B(U

)B(
Y tt �

�

�
�

where the polynomials )B(�  and )B(�  have roots outside the unit
circle and all roots of U(B) are on the unit circle.

1. Additive outlier (AO)

An additive outlier is an event that affects a series for one time period
only; its effects are independent of the ARIMA model. If we assume
that an outlier occurs at time t = T, we have the AO model

)T(
ttt PYZ Ao�� (2.7)

where )T(
tP  is a pulse function (ie 1P )T(

t �  when t = T, 0 otherwise;
see eg Mills 1991) and oA is the magnitude of the isolated, additive
outlier. Note that here Zt is the observed, contaminated time series and
Yt the uncontaminated core process (here unobserved at time point
t = T).
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2. Innovational outlier (IO)

An innovational outlier is an event whose effect is propagated
according to the structure of the ARIMA model of Yt. The IO model is
thus

� �)T(
ttt

)T(
t

1
tt

Pa
)B()B(U

)B(
Z

or,P
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)B(
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I
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�
�

�
�

�

�
�� �

(2.8)

where )T(
tP  is a pulse function and oI the magnitude of a single

innovational outlier at time t = T.
Additive outliers are in practice more common than innovational

outliers. For statistical analysis, the AOs are more dangerous and their
influence on parameter estimates can be very destructive. For
instance, a single large AO outlier may destroy the information
content of the sample autocorrelation function or sample partial
autocorrelation function.

In the literature, the following types of outliers have also been
proposed: level change (LC), transient change (TC), variance change
(VC), reallocation (RE) and seasonal outlier (SLS); see Tsay (1988),
Chen and Liu (1993), Wu et al (1993), Maddala & Yin (1997) and
Kaiser & Maravall (1999).

Besides isolated outliers, a time series will often contain a patch of
outliers of one or several types. Thus, a long time series may include a
combination of outliers of different types and time configurations. In
that case, modelling of the time series is usually a complicated and
laborious task. In practice, the usual situation is that the ARIMA
model and possible outliers must be estimated simultaneously, based
solely on the information in the data. For this, an iterative modelling
procedure has been developed (Chang 1982, Chang, Tiao and Chen
1988 and Chen & Liu 1993). If the exact timing of the different
outliers is known, the intervention models can be estimated (eg Mills
1991, Chapter 12).
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On the distributional form of outliers
Time series generated by mixture models

A. The distributions of the additive and innovational outliers are
presented in the following (see Stockinger and Dutter 1987, p.
18).

(AO) The independently and identically distributed oA have an
arbitrary distribution, eg the Gaussian mixture distribution,
‘contaminated normal’:

),0(N)1(),(CND 2
303 ��������� (2.9)

where �0 denotes the degenerated distribution having all its mass at the
origin and 
 is the fraction of the normal distribution. In practice, 
 is
in the range from 0.01 to 0.25. The AOs are independent of the
underlying ARMA process, Yt in (2.7).

(IO) In the case of an innovational outlier, the distribution of the
innovation process of Zt can be a t-distribution or a
contaminated normal:

),0(G),0(N)1(),,(CN 2
2

2
121 ���������� (2.10)

where 2
1

2
2 ����  and � is the (small) fraction of IOs. G is an arbitrary

distribution and may be eg ),0(N 2
2� .

B. Time series generated by the mixture models represent chance
contamination. Each observation Yt comes with high
probability, 1–�, from the normal distribution N(.,.) but with
small probability from the contaminating distribution H(.,.).
Thus we can write

Y ~ (1–�)N + �H, with 0 < � < 1

Thus, a mixture distribution is a weighted average of two
distributions, with weights (1–�) and �. For large n, roughly the
proportion � of the observations Y1,…,Yn will be contaminants
(usually outliers). The frequency distribution of Y is then a heavy-
tailed distribution. Chen (1979) examined several real data sets and
found that the contaminated normal distributions ‘appear to be a
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strong candidate for representing real world situations’ (op cit p. 15
and 145).
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3 EACF method

3.1 Pattern identification methods

For identifying an ARIMA process, many procedures are available in
the literature. Choi (1992) classifies the identification methods into
five groups5. The extended autocorrelation function (EACF)
procedure of Tsay and Tiao (1984) belongs to the pattern
identification methods. Other methods of this group are the R- and S-
array methods, the corner method, the three generalised partial
autocorrelations (GPAC), and the smallest canonical correlation
method (SCAN), as well as some others (Choi 1992). Common to
these procedures is that they utilise the extended Yule-Walker
equations. One advantage of pattern recognition methods is that model
fitting is not required at the model identification stage.

The Box-Jenkins approach is useful for pure stationary AR(p) and
invertible MA(q) processes, while for mixed ARMA(p, q; q>0)
processes these sample autocorrelations and partial autocorrelations
are generally more complicated and hard to interpret. The reason is
that their correlograms tail off to infinity rather than cut off at a
particular lag (eg Tiao 1985, p. 98; Brockwell and Davis 1991, p. 296
and Gómez and Maravall 2001, p. 173). Also the sample variance
confuses the interpretation, especially when a unit root is expected to
occur in the time series (eg Box and Jenkins 1970, 1976, Section 6.2;
Mills 1991, Sections 5.5 and 6.3).

Since the mixed ARIMA processes are quite common in
econometrics and in some engineering sciences (eg quality control
systems), there have been many proposals on methods of identifying
these models. As an appropriate identification method for mixed
ARIMA models, Gómez and Maravall (2001) mention the EACF and
the SCAN methods of Tsay and Tiao (1985). Also other pattern
identification methods have been proposed for mixed ARIMA models
(Tiao 2001).

                                          
5 The groups are: 1) autocorrelation methods, 2) penalty function methods, 3) innovation
regression methods, 4) pattern identification methods, and 5) hypothesis testing methods.
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3.2 Standard EACF method

3.2.1 Introduction

The aim of Tsay and Tiao (1984) was to develop an identification tool
for ARIMA processes, particularly for two reasons:

1. to overcome most of the problems encountered in identifying
mixed ARIMA(p, d, q; q>0) processes

2. to handle the direct identification of nonstationary mixed
ARIMA(p, d, q; and q>0) processes.

From (2.5) we have

n,...,1ta)B(CY)B1)(B( tt
d ������ (3.1)

where the zeros of the autoregressive polynomial, �(B), are p* = p–d,
all lying outside the unit circle. The model (3.1) is the usual
ARIMA(p*, d, q) nonstationary process, where (1–B)d = U(B). In
(3.1) we can also have a pair of complex roots on the unit circle.
These rare, exceptional cases are not considered in this thesis.

The ESACF (sample EACF) method consists of two main steps:

1. find consistent estimates of the autoregressive parameters in order
to transform Zt into a moving average process

2. make use of the ‘cutting-off’ property of the autocorrelation
function of this transformed series (which is a residual series after
AR fitting) for model identification via ESACF table.

With the ESACF method, {at} need not be a Gaussian process. It is
required that the at’s are independently and identically distributed
continuous random variables with finite fourth moments (Tsay and
Tiao 1984, p. 95).

3.2.2 Iterative, consistent OLS autoregression

Tiao and Tsay (1983a, 1984, hereafter referred to as TT83 and TT84)
developed the EACF procedure. The basic idea of the EACF method
is to identify, via an autoregression fitting, an AR(p) and an MA(q)
part from a time series and hence to obtain the orders p and q for the
ARMA(p, q) model. The AR regression parameters are estimated by



32

OLS. Because the directly calculated OLS estimates are not consistent
for ARMA(p, q) with �(B) � 1 and q>0, (see Tiao and Tsay 1981 and
TT83), TT84 proposed (in Section 2) the following iterated regression
approach.

Assume a realisation of n observations from an ARMA(p, q)
process

tjt

q

1j
jlt

p

1l
lt aaZΦZ ����

�

�

�

�

�� (3.2)

The aim is to obtain consistent least squares estimates of the AR
parameters �l. In the case of the ordinary AR(p) fitting the data the
OLS estimates, )0(

)p(lΦ̂ , are inconsistent (ie there is an MA(q) with q>0).

The estimated residuals
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are not white noise (even for large n) and the lagged values )0(
jt,pê

�

, j>0,

will contain some information about the series Zt. Therefore we define
the first iterated AR(p) regression
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where the superscript (1) indicates the first iterated regression and )1(
t,pe

denotes the corresponding error term. It is shown that the OLS
estimates )1(

)p(l�̂  of this regression are consistent, that is, l
)1(

)p(l ΦΦ̂ �  in

probability as l = 1,…,p if q�1 or �(B) = 1.
Similarly, if the )1(

)p(l�̂  are inconsistent, the lagged values of the

estimated residuals )1(
t,pê  of (3.4), where
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also retain some useful information about the process Zt. The second
iterated AR(p) regression is then defined as



33

n,...,3pt,eêêZZ )2(
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and it can be shown that l
)2(
)p(l

ˆ ���  in probability as l = 1,…,p if q�2

or �(B) = 1, and so on. The jth iterated AR(k) regression of a time
series Z is defined as
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is the estimated residual of the ith iterated AR(k) regression and the
)i(

)k(l�̂  and )i(
)k(h�̂  are the corresponding OLS estimates. In practice, the

iterated estimates )j(
)k(l�̂  satisfy the recursion
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where )1j(
)k(0

ˆ �

�  = –1; l = 1,…,k; k�1; j�1.

The implication of (3.7) is that the AR estimates of the jth iterated
AR(k) regression can be recursively computed from the OLS
estimates of stepwise AR(k), AR(k+1), …, AR(k+j) fittings.

Based on some consistency results for OLS estimates of
autoregressive parameters for nonstationary and stationary
ARMA(p, q) models, TT83 (see below) show that for k = p

�� )p(ˆ )j(  in probability )p(� , when j�q

where )ˆ,...,ˆ()p(ˆ )j(
)p(p

)j(
)p(1

)j(
���� , (see Tiao 1985, p. 99).

For stationary ARMA models, (3.7) is the same as the generalised
Durbin-Levinson algorithm (Piccolo and Tunnicliffe-Wilson 1984;
Choi 1992; Brockwell and Davis 1991).
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The theoretical consistency properties of the iterated AR estimates
(3.7) are different for stationary and nonstationary processes. For the
stationary case, the proof is found in Gersch (1970) and in TT84
(Theorem 5.1 and Lemmas 5.5 and 5.6). For the nonstationary
process, the proof of consistency of iterated AR estimates is given in
TT83 (Theorems 3.2 and 4.1, Corollary 2.6). The consistency
properties of stationary and nonstationary processes are summarised in
the following two theorems (TT84, p. 86).

Theorem 2.1

Suppose that Zt follows the nonstationary ARIMA(0, d, q) model in
(3.1). Then

0j;d,...,11),n(OUˆ 1
pl

)j(
)d(l �����

� (3.8)6

The proof of (3.8) is presented in TT84, p. 91–92.
The practical implication of Theorem 2.1 is that for the

nonstationary ARMA process {Zt} in (3.1), the OLS estimates )j(
)d(l�̂

of any jth iterated AR(d) regression are superconsistent for the
nonstationary AR coefficients Ul with the fast convergence rate

)n(O 1
p

� . We are thus able to specify the nonstationary factor in

practical modelling.

Theorem 2.2

Suppose that Zt is an ARIMA(p, d, q) process, stationary or not. Then

k,...,11),n(Oˆ ½
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)j(
)k(l �����

� (3.9)

                                          
6 Different rates of convergence of random variables are described in terms of order in
probability. We say hn is at most of order kn and write hn = Op(kn) if there exists a real

number M such that Mhk n
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 for all n; we say hn is of smaller order than kn and

write hn = op(kn) if 0k
h

lim
n
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��
. Here � ��

�1nnh  is a sequence of real numbers and

� ��
�1nnk  is a sequence of positive real numbers (see eg Fuller 1996).
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if k � p and j = q, or k = p and j > q, where it is understood that �l = 0
for l > p. Also, )n(O ½

p
�  becomes )n(O 1

p
�  if �(B) = 1 and k = p. The

proof of Theorem 2.2 is given in TT84, p. 91–92.
It is important to note that theorem 2.2 covers both nonstationary

and stationary ARMA processes. Note that in the nonstationary case
these iterated AR estimates can be computed via the Durbin-Levinson
algorithm (see also Choi 1992, p. 24–25 and 126).

These estimated AR coefficients are then used to define the
extended sample autocorrelation coefficients, rj(k) (p = 1,...,p0 and
j = 1,...,q0), from which the orders p and q of the ARIMA model are
determined.

This procedure provides consistent iterated OLS estimates and
hence ESACF coefficients, rj(k), for both stationary and nonstationary
ARIMA processes (TT83).

This is the lag j sample autocorrelation of the transformed (AR
filtered) series

lt

k

1l

)j(
)k(lt

)j(
t,k ZˆZW

�

�

���� (3.10)

For any finite k, the kth ESACF coefficient is defined as

)W(rr j
t,kj)k(j � (3.11)

From (3.10) and (3.11) we see that each rj(k) is a function of its own
)j(
t,kW . So each rj(k) is derived from a different set of estimates of the

autoregressive parameters. These extended autocorrelation estimates
are arranged in a two-way table from which the orders p and q can be
determined at the position of the vertex7 (see Table A and B below).
Note that in the case of an I(d; d = 0, 1) time series, a corresponding

)j(
t,kW  series is always an I(0) series containing isolated and/or patchy

outliers. The first row of the ESACF table (k = 0) displays the
ordinary sample autocorrelations of Zt. We have marked this first row
by a shaded area or dotted line in the ESACF tables and different
figures of this thesis. As TT84 (p. 86) stresses, the ESACF (beginning

                                          
7 A vertex is mathematically defined as a point at which two or more lines or line
segments meet on the boundary of a geometric figure (the edges of a polygon or
polyhedron, etc.).
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at the second row, k = 1, 2,…) is not the SACF of any transformed
series of Zt. This can be seen from (3.10) and (3.11).

Table A. Original ESACF two-way table

Autoregressive order Moving average order
0 1 2 3 …

0 r1(0) r2(0) r3(0) r4(0) …
1 r1(1) r2(1) r3(1) r4(1) …
2 r1(2) r2(2) r3(2) r4(2) …
3 r1(3) r2(3) r3(3) r4(3)

…

Iteration guarantees consistency and in each iteration round there is a
check to see whether the new transformed series, )j(

t,kW , is a white

noise process. When it is, the order of MA(q) can be determined from
the ESACF table.

3.2.3 Asymptotic EACF coefficients

TT84 showed that for a stationary ARMA(p, q) model, with k � p

0pkqj,0

pkqj0),qj,pk(cr )k(j

�����

�������

(3.12)

TT84 proved that, for a general ARMA(p, q) process (3.1), stationary
or nonstationary, and k > p, the ESACF coefficients have the
following asymptotic property:
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(3.13)

Here c(k–p, j–q) is some nonzero constant or continuous random
variable bounded in the interval [–1, 1] (see also Tiao 1985, formulas
2.27 and 2.54, and Tiao 2001, formulas 3.41 and 3.55, p. 63 and 67).
It is important to note that in practice the asymptotic property of
(3.12) and nonstationary model of (3.13) are not common in general
(Tiao 1985, p. 98 and Tiao 2001, p. 65). One distinction will be in the
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distributional properties of estimates, as is known from the theory of
stationary and nonstationary linear processes (see eg Tsay 1984, p.
123 and references therein).

As is shown by (3.12) and (3.13), the vertex is the crucial tool of
the ESACF procedure in searching for the ‘cutting-off’ position in the
two-way table. Thus the ESACF procedure possesses the ‘cutting-off’
property for mixed ARMA(p, q) models. Tiao (2001, p. 61) remarks
that the ‘cutting-off’ property of the ordinary ACF function holds with
respect to pure MA(q) models and that of the PACF function with
respect to pure AR(p) models and that they do not hold for mixed
ARMA(p, q) models. This ‘cutting-off’ property is proved by TT83
(Theorem 3.1, and Lemma 2.5) and by TT84 (Lemma 6.1).

Our simulation results show that in the case of a given
ARMA(p, q) the ESACF coefficient estimates rj(k) outside the triangle
of asymptotic ‘zero values’ usually have a very non-normal sample
distribution (often bimodal, non-symmetric); these anomalies occur
regularly in the lower-left part of the ESACF table. This feature can
be seen, for instance, from the results of our example model in the
Appendix 1.

In practice, the values of both p and q may be unknown, and
complications arise when both the fitted AR order, k, is greater than
the true AR order, p, and simultaneously the number of iterations j is
greater than the unknown true MA order, q. This is a so-called
overfitting problem. In ESACF calculations, this overfitting problem
can be handled as a part of the estimation procedure and does not
require any special actions or extraordinary conditions (TT84, p. 87
and Theorem 6.1; Tiao 2001, p. 67). An overfit of the AR(p), order
k–p > 0, will generally lead to an increase in the order of the MA
polynomial of the transformed series, )j(

t,kW , and the number of

additional terms is given by min{k – p, j – q}.

Table B. The simplified, asymptotic ESACF
two-way table

Autoregressive order Moving average order
0 1 2 3 …

0 * X X X …
1 * 0 0 0 …
2 * X 0 0 …
3 * 0 0 0 …

… ………………………………………..
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Since each individual element of the ESACF table below the first row
is a sample autocorrelation of a transformed series, its sampling
properties can be obtained from the known large-sample results of the
SACF function. The approximate variance of rj(k) can be calculated
using Bartlett’s (1946) formula. Tsay and Tiao used the simple
variance approximation of (n–k–j)–1 under the hypothesis that the
transformed series )j(

t,kW  is white noise. This estimate of variance is

utilised to calculate the confidence intervals for rj(k) for determining
the X and 0 indicator symbols in ESACF table. These indicator
symbols are used so that X refers to values greater than �2 standard
errors of rj(k) and 0 for values within �2 standard errors. The sign *
(denoting an arbitrary value between –1 and 1) means there are no
pattern terms in the asymptotic and theoretical ESACF table of a
certain order (p, q) (see eg TT84, Table 2 and Tsay 2002, Table 2.4).
In practice, we calculate estimates over the whole matrix and then
form the simplified X, 0 matrix, ie * may be X or 0.

3.2.4 Vertex of EACF table

The large-sample property (3.12) and (3.13) is used in ESACF
identification. In the two-way table the rows are numbered 0, 1, 2, ...
to indicate AR order and the columns in a similar way for MA order.
We determine the values of p and q by searching for the upper left
vertex of a triangle of asymptotic ‘zero’ values of the ESACF table.
These ‘zero’ values have the boundary lines k = c1 � 0 and
l – k = c2 � 0, where k refers to the kth extended sample
autocorrelation and l refers to the lag of the kth extended sample
autocorrelation. In general, we tentatively identify p = c1 and q = c2

(see Tiao 1985). The order of the model is given by the row and
column coordinates of the vertex. So the vertex determines the
ARMA(p, q) ‘cutting-off’ position in the EACF table (Tiao 2001, p.
61). The triangular cutting-off characteristic of the ESACF table may
in practice become rectangular or trapezoidal shaped (TT84, p. 95; see
eg Tiao 2001, p. 76 and 85).

In Table B (above) the vertex of an ARMA(1, 1) process is
highlighted in bold. The theoretical vertex for some ARIMA processes
is displayed in Appendix 1. As our null hypothesis for the ‘vertex
system’ in the ESACF table, we are looking for a statistically
significant zero value of a parameter estimate instead of a parameter
estimate significantly different from zero, as in the usual null
hypothesis.
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3.2.5 EACF and I(d) nonstationary processes

The consistency properties of iterated AR estimates are derived
separately for the stationary and nonstationary cases. In the asymptotic
sample, the ACFs of nonstationary models are dominated by those
nonstationary roots with the highest multiplicity, and thus the
estimated generalised Yule-Walker equations cannot always provide
consistent estimates of AR coefficients (Quinn 1980 and TT83,
Corollary 2.6). Thus we need different solutions and conditions for
iterated consistent AR estimates, as is shown by TT83 (Theorems 3.2
and 4.1) and TT84. In general, iterated AR(d) estimates provide the
nonstationary part U(B) of (3.1), by the Theorems 2.1 and 5.1 and
Lemma 5.7 of TT84. In model (3.1) we have a nonstationary case if
U(B) � 1.

To study whether a series is nonstationary, TT84 suggest that for
given specified values of p and q, the iterated AR estimates can be
examined to see whether the AR polymial contains a nonstationary
factor, ie a root on the unit circle8. This can also be found in Tsay
(1985, Sections 2.4 and 3). Thus, in table B, the vertex of a triangle of
the asymptotic ‘zero’ values provides information on the maximum
orders of polynomials, ie in the form of an ARMA(p* + d, q).

This means that for nonstationary processes we are able directly to
estimate the ESACF table without first specifying the order of
differencing. Then we obtain the ‘maximum’ value of p = p* + d,
where d is the number of unit roots. Once p and q are determined we
can analyse p* (= stationary AR order) and the nonstationary factor, d.
In our simulation experiments we verified (in ESACF tables) this
p = p* + d property for ARIMA(1, 1, 1) processes. Note that when we
avoid differencing we are also precluding problems associated with
overdifferencing (Lee and Park 1988; Tsay 1985, p. 236). The
avoidance of differencing a time series is particularly important with
AO outliers, as we see later in this thesis.

3.2.6 EACF in the literature

The structure of the ESACF procedure is illustrated in de Gooijer et al
(1985), Tiao (1985, 2001), Tsay (1986), Kendall and Ord (1990), Wei

                                          
8 A nonstationary time series can be transformed by the differencing operator (1–B). This
is similar to the AR operator (1–�B), with � = 1. We refer to our robust analysis later in
this thesis.
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(1990, 1994) and Pankratz (1991). The ESACF procedure can be used
with both pure time series models and traditional regression models to
model residual series (eg Tsay 1984, 1985). Kendall and Ord consider
the ESACF procedure in tackling the problem of whether or not to
difference a series in identifying a time series model. Tiao and Tsay
(1983b) developed the multivariate version of this method, ie the
extended sample cross-correlations (ESCC), which has been available
for vector time series identification in the statistical software package
SCA9.

Two versions of the ESACF procedure have been developed,
which are based on a vector autocorrelation function10. Jeon and Park
(1986) developed a simple version and applied it to the example series
of Tsay and Tiao (1984). Another more advanced version is developed
in Paparoditis and Streitberg (1992) and Paparoditis (1993). Lee and
Park (1988) applied the ESACF pattern in time series modelling of a
decision support system for management planning. In the engineering
literature, this iterative ESACF approach is known to be useful in
ARIMA modelling (eg Li & Dickinson 1988).

Interest in the ESACF procedure has recently increased. Oliveira
and Müller (2000) developed a generalised version of EACF to
contribute to the identification of transfer function models. Mélard and
Pasteels (2000), in their automatic ARIMA modelling program,
incorporate an identification procedure related to the ESACF method.
Hella (2002) gives a robust ESACF procedure and studies it via
simulations including sample distributions of single ESACF
coefficients for both the standard and robust cases.

The EACF procedure has also been criticised in the literature.
According to Mareschal and Mélard (1988) the corner method is faster
and probably more accurate than ESACF. They also criticise the
ESACF for requiring many passes over the data and providing very
crude statistical limits. Wei (1990, 1994) notes that, with few
exceptions, the task of identifying nonstationarity via the ESACF
method is generally difficult. Wei also mentions that the real
advantage is for the identification of p and q of mixed ARMA models
and that the ESACF can be used much more with properly
transformed stationary series. Koreisha and Yoshimoto (1991)
conducted simulation experiments with different methods including
the EACF procedure and report its fairly poor performance. They

                                          
9 The standard ESACF procedure is included in at least in the following statistical
software packages: SCA (Scientific Computing Associates, user manual: Liu and Hudak
1992), Autobox, and SAS (see Yaffee and McGee 2000).
10 This function is related to the canonical correlation function.
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consider the ‘simple and crude’ variance estimate (n–k–j)–1 of the
ESACF coefficients. Koreisha and Yoshimoto tried to improve the
performance of the method, experimenting with wider confidence
intervals, of �3 standard errors. They obtained results where the
number of the correctly identified trials increased markedly.
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4 Outliers in time series modelling

In this chapter we analyse outliers in a time series context,  taking up
the main reasons for the occurrence of outliers and the available ways
of handling them. Then we consider outliers in the context of building
ARIMA models and identify three groups of problems encountered in
practice.

4.1 Treatment of outliers

Outliers can result for many external or internal reasons. Measurement
(recording or typing) errors, classification mistakes in sampling or
some non-repetitive exogenous interventions can have effects in the
form of outliers, isolated or patchy. Economic and business time series
are sometimes subject to the influence of strikes, outbreaks of wars,
sudden change in the market structure of some group of commodities,
technical change or new equipment in a communication system, or
simply unexpected pronounced changes in weather etc. The classic
reason for an AO is a typing or measurement error at the level of the
Tth observation. An IO is typically caused by some external shock at
time T that influences observations xT, xT+1,… via the memory (ie
ratio of lag-polynomials, the transfer function) of the underlying core
model of the time series.

In modelling and analysing time series the researcher must decide
how to handle potential and known outliers. There are three ways to
deal with outlying observations:

a) deleting
b) accommodation (robust estimation of model)
c) detection, modelling and interpretation.

Earlier, outliers were usually thrown out, but nowadays this is not
usually recommended. In careful modelling, the outlying observations
are replaced by some robust estimates. If the identification and
estimation of isolated or patchy outliers is not necessary for analysis
and the goal is to construct the core model for the bulk of
observations, the accommodation approach is relevant. This means
that robust estimation methods (case b) are used in the modelling
process: ie in the identification, estimation and diagnostic checking
phases. Use of robust methods provides (optimal) protection against
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the damaging effects of outliers. It is important to know that one
remarkable outlying observation can ruin OLS estimates (see the
breakdown point concept in Chapter 1). We can, of course, use robust
methods for detection and estimation of outliers. If our goal is to
obtain a useful, high-quality forecasting or explanatory model, c) is
the relevant approach. This approach is especially important in the
linear regression context (eg Donald & Maddala 1993, Lucas 1996,
Section 2.1.2). In practice it will often be relevant to use a
combination of b) and c). When robust techniques are used the profile
of outliers may become even more obvious (sharper) because robust
regression estimation provides less biased parameter estimates and
thus leads to residuals that enhance the visibility of possible outliers
(see eg Kleiner et al 1979, Martin 1980, Section 5 and Levenbach
1982)11.

4.2 Masking, swamping and smearing

It is well known that in the regression context, especially multivariate
regression, the identification and detection of outliers is troublesome.
Various test and estimation procedures have been developed in the
literature (see eg Barnett & Lewis 1994, Chatterjee and Hadi 1986,
Rousseeuw and van Zomeren 1990). In time series we encounter more
difficulties due to the serial correlation between adjacent observations.
In addition, there are various types of outliers with different effects on
observations. In both frameworks, testing has been developed mainly
for isolated outliers, whereas patches of outliers still cause severe
problems. The influences of outliers include masking, swamping and
smearing effects. We do not consider here sets of influential
observations containing both outliers and normal observations (eg
Barnett & Lewis 1994, Penã 2001).

Masking

Most severe are the masking effects. Masking means that an outlier
covers, ie masks, the effects of one or more other outliers, so that the
statistical estimation method and outlier test procedure fails to detect

                                          
11 Chang (1982) presents a list of alternative approaches which an analyst can use to
handle problems of outliers: 1) graphical methods 2) tests of hypotheses 3) premium-
protection approach 4) robust estimators and 5) Bayesian approach.
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any outlier. Usually this happens in OLS regression, because the
parameter estimates, as well as the residuals are biased. Masking
effects are especially severe for patchy outliers, which are quite
common in time series. Robust estimation, diagnostic tools, and robust
outlier testing (use of robust distance measures) provide more efficient
results (see eg Rousseeuw & Leroy 1987, p. 81–84 and 282). Bruce &
Martin (1989) proposed ‘leave-k-out’ diagnostics to deal with outlier
patches and an iterative deletion procedure for the effects of masking.
The problem remains how to specify the value of k.

Swamping

Swamping is the converse of masking and is also often difficult to
detect. A group of true outliers may cause a good observation or group
of good observations to be erroneously specified (tested) as an outlier
or patch of outliers. In the literature various suggestions have been
made to quantify and test for masking and swamping effects (see
Bartlett & Lewis 1994). Also in the regression context, masking and
swamping may be potentially difficult problems (eg Ryan 1997). The
methods for treating isolated outliers are not valid for outlier patches,
with either masking or swamping, and the development of procedures
specifically for patches is still in its infancy.

Smearing

The effects of smearing are encountered in time series modelling, not
in the i.i.d. framework. The smearing effect is the influence of an
outlier on adjacent observations due to the serial correlational
structure of a time series. Thus the strength of the different smearing
effects will depend on the type of outlier and the dynamics of the
underlying time series model (order of lag polynomials) and the
absolute values of its parameter coefficients (Bruce & Martin 1989).
Bruce & Martin (1989) presented quantitative results of smearing
effects for the AR(1) model with AO and IO outliers.

When we use robust identification and estimation methods in
modelling (accommodation principle discussed above) and carry out
robust tests, we can avoid the majority of masking and swamping
problems. The smearing effects can also be evaluated more accurately.
We should, however, carefully choose the proper robust tools,
separately in each modelling case.
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4.3 ARIMA modelling and outliers

Assume a univariate ARIMA process of the form (2.5):

n,...,1ta)B(CY)B( tt ����� (4.1)

For ARIMA modelling, Box and Jenkins (1970, 1976) have proposed
a model building strategy based on three main stages:

1. tentative specification or identification of a model
2. estimation of model parameters
3. diagnostic checking of fitted model for further improvement.

Model building is in practice an iterative process and these phases
may have to be repeated many times.

The original Box-Jenkins univariate ARIMA modelling has been
criticised for a lack of robustness (eg Durbin 1979, Funke 1992). In
recent years several articles, academic dissertations and research
papers have been published on robustifying ARIMA models. In the
following we briefly present notes and comments on the state of
robust ARIMA modelling, ie model identification, parameter
estimation and residual diagnostic checking.

Model identification

Surprisingly, only a few research papers on robust identification
procedure have been presented in the literature. Martin and Yohai
(1986, p. 849) call model identification ‘a thorny issue’ in robust time
series analysis. In the 1990s activity in this area picked up. Several
versions of robust autocorrelation functions have been published in
the literature, eg Masarotto (1987a), Polasek and Mertl (1990), Chan
(1989, 1992), Chen (1994), Chan and Wei (1992) and Wang and Wei
(1993). As for other classic tools of identification, such as partial
autocorrelation and inverse autocorrelation functions, only a small
number of robust studies have been published to date (eg Chan 1989
and Chen 1994).  The situation is quite similar in the case of
estimators that serve as robust model selection criteria (see Martin
1980, Ronchetti 1997). In recent years, activity has clearly increased
in the area of robustifying autocovariance and canonical correlation
(eg Ma and Genton 2000).
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Parameter estimation

As in the regression context and partly dependent on it, robustifying
focuses on the estimation phase also in time series modelling. The
most well known robust regression estimators are the M-, GM-, S-,
RA- and MM-estimators (eg Martin 1979, 1980, 1981, Martin and
Yohai 1985 and 1986, Franke et al 1984, Yohai 1987, Maddala and
Yin 1997). High breakdown parameter (HBP) estimators have been
used more with econometric than with time series models (eg Lucas
1996). In time series modelling, the methodological research has
traditionally focused more on parameter estimation and diagnostic
methods than on identification tools and algorithms.

Diagnostic checking

The robustified autocorrelation, partial autocorrelation and cross-
correlation functions and robust location and scale estimators of
residual series can be used also in model diagnostics. In addition,
some applications have been done with robust versions of the
portmanteau test statistic (eg Li 1988, Li & Hui 1994). A new
approach for testing goodness of fit is presented in Gerlach et al
(1999), in which testing model adequacy in a Bayesian framework is
based on Monte Carlo simulation of Markov chains applied to an
autoregressive model with outliers.

Huber (1991) has considered the relationship between diagnostics
and robustness. As the purpose of robustness is to safeguard against
deviations from assumptions, the purpose of diagnostics is to find and
identify these deviations. As regards outlier robustness, a procedure
should be insensitive to outliers; outlier detection/rejection is part of
diagnostics, not robustness. Huber remarks that robustness and
diagnostics are complementary and for important and large deviations
we need robust diagnostics (see also this study, Section 4.1).
However, as Lucas (1996, Section 2.5.1) notes, there may still be
problems concerning robust model selection.
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5 Robust EACF procedure

As mentioned above outliers are quite common in routine statistical
data sets. Therefore, one should always carry out a robust exploratory
analysis of the data, particularly if data quality is suspect. When the
data are anticipated to contain outliers, it is important to use robust
methods in the first step of data handling (see eg Rousseeuw and
Leroy 1987, Donald and Maddala 1993, Maddala and Yin 1997,
Lucas 1996). Thus if one is doing ARIMA modelling, the robust
identification tool(s) should be used first. Thereafter the traditional
tools can be used in a complementary fashion. Robust procedures are
emphasised in the time series context because, in practice, one usually
does not know in advance the type, number, relative position,
magnitude and time configuration of outliers in time series data.
Furthermore, as outliers are model dependent in the time series
context, it is crucial to identify the ‘best’ candidate(s) for the model
structure at the start of modelling. Using robust methods, one can also
reduce the risk that the modelling will produce spurious outliers.

The standard ESACF seems to be robust to some degree. Tsay
(1986, p. 139) remarked that the ESACF procedure may be robust to
some degree if the number of outliers is small, the outliers are of
moderate size and the sample size is relatively large12. Surprisingly,
the literature does not contain any response or research experiments
concerning Tsay’s remark on robustness. On the contrary, Lee (1989)
and Wei (1990, 1994) carried out only a single AO experiment of the
classic extreme decimal point error for which the ESACF is naturally
non-robust. For ARIMA models we usually assume a normal
distribution for the {at} series (Section 3.2). This assumption is not
crucial for the ESACF approach based on the note of (TT84, p. 95):
‘All that is needed is that the at’s are independently and identically
distributed continuous random variables with finite fourth moments’.
This may be open to some interpretation of distributional robustness
of the standard ESACF procedure.

In the well known iterative joint ‘estimation-detection-correction-
estimation’ procedure (see eg Chen and Liu 1993, Tsay 1988, Chang

                                          
12 Tsay carried out a small-scale simulation experiment for an ARMA(1, 1) model with a
single AO outlier and n = 100 observations and 400 repetitions.
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et al 1988)13, identification begins subjectively with the OLS
regression, and with the assumption that the orders p and q of an
ARMA model are known. However, in practice, we usually do not
know p and q beforehand. Thus we may obtain biased regression
estimates in iterations and perhaps an incorrectly identified ARMA
model and therefore possible spurious outliers.

5.1 Robustifying the EACF procedure

Due to the common occurrence of outliers, the robustified EACF
procedure is a reasonable tool for identifying ARIMA models. If there
are outliers in the data and we use standard ESACF, we obtain very
biased OLS estimates of the autoregression coefficients also in
recursion estimation. This in turn leads to biased estimates of the
transformed series )j(

t,kW  and the ESACF coefficients rj(k) (see formulas

3.10 and 3.11). The literature contains examples of such destructive
effects on ESACF table coefficients (eg Wei 1990, 1994 and Lee
1989). Thus the ordinary OLS method in autoregression and the
sample ACF in calculating autocorrelations of the )j(

t,kW  series must be

replaced by their robust counterparts.
For some special cases, we did simulation experiments using OLS

regression combined with robust ACF. The conditions for this
combination are a low degree of contamination and outliers of small
size in a time series. In simulations and for some real series, we used
the combination of OLS and weighted ACF. The results are
promising.

5.1.1 Iterative, consistent robust autoregression

For robustifying the OLS method we replace the minimising function
in a straightforward way:

                                          
13 This procedure is criticised in the literature (eg Lee 1990, p. 72, Tatum 1991, p. 36,
Maddala and Yin 1997, p. 241), mainly because it starts with an ARMA model of the
observed series as if no outliers were present in the data. Furthermore, this procedure
estimates outliers only one by one in iterations. In practice, time series often contain
patchy outliers. The widely used iterative programs TRAMO/SEATS and X-12-ARIMA
also search for outliers and it is somewhat unclear how these programs handle patchy
outliers. It seems that these procedures are most useful for low and medium contaminated
series.
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instead of minimising the sum of squares,

� �2
i

jiji XY� � �� (5.1)

we minimise the sum of a weighting function of the residuals,

� �� � ���
i

jiji XY (5.2)

(see Huber 1981, p. 156 and 162).
In robust regression theory many different weight functions, �(.),

are used. These functions must fulfil certain mathematical conditions:
the function �(.) is assumed to be convex, nonmonotone, and to
possess bounded derivatives of sufficiently high order (approximately

four). Particularly the first derivative, 
du

)u(d
)u(

�
�� , should be

continuous and bounded. To make the function )u(�  scale invariant, a

robust scale estimator, �, is introduced into )u(� , as seen in formulas
(5.4) and (5.5) of this thesis (eg Huber 1981, Martin and Yohai 1985
and 1986, Hampel et al 1986, Rousseeuw & Leroy 1987).

For robustifying the ESACF procedure we replace (5.1) by (5.2) in
the regression of (3.4)–(3.7) and continue the procedure according
with this ‘accommodation approach’ of robust regression analysis (eg
Barnett and Lewis 1994). The robust regression estimators selected for
this thesis are presented with detail in Section 5.2 and in Appendix 7.
In our robust ESACF procedure, we use the ‘double’ iterative
approach: iteratively calculated robust regression estimator inside the
iterative autoregression.

5.1.2 Robust autocorrelation function

The basic reason for robustifying the classic ACF function is
mentioned in Section 5.1. As is known, both classic estimators OLS
and ACF have the breakdown point of zero. In the presence of
outliers, the residual (transformed) series, )j(

t,kW , contains estimates of

these possible isolated and/or patchy outliers. Using robust ACF, one
safeguards against these aberrant observations, obtaining ESACF
estimates, rj(k), as unbiased as possible. Using robust autoregression,
we try to safeguard against outliers as best as we can (here we are not
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interested in observing them) and then use robust ACF to try to
provide the core information of the series )j(

t,kW  for identification of

the MA(q) part of an ARIMA process. We use three different kinds of
robust versions: weighted, trimmed and rank-based ACF. These robust
versions are introduced in Section 5.2.

5.1.3 Vertex of the robust ESACF table

In the robustified ESACF table the vertex is based on the robust
autoregression and autocorrelation estimators. Both of these
estimators have the established state in robust statistical theory. Hence
the vertex can be expected to show quite reliably the cutoff point also
for a nonstationary process. It is important to note that the first row of
the ESACF table displays the robust version of the ordinary sample
autocorrelation function. Thus we have available both robust SACF
and ESACF estimates. In some of our simulation results we found a
polarisation feature around the vertex, especially concerning the rj(k)

preceding the vertex point in the same row. For the unit root analysis,
this feature is promising also when the HBP regression estimator,
MM, is available for the autoregression.

5.2 Designing the robust ESACF procedure

In robustifying the ESACF procedure we have two main goals: first,
to robustify the iterative AR(p) regression estimation phase, and
second, to implement a robust autocorrelation function for every
iteration round. Our aim in this study is to use the three common
regression estimators which are next in increasing degree of
robustness: the M-, GM- and MM-estimator. In the following we first
consider the robust autoregression estimation which has the strongest
theoretical connections between traditional regression models and
time series models and, second, three different types of robust
autocorrelation functions.

In our ESACF system we are able to handle single generated or
real time series or conduct Monte Carlo simulation experiments. We
are able to use both standard and robust procedures with optional
estimators with different confidence intervals for ESACF estimates.
Figure 1 (p. 15) displays the flow chart for the proposed united
ESACF system in the ‘Tsrob’ program (see also section 6.1 and a
brief illustration in Appendix 7).
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5.2.1 M- and GM-estimator

The M-estimator

Huber (1964, 1973) introduced the class of the Maximum Likelihood
type (M) estimators in linear regression theory. For the linear
regression model

i
'
ii uxy ��� (5.3)

the minimising function for M estimator of � is
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where �(.) is a function defined on �  and �2 is the variance of ui. For
�(u) = u2 we obtain the OLS estimator. The first order condition for
the minimisation (5.4) is
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where 
du

)u(d
)u(

�
�� .

The M-estimates are obtained via the iterative solution of (5.5).
Various functions for �(.) have been developed in the literature

(see eg Marazzi 1993 and Rousseeuw & Leroy 1987).
Huber (1981, Section 7.3) considers robustifying the least squares

regression in a straightforward way. In autoregressive AR(p) models
OLS may be replaced by the M-estimator, where �(.) is a symmetric
robustifying loss function and � is a robust scale estimator of the
innovations. In the AR(p) models the M-estimator is shown to be
robust against IO outlier(s), but not if the data contain AO outlier(s).
The M-estimator is not qualitatively robust; it has an unbounded
influence function and an empirical breakdown point of zero.

Since the robustness of the M-estimator is not satisfactory, the
generalised M-estimator (GM) (also first used in regression; see
Rousseeuw and Leroy 1987) for autoregressive models has been
proposed and studied in the literature (see Denby and Martin 1979,
Martin 1979, 1980, 1983, and Masarotto 1987b). Bustos (1982)
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proved the consistency and asymptotic normality of the GM-estimator
for contaminated pth order autoregressive processes (see also the
survey article of Martin and Yohai 1985). The basic idea of GM-
estimator is to modify the minimisation problem so that the summands
of the estimating equation (5.5) are bounded and continuous functions
of the data. For example, in the AR(1) model

t1tt uyy ���
�

(5.6)

the GM-estimate is obtained via iterative solution of

0yy,
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where �(.,.) is a robustifying weight function.Various versions of this
weight function have been presented in the literature (eg Hampel et al
1986, Rousseeuw and Leroy 1987). The following types of weight
functions are used most in practice: the Mallows and Schweppe
types14. The GM-estimator is shown to be robust against AO outliers
in AR(1) models (Denby and Martin 1979). Increasing the order p of
an AR model reduces the performance of the GM estimator. As
Rousseeuw and Leroy (1987) remark, the fitting of an AR(p) model in
the presence of an isolated AO outlier yields one vertical outlier and p
leverage points in time series similar to outliers in the regression
context. It is shown that the breakdown point of the GM-estimators is
at most 1/(p+1), where p is the number of regressors (order p in AR(p)
model). Martin and Yohai (1985, section 4) consider briefly the cases
where the GM-estimator is qualitatively robust in ARMA models.

                                          
14 For an AR(1) process with AO outliers, Stockinger and Dutter (1987) recommend the
Mallows type when �1 = 0.5 and the Schweppe type when �1 = 0.8. Schweppe type is
important since then the GM estimator only downweights vertical outliers and bad
leverage points and fully exploits the correct signal in good leverage points.
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5.2.2 The MM-estimator

The robust MM-estimator of Yohai (1987) is developed for the
regression context and belongs to the class of high breakdown point
(HBP)15 estimators. The MM-estimator is defined in the following
procedure:

Assume a standard linear regression model

n,...,2,1i,uxy i
'
ii ���� (5.8)

where y1, y2, …, yn are response values and x1, x2, …, xn are
p-dimensional regressors, � is a p-dimensional vector of unknown
parameters to be estimated, and u1, u2, …, un are i.i.d. random errors
with mean zero and constant variance 2

0� . The three stages in
constructing the MM-estimator are

1. compute as an initial regression estimator, 
n�̂ , the S-estimator

(Rousseeuw and Yohai 1984), which is a consistent HBP estimator
( 5.0*

n �� ), and get the residuals ûi

2. compute the M-scale estimate, S�̂ , of the residuals based on n�̂

3. find the MM-estimate n
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The estimate S�̂  is obtained from the equation
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'
i0 b)ˆ/)ˆxy((n/1 , where, for constant b, the ratio

5.0)u(sup/b 0 ��  (Yohai 1987, p. 644); �0 is the same rho function as

in the S-estimator and �1 is another rho function.

                                          
15 Intuitively, the breakdown point measures the largest possible proportion of outliers in
the data which an estimator can tolerate before its estimate collapses to a nonrelevant
value.
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These loss functions, �0 and �1, are assumed to satisfy the known
regularity conditions (see below) and )u()u( 01 ���  and

)u(sup)u(sup 01 ���  for all u � � (see also Salibian-Barrera 2000,
Section 4.1 and You 1999, Section 2).

The values of the tuning constants, c0 = 1.56, c1 = 4.68 and
b = 0.0833, are the conditions that the breakdown point of the MM-
estimator is 0.5 and that the MM-estimator is asymptotically 95%
efficient in normal error case (see Yohai 1987, p. 648 and Yohai,
Stahel and Zamar 1991, p. 367–369).

Regularity conditions for the loss function ����(.)

The MM-estimator of Yohai (1987) contains a loss function �:���+

that satisfies the following regularity conditions (see Salibián-Barrera
2000, p. 141):

R.1 �(–u) = �(u) for all u � �, and �(0) = 0
R.2 � is continuously differentiable
R.3 supx �(x) = 1
R.4 if �(u) < 1 and 0 � v < u, then �(v) < �(u).

The computing algorithm is a modified version of the IWLS
procedure. With the known constant values, the MM-estimator has an
asymptotic efficiency of 95% with respect to the maximum likelihood
estimator, and the breakdown point is �* = 0.5 through the initial
S-estimator (Yohai 1987, p. 644–648). The influence function of the
MM-estimator is not bounded. Lucas (1996, p. 105) remarks that, with
a small positive fraction of contamination, the bias of the MM-
estimator standardised by this fraction is bounded for strictly positive
amounts of contamination. Hence the inference is that this
unboundedness is not a serious practical problem. Recently, Salibian-
Barrera (2000) studied the MM-estimator (and the S-estimator)
extensively in linear regression models and presented some illustrative
examples of robust confidence intervals based on a bootstrap
technique.
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The MM-estimator has default settings of different tuning and
control parameters and so it is suitable for modern routine use16 (see
eg Yohai, Stahel and Zamar 1991). Most of the default settings can be
changed through proper functions. The MM-estimator has been
successfully applied to macroeconomic time series (eg Lucas 1995a,
1996).

It is important to investigate the performance of the MM-estimator
also in the robust design of the ESACF procedure. Although this
estimator itself contains three stages of calculation and an AR(p)
fitting in the ESACF procedure has its own rounds, a modern
computer with a high quality R program can successfully run this
challenging estimation process, as the results of our simulation
experiments show.

5.2.3 OLS replaced by robust regression

In the AR(p) fitting of the ESACF procedure the OLS estimator can
be replaced by the proper equations of the M-, GM- or MM-estimator.
While OLS gives the explicit solution, we now have only iterative
estimation solutions. We do not write these iteration equations here,
but refer to Martin and Yohai (1985) and to our simulation program,
‘Tsrob’, which contains equations in which OLS estimators are
replaced by robust regression estimators. The robust regression
estimates are obtained by the iterative weighted least squares (IWLS)
algorithm.

The M-, GM- and MM-estimator were developed in the i.i.d.
regression context. In time series modelling they have been used with
stationary time series. For instance, Masarotto (1987b) studied the
GM-estimator for ARMA(0, 1) models quite successful by simulation
with isolated and patchy outliers (IO and AO). His criteria for
selection of a parameter estimation method were that it should be both
consistent and insensitive to outliers in the data.

The nonstationary time series context is a largely open area for this
kind of robust estimation in ARIMA time series. Martin (1980, p. 241)
gave an example of an artificial sixth-order, near nonstationary AR
process with OLS and GM-estimation results. Martin (1983, p. 198)

                                          
16 As Kelly (1992) remarks the lack of proper standardisation of various robust regression
procedures can still be problematic for users both in econometrics and statistics, although
some progress has been made in recent years. It is remarkable that the robust regression
techniques still are quite rarely used, for instance, in applied econometrics; many reasons
can be found (see eg Zaman et al 2001).
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refers to this example and notes that the GM-estimator is not
‘…guaranteed to correspond to stationary autoregressions. However,
this has not proved to be a practical limitation in our applications,...’.
Martin and Yohai (1986) and Künsch (1984) have considered
nonstationarity problems in the context of outlier-robust time series
modelling. As the discussion in Martin and Yohai (1986) shows, the
effects and problems of nonstationarity depend on the type of
contamination and structure of the ARMA model. Stockinger and
Dutter (1987) also refer to the problems of nonstationarity in robust
time series modelling and the need for further research. There exists a
relationship between these problems and robust unit root methods. A
good survey article on robust nonstationary analysis is Maddala and
Yin (1997).

The estimation results of the standard ESACF has been compared
with results for single time series published in the literature (eg
ESACF estimates of series C of Box and Jenkins 1976, Tiao 1985 and
the Canadian lynx pelt data of Wei 1990, 1994). Comparison of the
standard and robust ESACF simulation results also shows that the
iterative robust estimation of our ‘Tsrob’ program works well in the
ESACF procedure, both in the stationary and nonstationary cases. As
mentioned earlier, here the robust estimation in a nonstationary case is
a largely open question theoretically. Lucas (1996, Chapter 5.5) used
the MM-estimator in outlier-robust unit root analysis estimating the
regression equation which contains a constant, an AR(8)
autoregression part, and a trend component. Lucas remarks that the
robust high breakdown estimation for ARMA models is, however, still
a largely open area (op cit p. 118).

Choi (1992, p. 25) noticed that most of the identification methods
for stationary ARMA processes (reviewed in his book) can be applied
to nonstationary processes if the iterated least squares (ILS) estimates
are used instead of the extended Yule-Walker estimates and maximum
likelihood estimates. Personal communication with Choi (1997)
inspired the author to apply robust estimation methods in place of the
ILS method with the ESACF procedure17.

                                          
17 I would like to thank Professor Choi for his encouraging communication concerning
this important methodological question.
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5.2.4 Three robust alternatives of ACF

Outliers and ACF

There are a variety of studies in the literature which show,
theoretically and via applications, how outliers destroy the estimates
of autocorrelation and partial autocorrelation coefficients (see eg
Chang 1982, Chang and Tiao 1983, Burn and Ord 1984, Deutsch,
Richards and Swain 1990 and Chan 1995). One sizable AO alone can
ruin the idenfication outcome of ARMA modelling18. The main
damaging effects found in the literature can be summarised as follows:

1. destroying effects depend on the magnitude, time position, number
and type of outliers

2. effects depend also on the outlier configuration of the time series
(isolated and/or patchies)

3. problems are more striking when ARMA coefficients are large in
absolute value

4. a large signal-to-noise ratio, 2
core

2
core

2
outl /)( ���� , indicates high

risk of misidentification of the model
5. with an AO outlier, if the length of time series and the magnitude

of AO are fixed, ARMA processes with small variance, 2
core� , are

more susceptible to identification errors
6. the shorter the time series, the more sensitive it is to

misidentification.

In practice, the most important factors seem to be the type and relative
magnitude of an outlier19. AOs are more damaging than IOs.
Unfortunately, AOs are more common in practice. The results above
concern isolated outliers, one or more in a time series. If there are
isolated and one or more patches of outliers in a series, their effects on
autocorrelation estimates may be very complicated.

Chan (1992) showed that a sizable single AO can destroy all
information about the underlying core process. The effects of AO
outliers on estimates of SPACF coefficients are as disturbing as on the

                                          
18 As we know, identification may be a difficult task in practice also in the case of an
ordinary ARMA model without outliers.
19 Chang and Tiao (1983, p. 536) concluded, based on their experiments (AR model and
AO outlier), that ‘...fitting a model of inappropriate order may cause more problems than
it usually does when there is an intervention.’
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SACF while the effects of an IO are in general not so strong in either
case (Chang 1982, Chan 1992).

Chang (1982) found that effects of AOs and IOs on autocorrelation
estimates depend on their position in a series. She also found clear
distinctions in behaviour between AOs and IOs. If the last observation
of a series is an outlier, one naturally cannot identify its type based on
the time series’ own information (Chen and Liu 1993). When the
number of isolated outliers in a series increases, information for
tentative identification of an underlying model is rapidly destroyed.
This also happens if the differencing transformation is taken from a
series including isolated AOs. Consequently, we have in the literature
some reports on experiments to develop a robust version of
autocorrelation and partial autocorrelation functions.

For the robust ESACF procedure, we chose three different types of
robust autocorrelation function: weighted, trimmed and rank-based.
With the weighted ACF, we can select the different weight functions
of observation; in the trimmed case we can select the percentage of
extreme observations to delete. In the rank-based case, the
autocorrelation estimates are based on ranked observations. Brief
descriptions of robust variants follow.

The weighted wacf

Wang and Wei (1993) proposed a robustified autocorrelation function
in which each observation has its own weight, wi. The weighting
function is constructed iteratively (see Maronna 1976, Gnanadesikan
& Kettenring 1972, p. 95–96).

The weighted sample autocorrelation function (wacf) is then
defined as
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Wang and Wei (1993) show, based on Dunsmuir and Robinson (1981,
Theorem 2), that under the white noise model, the )k(ˆn w� , k�1, are
asymptotically independent normal random variates with asymptotic
variance 1))k(( �
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The approximated standard error (s.e.) of the wacf is then
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Note that s.e.[ )k(ˆ w� ] > s.e.[ )k(�̂ ] for a white noise model in an
outlier-free situation (see also Chan and Wei 1992, p. 153). Different
kinds of weight functions are available. The common principle is to
give smaller weights to extreme observations. Wang and Wei used
five weight functions, ie those of Tukey, Huber, Hampel, Andrews
and Maronna. Wang and Wei (1993) remark that with a proper choice
of a weight function a robust SACF performs as well as an ordinary
SACF with an outlier-free time series. In this study the default choice
is Huber’s function. Some robust regression-based versions of ACF
have also been developed  (Masarotto 1987a, Chen 1994).

Robust tacf

In robustifying the autocorrelation function, the trimming principle
(with variants) has been dominant because trimming has many strong
statistical properties (Huber 1972, Stigler 1973).

The Polasek and Mertl (1990) estimator is based on the trimming
variance principle (see Gnanadesikan and Kettenring 1972). The basic
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idea is to approximate the covariance of a series by a linear
combination of transformed variances which can be estimated robustly
more easily. We can transform the moment estimator of ACF into the
following variance-ratio of differences and sums (D/S variance
estimator) (Gnanadesikan and Kettenring 1972, p. 90–91,
Gnanadesikan 1977, p. 273–274):

K,...,1k,
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with variances
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where

Skxt and Dkxt denote the k–th lagged sums and differences of the
original time series xt:

Dkxt = xt – xt–k and Skxt = xt + xt–k, t = k+1,...,n and k = 1,...,K.

Polasek and Mertl (1990) defined the �%-trimmed ACF-estimator as
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where Var�(xt) denotes the �%-trimmed variance of the time series xt.
Since the formula (5.15) is a ratio of robust variance estimators, any
adjustment (normalising) factors cancel out.

The main results of their simulations show that we should use
robust ACF, especially if additive outliers are suspected in a time
series. Polasek and Mertl found hardly any differences in the results
for seasonal and non-seasonal processes.

Two variants of robust trimmed ACF

Chen (1994) has proposed the ‘generalised �-trimmed SACF’ because
outliers are not necessarily the extreme values in a time series. Chen,
however, assumes that the outliers have already been detected. He
proposes also a variant, ‘cross-product-based �-trimmed SACF’ in
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which the idea is to remove the effects of the observations that cause
extreme cross products (cross-product of mean-corrected yi and yi–k;
see Chen 1994, Section 5.5).

Rank-transformation based rkacf

In statistics, many rank methods are found to be robust (eg Conover
1980). By replacing the values of the observations by their ranks, the
influence of some extreme outliers may be reduced. Kelley and Noel
(1982) estimated the conventional autocorrelation and partial
autocorrelation coefficients based on unranked and ranked time series
to identify the AR(1) and ARMA(1, 1) processes in outlier-free and
outlier cases. The results were surprisingly promising20. Our
simulation program includes the simple option of rank-based
autocorrelation by Kelley and Noel (1982). Our experience with the
rank transformation is similar to that of Kelley and Noel. If we know
that a time series contains only a small number of moderate, isolated
outliers, the rkacf may be a clear-cut and quick alternative tool.

5.2.5 Combination of OLS and robust ACF

The OLS method is to some extent robust in regression and time series
modelling (eg Bustos 1982, p. 492, Lucas 1995a, 1995b and 1996). It
is known that if a time series contains only IO outliers, OLS provides
consistent but not efficient estimates. With AOs, the OLS estimator
breaks down, and we need a robust estimator.

In the EACF framework one robust version of this procedure could
be the combination of OLS in AR(p) fitting and a robust
autocorrelation function. In simulations and for some real series, we
used the combination of OLS and weighted ACF. The results are
promising. However, we can expect that if the parameter coefficients
of the ARIMA model are high in modulus and/or the standard
deviation of the outlier distribution in contamination is large, OLS
may produce sufficiently biased AR(p) estimates to reduce the
performance of the OLS/wacf combination.

                                          
20 Drawing on the robustness literature, we can consider the simulation experiments of
Abdullah (1990) with the Spearman rho and Kendall tau estimators. The results show that
these estimators are robust to some extent, but not sufficiently robust when the percentage
of outliers is high.
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5.3 Standard error of the ESACF coefficients

5.3.1 Standard error based on the white noise assumption

Tiao and Tsay used the simple approximation, (n–k–j)–1/2, as the
asymptotic standard error of the single ESACF coefficients. This is
based on the assumption that the transformed )j(

t,kW  series is white

noise. As they remark, this estimator may underestimate the standard
errors of single ESACF coefficients. The results of our simulations
seem to be in line with their suggestion. According to our simulation
results of Tables 4 and 5 concerning the vertex, this asymptotic
estimate (1/D) is on average 61% of the sample robust estimate
calculated directly from the results of 1000 replications of 16 models.
For the non-robust case, the percentage is greater, as can be seen from
the results of column A of these Tables.

5.3.2 Bartlett’s asymptotic formula

In this study the well-known Bartlett (1946) formula for the variance
of the estimated autocorrelation coefficients of a stationary Gaussian
process
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is applied in the ESACF table, on the assumption that the transformed
)j(
t,kW  series is generated by an MA(q) model. However, as is known in

the literature, the application of Bartlett’s formula can produce
unsatisfactory results. The adequacy of different approximations to the
distributions of the sample autocorrelations has been examined (eg Ali
1984). Pukkila (1984) did a simulation study of Bartlett’s (1946)
asymptotic formula for certain ARMA models and parameter values
and all lags (here 1–20). His results show that the outcomes are highly
model dependent and can be very different for seemingly similar
models (see also the conclusions of Mélard and Roy 1987). Aczel and
Josephy (1992, p. 72) remark that the use of Bartlett’s formula in
confidence intervals, ie estimated autocorrelations with two standard
error bounds, may also be problematic in the traditional (normality of
observations) case, and lead to incorrect conclusions. They note that
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the symmetric interval, �� ˆ*Crk , may not be appropriate and at least
some correction should be made. Berlinet and Francq (1997) show
that the estimate given by this formula can deviate markedly from the
true asymptotic value when the requirements (linearity and vanishing
of fourth-order cumulants) on the underlying process are not satisfied.
They remark that this is the case for a large class of models and
investigate the behaviour of smoothed empirical estimates.

A new and still more problematic situation occurs in our
simulation experiments, since in the ESACF procedure we use a
robust autocorrelation function because the transformed series, )j(

t,kW ,

contains information on outliers. Thus conditions for Bartlett’s classic
formula are violated: a series is contaminated-normal (non-Gaussian)
and we use a robust autocorrelation function. Therefore we should
develop a robust version of Bartlett’s approximation. In addition, we
should use something other than the traditional t-values for robust
95% confidence intervals in a robust ESACF table. Various
approaches and combinations are available in the literature on
constructing robust confidence intervals (see Birch and Martin 1981,
Wilcox 1997 and Field & Welsh 1998).

For the simulation results, we have presented the ratio of
simulation sample std. error to Bartlett’s formula, robust case (column
C in Tables). We can use these numerical results in future studies in
constructing the confidence intervals for single robust ESACF
coefficient estimates. For a single real and simulated series, we can
use the asymptotic standard error (n–k–j)–1/2, in addition to Bartlett’s
approximation, to obtain the simplified (X,0)-indicator version of the
ESACF pattern. We are also able to set different values of C in
calculating the confidence intervals �C*std.error (C is a decimal
number). Further, we can experiment with different constants (t
values), Clow and Cup, in calculating the confidence intervals (see Birch
and Martin 1981).

5.4 Robust confidence intervals

The factors of the traditional confidence interval, ie a parameter
estimate, its standard error and t values, are all non-robust. For robust
confidence intervals, one should have a robust version of each of these
factors. For robust standard errors and t values, we have only single,
separate research results in the literature. Next, we look at some
results from the robustness literature.
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Short review of robust confidence intervals research

There is no comprehensive review of the distributions of robust
estimators and their confidence intervals in the statistical literature.
The main reason is that the exact distributions of robust estimators are
often difficult to derive, and simulation studies are usually needed to
assess and compare the features and performance of various types of
robust regression estimators and other robust estimators.

In a manner analogous to the classical Gaussian confidence
intervals one can construct the robust confidence intervals of the form
� �n/wtT *

r� . Here T is some robust location estimator,21 w is its

scale estimator, and *
rt  is a chosen percentage point of the t

distribution with n–1 degrees of freedom. The core problem is how to
choose (or construct) *

rt  and w for various robust estimators.

Regression model context

Huber (1968) first considered the robust intervals (‘robust confidence
limits’) problem. Gross (1977) examined various robust confidence
intervals for regression coefficients using Monte Carlo methods for
different small samples. In particular he studied the problems of
finding t* values (95 per cent t values) by simulations and found that
t* values depend on various factors such as the underlying distribution
of errors, scale estimator and robust estimator of regression
coefficients. From recent studies of this problem area of different
location estimators, we would single out Wilcox (2001, especially
Chapters 5 and 9).

Hoaglin et al (1983) consider robust confidence intervals for
selected location and scale estimators and present some examples
from the literature. They present the percentage points of the t
distribution with 0.7(n–1) degrees of freedom for a robust biweight
pair of estimators. Rousseeuw and Leroy (1987, p. 41, 59–60, 81)
consider the effects of outliers on t-based significance levels and on
the construction of confidence intervals. They also give (p. 48–49 and
59–60) some simple examples of fitting the classic and robust

                                          
21 Among earlier studies, Cox and Hinkley (1974, p. 353–354) considered the asymptotic
and simulated variances of some classical and robust location estimators under four
different underlying distributions. Their results (Table 9.1 op cit) show how the variance
of the trimmed mean increases clearly if the underlying distribution is contaminated
normal instead of normal. For recent studies of the trimmed mean, see Wilcox (2001).
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regression with coefficient estimates (the outliers are assigned zero
weights in the estimation) and their standard errors and 95%
confidence intervals. Robust estimates have smaller standard errors
and narrower confidence intervals compared with ordinary OLS.
Staudte and Sheather (1990) consider t testing and the classic and
robust confidence intervals. They note that robust regression schemes
generally should include procedures for constructing confidence
intervals and hypothesis tests. Ryan (1997) remarks that this important
area is still relatively unexplored and requires much further study.

In their review article Field and Tingley (1997) report that
bootstrap techniques have become useful tools in constructing robust
confidence intervals in linear regression. Wilcox (1997, 2001)
considers the percentile bootstrap technique and deems it the best
method for computing confidence intervals when using M-regression.
But, as Maddala and Rao (1997) remark, there are many problems
ahead (see Stromberg 1997, Amado & Pires 2000) and further study is
needed in applying bootstrap methods in the presence of outliers and
high leverage points. Salibian-Barrera (2000) also studies bootstrap
and robust bootstrap confidence intervals with MM-location and
-regression estimators and presents some examples from real data.
Yohai and Zamar (2001) briefly review recent robust inference. They
also consider the bootstrap and robust bootstrap techniques and refer
to the concept of globally robust confidence intervals.

Time series framework

There are few studies on robust confidence intervals in the context of
time series models. Hampel et al (1986, p. 422) refer to the problem.
So far, the most robust theoretical simulation study is Birch and
Martin (1981). They used Monte Carlo experiments to investigate
robustness properties of confidence intervals of the AR(1) parameter
based on the OLS and GM-estimator. The separate analyses were
carried out for innovational (IO) and additive (AO) outliers. They
found that GM-estimators possess desirable confidence interval
robustness properties in terms of robustness of validity and robustness
of efficiency concepts (which they defined for their experiments).
Birch and Martin present the results for 95% confidence intervals
(Table V: maximum and minimum t values, t* and t*, based on 250
repetitions) of the GM-estimator with three values of �1 of an AR(1)
process and three sample sizes. It is remarkable that the t values
obtained indicate asymmetric robust confidence intervals in every
case; for instance, when n = 100 and �1 = 0.50, conservative 95%
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t values (for the combination of GM/biweight) obtained maximum and
minimum upper and lower 2.5% points t* = 2.23 and t* = –2.58. The
pair of t values obtained vary more due to differences in sample size
than to differences in value of �1.

The bootstrap technique has also been applied to time series
models. Two basic types of bootstrap can be used: parametric and
moving block bootstrap. Künsch developed the latter technique for the
time series context (Künsch 1989). Aczel and Josephy (1992) applied
the Künsch procedure successfully to a nonstationary foreign
exchange rate series. Paparoditis & Streitberg (1992) applied the
parametric bootstrap to vector autocorrelation. Glendinning (1998)
used a special version of bootstrap in the case of the corner method in
ARMA identification of outlier-contaminated data. Jeong and Chung
(2001) applied a recursive bootstrap in testing for autocorrelation in
regression models.

Potential use in ESACF approaches

We applied a conservative t value principle in our standard and robust
ESACF estimation. At the five per cent risk level, a confidence
interval of �2 std. errors of estimator was used. The main question is
how valid this harring t value is in the case of robust estimators. How
should we construct some *

rt  values for our design of robust
confidence intervals? In our study we encounter the robust confidence
interval problem as regards both AR(p) iterative regression and
coefficients of the robust ESACF table.

From our simulation experiments we obtained results for standard
errors of the ESACF coefficients. We should try to combine the
influences of the robust iterative AR(p) and robust autocorrelation on
the robust confidence intervals of ESACF coefficients. The work of
Birch and Martin (1981), Aczel and Josephy (1992), Glendinning
(1998) and Wilcox (1997) provides results and optional approaches
for examining and experimenting with various robust confidence
intervals. One potential bootstrap is a recursive bootstrap (see Jeong
and Chung 2001).

It seems that our conservative practice of using 2 as the value of t
in every confidence interval for 2.5% upper and lower points might be
a starting-point for most robust cases. An argument for this is our
result that in robust cases the shape of an approximate sample
distribution of a single ESACF coefficient is often more normal than
in non-robust cases.



67

In experiments with a single series, we are able to input various
symmetric and non-symmetric t values for the standard and robust
ESACF coefficients to display the simplified (X,0) version of the
ESACF table (see an example in Appendix 7). However, in our Monte
Carlo experiments, we used only symmetric t values for standard and
robust ESACF estimates.

5.5 Robust ESACF complementing robust unit
root testing

In statistics and econometrics there is a comprehensive literature on
unit root testing procedures for time series. This high degree of
activity is understandable. A great majority of economic time series
exhibit nonstationary behaviour. Additionally, mixed ARIMA(p, d, q;
q>0) processes are quite common in economics22. As is known, the
MA(q) part can cause severe problems in unit root testing (eg Schwert
1989). So, it is important to ensure the ‘most correct’ specification of
the ARIMA model before testing for the existence of a unit root. In
practice, this means the use of all three identification tools, SACF,
SPACF and ESACF, and comparing the results.

If outliers are known to occur in a time series, unit root testing
encounters many difficulties. Thus, in unit root econometrics, certain
robust methods are already incorporated into both the estimation of
parameters and the diagnostic testing of econometric and time series
models. Of recent studies and reviews, we would mention Lucas
(1995a and 1995b, 1996), Maddala and Yin (1997), Maddala and Kim
(1998), Yin and Maddala (1998) and Yin (1995).

It is well known that, if one takes first differences of a time series
in which AO outliers are known to occur, then, for each isolated
outlier, an immediately consecutive, new spurious outlier of the same
magnitude is obtained (Chang 1982, p. 118). The situation may
become distorted if there are other original isolated and/or patchy AO
outliers. The tolerance limit for the number of outliers may be reached
quite quickly, even if robust methods are used (eg HBP regression).
So, if we can avoid differencing and at the same time use a robust
procedure, eg a robust ESACF, we are better able to find a correct
solution for existence of a unit root. Yin and Maddala (1998) have

                                          
22 An invertible MA part is often used due to measurement errors which usually are
assumed to be stationary.
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shown that the existence of isolated AO outliers leads to a biased
rejection of the unit root hypothesis in the case of an I(1) time series
(ie generate spurious stationarity). According to Yin and Maddala
(1997, 1998), unit root testing is differently sensitive to outliers,
depending on the type of outlier. For the case of patchies of AO
outliers, we have no results in the statistical or econometric literature,
and so the contribution of the robust ESACF procedure may be
important.

With outlier-free time series, the standard ESACF can be used as a
simple complementary, regression-based method in addition to the
standard unit root testing. With outliers, the robust version of the
ESACF can be used as a complementary tool in unit root testing23.
Additionally, we may obtain lacking (hidden) information eg on the
problem involved in difference-stationary or trend-stationary series24

(eg Mills 1991, Chapter 11, Tsay 1993). As is known in the literature,
the handling of nonstationarity and outliers simultaneously,
particularly in ARIMA(p, d, q; q>0) modelling, has been a real
challenge to researchers (eg Fieller 1979, Stockinger & Dutter 1987
and Maddala and Yin 1997). The best performance should be obtained
with the combination of a robust ESACF and robust unit root testing,
in which ordinary least squares is replaced by the MM-regression
estimator.

Some simple examples

In Section 6.3 we have generated three I(1) processes ARIMA(1, 1,
0), ARIMA(1, 1, 1) and ARIMA(0, 1, 1) and isolated AO outliers. We
see, for instance, that for the first-differenced form of an I(1) series it
is difficult to identify a correct model when the original series
contains AO outliers. Only the robust ESACF procedure (most often
based on MM-estimator) is able to produce correct results. For the
ARIMA(1, 1, 1) process we found that, with added AO outliers, the

                                          
23 Another way could be first to estimate the outliers and their effects on the time series
and then to apply unit root testing for the outlier-adjusted series. Because the widely used
combined outlier and ARIMA modelling procedure (eg Chen and Liu 1993) is not
adequately robust, this other way may perform poorly. We need further research and
applications of different ARIMA models and types of outliers and outlier configurations.
24 DeJong et al (1992) concluded in their study that it is difficult to discriminate between
the two models using classical testing methods. McCulloch and Tsay (1994) proposed a
Bayesian test procedure for distinguishing between trend-stationarity and difference-
stationarity of a linear time series. As is well-known, a long economic time series may
contain both kinds of stationarity.
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original ESACF results were ARMA(1, 1), ie outliers destroy the unit
root. This result is in line with the results of Yin and Maddala (1998).

For practical work, one can sketch a simple example of the use of
ESACF in the case of a nonstationary ARIMA(1, 1, 1) process. In the
ESACF table we have the result in the form of an ARMA(2, 1)
process (see p. 39 of this thesis); we can check the nonstationary part
of the AR-polynomial using iterated AR coefficients once the values
of p and q are specified (TT84, p. 95). In the case of known or
expected outliers (isolated and/or patchy) or structural breaks in the
time series, we provide robust estimates of AR coefficients and check
the non-stationarity part based on these parameter estimates. Then we
may obtain a decisive bit of additional information to determine
whether the underlying process contains a unit root. Similarly, two
known processes, an ARMA(1, 1) and an ARIMA(0, 1, 1), may have
a common robust ESACF result and if, in the ordinary model fitting,
the robust AR estimate 1ˆ

R �� , the process is an I(1) process
ARIMA(0, 1, 1). However, the two fitted models may be very close
(see eg Tiao 2001, p. 77 and 80)25. We can quite safely estimate the �̂
with the robust MM-estimator and obtain information about the
possible existence of a unit root. This can also be especially
interesting but difficult in the extreme situation where both estimates,
�̂  and �̂ , are near in value to 1 and we may interpret this as a white
noise series. In particular, the size of the MA parameter 	 is shown to
have a clear influence on unit root testing and hence on identification
results (eg Schwert 1989).

                                          
25 Tiao did this in the estimation stage of modelling and checked the stationarity condition
(see also Pankratz 1991, p. 64 and 75).



70

6 Monte Carlo experiments

6.1 Objectives and design of simulations

The objectives of the simulation experiments are: a) to study the
performance of the various versions of the robust ESACF procedure,
b) to compare the results with the standard ESACF method and c) to
study the sample distributions of single estimates of the ESACF table,
especially their standard errors. The experiments are classified as the
following runs:

1. general experiments of stationary and nonstationary ARMA(1, 1)
and ARIMA(1, 1, 1) series with randomly placed, isolated AO and
IO outliers and outlier-free time series

2. experiments based on the combination of OLS estimation and the
weighted autocorrelation function, wacf

3. three experiments of the most common nonstationary I(1) time
series, ARIMA(1, 1, 0), ARIMA(1, 1, 1) and ARIMA(0, 1, 1), to
study the effects of first-order differencing on AO outliers and
ESACF identification for the original and transformed series.

For each model and outlier combination, both standard and robust
ESACF estimation was carried out, for comparison purposes. Three
different versions of the standard error were estimated: a standard
asymptotic (n–k–j)–½ (white noise assumption), Bartlett’s formula
(MA(q) assumption), and a standard error calculated from simulated
values. In addition to the routine output, the sample frequency
histogram and box plot of each single coefficient estimate of the first
4�4 sub-matrix (first four rows and columns) can be calculated for
each ARMA model. This was carried out with the special R code
command ‘plot.simu.esacf’ from the saved simulation results files.
These histograms are displayed with the following descriptive
statistics: location26, scale, root-mean-square-error (rmse), minimum,
maximum, skewness, kurtosis and Jarque-Bera test value. An example

                                          
26 As usual, we use the mean, but in this exploratory case we could experiment also with
the median and (after some programming) with the mode (see Bickel 2002 and
Rousseeuw and Leroy 1987). Bickel´s article was available after our simulation runs. In
the case of a mode, comparison of simulation results between standard and robust ESACF
could be ‘a creative process’.
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of the basic simulation results with these 16+16 histograms is given in
Appendix 1.

The inspection of each ESACF table as to the whole pattern of
estimates is essential in evaluating the performance of the method.
The idea is to search the vertex of a triangle of asymptotic ‘zero’
values from the ESACF table. As is mentioned earlier, the coordinates
of this point describe the maximum order of the AR and MA parts of a
model also containing a unit root27. In simulation results, the focus is
on the estimate of theoretical vertex and on its neighbour coefficient
estimates. The first row of the matrix (here AR0) contains the
estimates of the SACF. Due to lack of space, it is possible to report
only a part of the comprehensive simulation results here. The
‘truncated’ ESACF pattern (a 3�6 matrix) estimates of the 16 models
are presented in Appendices 2–3. The total number of different Monte
Carlo simulation models was 56.

Design of Monte Carlo simulations

We focused the simulation experiments on the mixed models
ARMA(1, 1) and ARIMA(1, 1, 1). The main reasons for the choice
are:

1. to study the ESACF approach in mixed ARMA(1, 1) and
ARIMA(1, 1, 1) models which most often occur in economics and
engineering sciences; as considered in Sections 3.1–3.2 and 5.1,
the original ESACF was developed for a mixed ARMA(p, q;
q > 0) scheme, which often is an appropriate candidate also for
residual series of econometric models; robust modelling of these
residual series may help us to detect ‘hidden’ outliers (isolated
and/or patchy) and so we may uncover an inadequacy of our
econometric model

2. the nonstationary ARIMA(1, 1, 1) model is challenging, especially
for iterative robust regression estimation; furthermore, robust
identification and estimation of the AR(1) regression parameter,
�1, may provide important additional information for unit root
testing (see section 5.5 of this thesis).

                                          
27 For instance, in the case of an ARIMA(1, 1, 1) process, a unit root is presented as an
AR(1) with parameter �1 = 1 and a tentative model in the ESACF table is found in the
vertex of an ARMA(2, 1) model (Pankratz 1991, p. 63–64 and 75).
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The common parsimony principle (smallest possible number of
parameters) in time series modelling and experiences of ‘real life’,
especially in economic and engineering time series, affected our
choice of models. The principle of parsimony is widely considered in
the literature (see eg Box and Jenkins 1970, 1976; Priestley 1981, p.
140–141 and Chatfield 1996, p. 41).

All the simulation results are based on 1000 replications. The
sample sizes are n = 50, 100 and 200 (not common to all the models).
The outlier types used in simulations were the additive (AO) and
innovational (IO) outlier (see section 2.6). As is common in the
literature, outliers are generated so that every observation is an outlier
with a certain probability, here 0.02 and 0.05. From the general
simulations, we used in 38 models the contamination proportions,
� = 0.02 and 0.05. The standard deviation of the outlier distribution
applied was �o = 3, 5 or 10, depending on the form and parameter
values (ie on degree of autocorrelation) of the selected ARMA
models. The reason for selecting the standard deviation �o = 10 for
contamination in our experiments was to study the robustness power
of the ESACF in the heavily contaminated time series. The choices
made in the literature are also taken into account.28 In special
experiments, the outlier patches of two or three fixed AOs were used,
both at fixed places and randomly (see Appendix 4).

The simulation experiments were run via the program ‘Tsrob’,29

which includes the standard and robust ESACF procedure
programmed with the modern R code (see Appendix 7). The following
robust regression estimators were used: M, GM and MM. The great
majority of the experiments reported in this thesis were carried out
with the MM-estimator, which is the default estimation method. The
M-estimator was used in case of IOs. The GM-estimator was used in
the examples of single real and generated series. Two alternative
weight functions are available here for the GM-estimator: the
Mallows- and Schweppe-type (eg Stockinger and Dutter 1987, p. 40–
41).

Three robust versions of the classisc sample autocorrelation
function were used: weighted ACF (wacf), variance trimmed ACF
                                          
28 Allende & Heiler (1992) used contamination proportions � = 0.05 and 0.10; as a
variance of the outlier distribution they used 9 var (xt) and 100 var (xt). Stockinger and
Dutter (1987) used the contamination proportions � = 0.05 and 0.10; as the variance of

outlier distribution they used the quantity 9 var (xt) and 121
2
IO �� .

29 With this program we are able to insert isolated AOs and IOs simultaneously, both
randomly and at fixed points. Additionally, the patch of AOs can be scattered
simultaneously at fixed points and randomly.
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(tacf) and rank-based autocorrelation (rkacf). In the wacf procedure
the default weighting function is Huber’s psi-function. In the tacf the
default for trimming is 0.05. The robust rkacf is based on a ranked
time series. All these autocorrelation estimators are available with
each of the robust regression estimators. We used mostly the wacf
version.

For the robust autocorrelation functions no robust standard error
formulas are available, so we used the classic formulas, ie (n–k–j)–½

and Bartlett’s formula. For comparison, we also calculated the
standard errors of the robust estimates based directly on the
replications. The robust estimators of scale, the MAD (median of
absolute median deviations) and Qn (see Croux and Rousseeuw 1992)
are optionally available for the M-, GM- and MM-estimator. The
MAD is the default choice.

The flow chart, ‘United ESACF identification procedure’, based
on the Tsrob program, is displayed in Figure 1 (p. 15). More detailed
technical information about the robust scale estimators,
autocorrelation functions and robust regression estimators is given in
Appendix 7.

6.2 Main results

General simulations30

The simulation results show that the new robust ESACF procedures
work technically well and fast alongside the standard ESACF method.
This is a good starting-point since the robust estimation methods for
the AR(p) parameters are themselves iterative, multi-stage procedures.
Only in some cases did the message appear that a convergence of an
algorithm was not reached at the maximum number, 20 (or 10), of
iteration steps31; this seems not to have had any noticeable effect on
the estimation results. The selected main results of the general
simulations are presented in Tables 1–6 and Figures 2–10. Only parts
of the ESACF tables can be displayed in Appendices 1–3, due to lack
of space. Monte Carlo results for some common ARIMA models (also
random walk model) in economics and engineering sciences are
displayed in Appendix 4; there are also three experiments with special

                                          
30 The main Monte Carlo simulations were run in two sets of models in a network of 18
simultaneously running PCs.
31 This kind of message was signalled also in estimating some single time series.



74

outlier configurations. All the robust ESACF results of Appendix 4
are based on the MM/wacf combination.

6.2.1 ARMA(1, 1) and ARIMA(1, 1, 1) processes

ARMA(1, 1) process

Here we apply standard and robust ESACF to the ARMA(1, 1) models
with two parameter structures. With the parameter values �1 = 0.6,
	1 = –0.4 and �o = 5, the performance of standard and robust ESACF
is similar, independent of length of series, but when �1 = 0.8, 	1 = –0.7
and �o = 10 robust ESACF outperforms the standard ESACF.

Besides the estimate of the theoretical vertex of the triangle in the
ESACF table we need to inspect the vertex’s neighbouring estimates,
rj(k), especially the immediately preceding one. In general, it is
important to inspect how ‘polarised’ the ESACF pattern is in the
neighbourhood of the vertex. The inspection is especially important
for the mixed models. The distinctions between robust and standard
ESACF estimates can be found in Appendix 1.

In simulation results for the ARMA(1, 1) models the mean vertex
value is marked by an asterisk if the model is correctly identified at
the 5% level. Table 1shows that 9/16 of standard and 15/16 of robust
estimation models are correctly identified.
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Table 1. Summary of simulation results:
mean of theoretical vertex1) of ESACF
table for an ARMA(1, 1) model,
1000 replications

Model
ARMA(1, 1)

Percentage: vertex value
beyond �2 standard

errors2), %

Mean of theoretical vertex
(expected value = 0)

Outlier type3) and
contamination
proportion (%)

n A B A B
����1 = 0.6  θ1  = –0.4  ����o = 5
 1 50 3.0* 2.8* 0.057 0.043 AO2
 2 50 4.44) 3.8* 0.054 0.037 AO5
 3 50 2.6* 3.1* 0.061 0.048 IO2
 4 50 2.8* 2.6* 0.046 0.025 IO5
 5 200 3.6* 4.3* 0.022 0.010 AO2
 6 200 4.6* 4.1* 0.019 0.004 AO5
 7 200 4.5* 3.7* 0.024 0.018 IO2
 8 200 4.3* 3.6* 0.023 0.014 IO5
����1 = 0.6 θ1  = –0.4  ����o = 10
  9 50 4.14) 2.4* 0.041 0.026 AO2
10 50 6.44) 4.1* 0.033 0.016 AO5
11 50 3.1* 2.0* 0.055 0.028 IO2
12 50 3.1* 2.5* 0.070 0.033 IO5
13 200 6.24) 4.5* 0.018 –0.011 AO2
14 200 6.3 6.9 0.021 –0.030 AO5
15 200 5.5 3.7* 0.029 0.019 IO2
16 200 5.7 3.9* 0.026 0.004 IO5
1) Point at which row and column coordinates of the vertex of a triangle of asymptotic ‘zero’

values correspond to AR order p and MA order q, respectively.
2) Standard error based on 1000 replications.
3) AO = additive outlier, IO = innovational outlier.

A = OLS estimation, B = Robust estimation (MM-estimator: AO; M-estimator: IO)
�o = standard deviation of outlier distribution in contamination
* = correct identification at 5% level

4) = ESACF identifies an AR(1) model.
n = sample size

As can be seen from Table 1, for models 1–8, the results of standard
ESACF are good independent of sample size and when �o = 5. Only
when the AOs share is 5% are the results incorrect. For robust
ESACF, the results are very good. In models 9–16, when �o  is 10, the
robust method clearly outperforms the standard one. As may be
expected, the standard ESACF fails especially in the case of 5% AO
contamination.

The sample distributions of single standard ESACF estimates may
be quite non-Gaussian, and robustifying seems to give them more
normal shapes or normal distributions. Figure 2 dispays an example of
the ARMA(1, 1) process. The values of the Jarque-Bera test statistics
show the difference between robust and non-robust case. Another
example which concerns the ARMA(1, 1) model with two patches of
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outliers in time series is given in Figure 3. We find both normalising
of sample distribution and decreasing of bias in the ESACF vertex
estimates. We return to outlier-free ARMA(1, 1) processes in Section
6.2.2. The results of the combination OLS/wacf in case of
ARMA(1, 1) models are considered in Section 6.2.3.

Figure 2. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1), phi = 0.80, theta = –0.70; n = 200; st.dev of AO = 10;
simulations: 1000 replications; 2% isolated AO outliers; robust (MM/wacf) and
standard (OLS/acf) autoregression/autocorrelation are used in ESACF estimation.
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Figure 2a: robust (upper) and standard
histogram

Figure 2b: robust and standard box plot

In general, the sample variance based on 1000 simulation replications
is greater than that for simple asymptotic and Bartlett’s
approximation. Another property is that the rmse of the single
coefficient estimates in the ESACF pattern, is slowly convergent with
increasing value of q for both robust and standard estimates, as can be
seen in the example model of Appendix 1. This can also be seen in
Figures 11 and 12.

In Appendix 4 we have an ARMA(1, 1) model (model 10) where
we examine the ESACF and special outlier configuration: two patches
of fixed AOs, one at the end of series and another randomly. The
results show that the robust ESACF clearly outperforms the standard
one.
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Figure 3. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1), phi = 0.70, theta = 0.40; n = 200; simulations: 1000
replications; a fixed 3-AO patch at end and a fixed two-AO patch placed
randomly; robust (MM/wacf) and standard (OLS/acf) autoregression/
autocorrelation are used in ESACF estimation.
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Figure 3a: robust (upper) and standard
histogram

Figure 3b: robust and standard box plot

ARIMA(1, 1, 1) processes

In simulations of the nonstationary ARIMA(1, 1, 1) models, we used
robust regression estimators ‘without theory’ in the AR(p) iteration
phase of the ESACF procedure. As expected, OLS estimation and
standard ESACF encounters fail, especially in the AO case. Of the
robust estimation cases, 6/16 were exactly correctly identified, while
of the standard cases 4/16 were exactly correct (see Table 2). For
models 17–24 the mean of ‘vertex-%’ of standard ESACF (column A)
is 7.4%, while for the robust ESACF (column B) the corresponding
mean is 4.3%. The standard ESACF performs well with IOs, but fails
with AOs. The robust ESACF performs quite successfully with both
types of outliers, except for the cases of AO5. The results seem not to
depend on length of time series. For the extreme models, 25–32, the
results are not so good. The case of AO5 is the most difficult, as might
be expected. Here too, the results do not depend on length of time
series. The results in Table 2 indicate the need for further simulations
and a sensitivity analysis with different ARIMA parameter
combinations and different �o values. In particular, the design of
different values of �o, relative to different size and sign combinations
of ARIMA coefficient parameters, will be needed.
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In Appendix 4 we examine the unit root model 11, [ARIMA(0, 1,
0)], with the outlier configuration: a patch of two fixed AOs located
randomly in time series. The identification results show that the robust
ESACF performs quite well (5.5% in 5% theoretical confidence
interval, 2.4% on the Bartlett-based interval) while the standard
ESACF clearly fails. The similar outlier configuration with model 12
[ARIMA(0, 0, 0)] produces similar results. In this model the robust
Bartlett-based result for the vertex interval is 4.2%.

Table 2. Summary of simulation results:
mean of theoretical vertex1) of ESACF table
for an ARIMA(1, 1, 1) model,
based on 1000 replications

Model
ARIMA
(1, 1, 1)

Percentage: vertex value
beyond �2 standard

 errors2) , %

Average of theoretical
vertex value

(expected value = 0)

Outlier type3) and
contamination
proportion, %

n A B A B
����1 = 0.6  θ1  = –0.4  ����o = 5
17 50 3.84) 3.2* 0.036 0.000 AO2
18 50 6.64) 3.74) 0.066 0.025 AO5
19 50 3.9* 3.8* –0.035 –0.039 IO2
20 50 3.8* 3.6* –0.041 –0.043 IO5
21 200 11.44) 5.6 0.082 0.038 AO2
22 200 26.54) 7.14) 0.117 0.044 AO5
23 200 3.6* 3.6* 0.001 –0.001 IO2
24 200 3.6* 4.2* –0.009 –0.018 IO5
����1 = 0.85 θ1  = 0.75  ����o = 10
25 50 6.14) 5.74) –0.015 0.024 AO2
26 50 6.34) 6.25) –0.053 0.039 AO5
27 50 6.54) 4.5* 0.021 0.023 IO2
28 50 6.64) 6.24) 0.016 0.019 IO5
29 200 4.94) 9.24) –0.015 0.054 AO2
30 200 9.16) 9.34) –0.108 0.066 AO5
31 200 6.84) 5.9 0.026 0.023 IO2
32 200 6.8 4.6* 0.020 0.014 IO5
1) Point at which row and column coordinates of the vertex of a triangle of asymptotic ‘zero’

values correspond to AR order p and MA order q, respectively.
2) Sample simulation std’s.
3) AO = additive outlier, IO = innovational outlier

A = OLS estimation, B = Robust estimation: MM-estimator
�o = the standard deviation of outlier distribution in contamination
* = correct identification at 5% level.

4) = ESACF identifies an AR(2) model.
5) = ESACF identifies an AR(1) model.
6) = ESACF identifies an ARMA(1, 1) model.

n = sample size
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The shape of the sample distribution of single ESACF estimates is
interesting in the case of a nonstationary ARIMA process32. The
results given in Figure 4 show that robustifying normalises the sample
distributions of single ESACF estimates. Here we have used the MM-
estimator in the robust regression part. We consider outlier-free
ARIMA(1, 1, 1) models in Section 6.2.2. The case of OLS/wacf in
robust regression in ARIMA(1, 1, 1) models is considered in Section
6.2.3. The potential use of robust ESACF in robust unit root analysis
is briefly considered in Section 5.5.

As mentioned in Section 6.1 we generated the outliers so that
every observation is an outlier with a certain probability. We also
carried out a small experiment on the condition that every realisation
has exactly a given number of outliers, in this case 5% (2 outliers in
50 observations). As Figure 5 shows, the results for robust and
standard ESACF are quite different. The bias of the robust ESACF
estimate is clearly smaller but standard error greater compared with
the standard ESACF estimate. Jarque-Bera test results show the
normalising effect of the robust ESACF procedure.

In most cases robust standard error for the vertex is greater than in
the standard case. This can be seen from Table 6 (p. 86). Reasons for
this property are the robust AR(p) fitting (see residuals of robust
regression versus OLS regression in examples of Rousseeuw & Leroy
1987, eg p. 48 and 59) and the structure of the standard error of the
weighted autocorrelation (see Chan & Wei 1992, p. 153–154). Most
clearly this property can be seen in ratio D where we also find the
effects of the asymptotic formula (n–k–j)–½, which underestimates the
standard error (eg TT84, p. 87; Tiao 2001, p. 68). The combination of
values of ARIMA coefficients, outlier type and variability of outliers,
�o, has an impact on these ratios; the length of time series does not.
The degree of contamination also seems to affect this ratio in some
cases, eg ratios A and B for IOs.

                                          
32 To our knowledge, no research on this has been published in the literature.
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Figure 4. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARIMA(1, 1, 1), phi = 0.85, theta = 0.75; n = 50;st. dev of AO = 10;
simulations 1000 replications; 5% isolated AO outliers; robust (MM/wacf) and
standard (OLS/acf) autoregression/autocorrelation are used in ESACF estimation
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Figure 4a: robust (upper) and standard
histogram

Figure 4b: robust and standard box plot

Figure 5. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1, 1), phi=0.60, theta=-0.40; n=50; st.dev of AO= 10,
simulations: 1000 replications; 5% isolated AO outliers in every generated
realisation; robust (MM/wacf) and standard (OLS/acf) autoregression/
autocorrelation are used in ESACF estimation
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6.2.2 Outlier-free series

The standard and robust ESACF estimations were carried out for the
outlier-free series corresponding to the general simulation models.
The results of Table 3 show that, generally, there are no essential
differences in performance between robust and standard ESACF
method with outlier-free data. This inference is supported by the fact
that the sample distributions of the vertices in ESACF pattern are
quite similar in shape, as can be seen from Figure 6 (see also Section
6.2.4).

Table 3.

Summary of simulation results: mean of theoretical vertex1) of the
pattern triangle in the ESACF table for an ARMA(p, d, q) model,
1000 replications. The outlier-free models corresponding to the
ARMA(1, 1) and ARIMA(1, 1, 1) models of Table 1 and Table 2.

Model
ARMA(1, 1)

Percentage: vertex value
beyond �2 standard

errors2), %

Mean of  theoretical
vertex value

(expected value = 0)
n A B A B

����1 = 0.6 θ1 = –0.4
a 50 2.5* 2.2* 0.058 0.057
b 50 2.3* 3.1* 0.063 0.061
a 200 3.8* 4.2* 0.024 0.025
b 200 4.7* 4.3* 0.024 0.022

Model
ARIMA
(1, 1, 1)

n A B A B
����1 = 0.6 θ1 = –0.4
a 50 3.5* 2.9* –0.034 –0.033
b 50 3.3* 3.4* –0.029 –0.029
a 200 3.4* 3.9* –0.016 –0.017
b 200 4.2* 3.5* –0.009 –0.008
����1 = 0.85 θ1 = 0.75
a 50 6.33) 6.03) 0.019 0.017
b 50 5.13) 5.43) 0.023 0.025
a 200 8.33) 8.03) 0.031 0.029
b 200 7.73) 6.83) 0.029 0.030

1) The point at which row and column coordinates of vertex of a  triangle of
asymptotic ‘zero’ values, correspond to AR order p and MA order q, respectively.
2) Standard error based 1000 replications.
3) = ESACF pattern identifies an AR(2) model.
A = OLS estimation is carried out with MM- and M-estimator
B = Robust estimation: a. MM-estimator, b. M-estimator
* = correct identification at 5% level
n = sample size
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In practice this result is important, since it removes the risk of using
these robust methods when the data do not contain outliers; in the case
of the MM-estimator we are safeguarded against possible outliers33.
However, further research on distinct ARMA structures, with
combinations of different parameter values and robust ESACF
versions, is needed to obtain more general results. As reported in the
literature, a non-robust estimation method often outperforms a robust
method in the case of outlier-free data.

Figure 6. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARIMA(1, 1, 1), phi = 0.85, theta = 0.75; n = 50; simulations: 1000
replications; outlier-free series; robust (MM/wacf) and standard (OLS/acf)
autoregression/autocorrelation are used in ESACF estimation
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Figure 6a: robust (upper) and standard
histogram

Figure 6b: robust and standard box plot

6.2.3 The OLS/wacf combination

In section 5.2.5 we considered the ESACF procedure with AR(p)
regression estimation by the combination of OLS and a robustified
autocorrelation function. We used the weighted autocorrelation
function, wacf. The simulation results show that this combination is

                                          
33 Franses and Lucas (1995, p. 4) refer to some of Lucas’s robust unit root estimation
results and note that, if there are no outliers in the data, the MM-estimator is nearly as
efficient as the OLS estimator. You (1999, p. 210) reports, for his Monte Carlo results
with high breakdown point estimators, that when the error (of a model) distribution is
N(0,1), the OLS outperforms all the other robust estimators (in his study) except the MM-
estimator.
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robust to some degree also in short time series. The performance of
this ESACF version is important to study, especially for the
ARMA(1, 1) and ARIMA(1, 1, 1) models (see Tables 4–5). In Table 4
the correct identification ratio is 4/8 for standard ESACF but 8/8 for
the robust ESACF case (see columns A and B).

The ratios of different standard errors contain important results for
both ARMA(1, 1) and ARIMA(1, 1, 1) models. The ratio of the
simulation-based standard errors are similar for the robust and
standard estimates (ratio A), and similar results were obtained with
Bartlett’s formula (ratio B). More differences between robust directly
simulation-based and robust Bartlett-based results (ratio C) are
displayed. The results for ratio D in Tables 4 and 5 are similar to those
for ratio D of models 17–24 in Table 6.

The OLS/wacf combination provides downward biased estimates
of the AR(p) fitting, with AOs. Thus, in ARMA(1, 1) models, when
there are AOs, the OLS/wacf combination normalises the sample
distribution of single ESACF coefficient estimates only to some extent
(see Jarque-Bera test values), as the results in Figure 7 show. [GM-
and MM-based AR(p) estimates are also biased to some extent as AOs
occur.] Note that OLS is consistent with IOs.

Figure 7. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1), phi = 0.8, theta = –0.70; n = 200; st.dev of AO = 10,
simulations: 1000 replications; 2% AO outliers; robust (OLS/wacf) and standard
(OLS/acf) autoregression /autocorrelation are used in ESACF estimation
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Figure 7a: robust (upper) and
standard histogram

Figure 7b: robust and standard box plot
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Table 4.

Summary of simulation results: mean of theoretical vertex1) of pattern triangle in
standard and OLS/wacf based ESACF table for ARMA (p, q) model, 1000
replications

Model
ARMA(1, 1)

Percentage: vertex value
beyond �2 standard

errors2) , %

Average of theoretical
 vertex value

(expected value = 0)

Outlier type3) and
contamination
proportion (%)

n A B A B
����1 = 0.6  θ1  = –0.4  ����o = 5
1 50 2.7 2.1* 0.054 0.048 AO2
2 50 3.3 2.5* 0.047 0.055 AO5
3 50 2.7* 2.9* 0.063 0.068 IO2
4 50 1.8* 2.5* 0.053 0.058 IO5
5 200 4.7* 3.8* 0.022 0.023 AO2
6 200 5.1 4.1* 0.028 0.035 AO5
7 200 3.9* 4.5* 0.023 0.023 IO2
8 200 5.1 4.8* 0.022 0.027 IO5
1)  The point at which row and column coordinates of vertex of a triangle of asymptotic ‘zero’
values, correspond to AR order p and MA order q, respectively.
2) Standard error based on 1000 replications.
3) AO = additive outlier, IO = innovational outlier.
A = OLS estimation
B = Robust estimation: OLS/wacf
�o = standard deviation of outlier distribution in contamination
* = correct identification at 5% level (immediately preceding value > 5 in ESACF table)
n = sample size

Summary of simulation results: mean of ratio of standard errors of theoretical
vertex in ESACF estimation1) for an ARMA(p, q) model, 1000 replications

Model
ARMA(1, 1)

Ratios for different cases  of
standard error

n A B C D

Outlier type2) and
contamination
proportion (%)

����1 = 0.6 θ1  = –0.4  ����o = 5
1 50 1.091 1.043 1.139 1.398 AO2
2 50 1.152 1.068 1.076 1.321 AO5
3 50 1.039 1.039 1.120 1.408 IO2
4 50 1.072 1.054 1.129 1.433 IO5
5 200 1.181 1.089 1.597 1.857 AO2
6 200 1.351 1.096 1.688 1.944 AO5
7 200 1.035 1.043 1.504 1.794 IO2
8 200 1.114 1.061 1.585 1.918 IO5
1) OLS, OLS/wacf estimation.
2) AO = additive outlier, IO = innovational outlier.
A = Simulation sample std (based 1000 replications): robust and non-robust estimate
B = Bartlett’s formula: robust and non-robust estimate
C = Robust estimates: simulation sample std and Bartlett’s formula
D = Ratio simulation sample std, robust estimate and asymptotic standard error (n–k–j)–½

�o = Standard deviation of outlier distribution in contamination
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Table 5.

Summary of simulation results: mean of theoretical vertex1) of pattern triangle in
standard and OLS/wacf based ESACF table for ARIMA(p, d, q) model, 1000
replications

Model
ARIMA
(1, 1, 1)

Percentage: vertex value
beyond �2 standard

errors2) , %

Mean of theoretical
vertex value

(expected value = 0)

Outlier type3) and
contamination
proportion (%)

n A B A B
����1 = 0.6  θ1  = –0.4  ����o = 5
1 50 3.6 2.1* 0.029 0.003 AO2
2 50 6.0 4.5* 0.066 0.057 AO5
3 50 2.2* 2.1* –0.021 –0.013 IO2
4 50 3.4* 2.4* –0.020 0.005 IO5
5 200 9.2 4.1* 0.077 0.029 AO2
6 200 27.1 9.2 0.117 0.081 AO5
7 200 4.2* 4.1* –0.011 –0.005 IO2
8 200 4.9* 4.6* –0.002 0.013 IO5
1) The point at which row and column coordinates of vertex of a triangle of asymptotic
‘zero’ values correspond to AR order p and MA order q, respectively.
2) Standard error based on 1000 replications.
3) AO = additive outlier, IO = innovational outlier.
A = OLS estimation
B = Robust estimation: OLS/wacf
�o = standard deviation of the outlier distribution in contamination
* = correct identification at 5% level (immediately preceding value > 5 in ESACF table)

Summary of simulation results: mean of ratio of standard errors of theoretical
vertex in ESACF simulation1) for ARIMA(p, d, q) model, 1000 replications

Model
ARIMA
(1, 1, 1)

Ratio for different cases of
standard error

n A B C D

Outlier type2) and
contamination
proportion (%)

����1 = 0.6 θ1  = –0.4  ����o = 5
1 50 1.091 1.018 1.184 1.383 AO2
2 50 1.246 1.015 1.104 1.297 AO5
3 50 1.034 1.040 1.236 1.485 IO2
4 50 1.083 1.061 1.239 1.515 IO5
5 200 1.392 1.042 1.696 1.925 AO2
6 200 1.784 0.978 1.761 1.995 AO5
7 200 1.041 1.046 1.535 1.798 IO2
8 200 1.115 1.065 1.626 1.951 IO5
1) OLS, OLS/wacf simulation.
2) AO = additive outlier, IO = innovational outlier.
A = Simulation sample std (based 1000 replications): robust and non-robust estimate
B = Bartlett’s formula: robust and non-robust estimate
C = Robust estimates: simulation sample std and Bartlett’s formula
D = Ratio simulation sample std, robust estimate and asymptotic standard error (n–k–j)–½

�o = standard deviation of outlier distribution in contamination
n  = sample size
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Table 6.

Summary of simulation results: mean values of ratio of standard errors of
theoretical vertex in ESACF estimation1) for ARIMA(p, d, q) model, 1000
replications

Model
ARIMA
(1, 1, 1)

Ratio of different standard errors

n:o n A B C D

Outlier type2) and
contamination
proportion (%)

����1 = 0.6 θ1  = –0.4  ����o = 5
17 50 1.057 1.015 1.103 1.290 AO2
18 50 1.123 1.011 1.017 1.188 AO5
19 50 1.016 1.038 1.233 1.474 IO2
20 50 0.999 1.044 1.188 1.435 IO5
21 200 1.090 1.037 1.300 1.472 AO2
22 200 1.072 0.965 1.095 1.220 AO5
23 200 0.945 1.043 1.425 1.676 IO2
24 200 0.928 1.053 1.352 1.597 IO5
����1 = 0.85 θ1  = 0.75  ����o = 10
25 50 0.880 1.045 0.822 0.975 AO2
26 50 0.802 1.078 0.871 1.070 AO5
27 50 1.148 1.055 0.778 0.926 IO2
28 50 1.220 1.073 0.767 0.932 IO5
29 200 0.500 1.048 0.878 1.054 AO2
30 200 0.499 1.106 1.063 1.320 AO5
31 200 1.175 1.057 0.916 1.103 IO2
32 200 1.231 1.096 0.936 1.173 IO5
1) OLS/acf and MM/wacf simulations.
2) AO = additive outlier, IO = innovational outlier.
A = Simulation sample std (based on 1000 replications): robust and non-robust estimate
B = Bartlett’s formula: robust and non-robust estimate
C = Robust estimates: simulation sample std and Bartlett’s formula
D = Simulation sample std, robust estimate and asymptotic standard error (n–k–j)–½

�o = Standard deviation of outlier distribution in contamination
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Figure 8 shows the results of the OLS/wacf combination when the
outlier type is IO. Standard ESACF gives a better result than the
robust one, in terms of the Jarque-Bera test. The reason for the inferior
robust estimate is the wacf function. Thus the experiments with
different weight functions were useful (Wang & Wei 1993). Note that
here the rmse of the robust ESACF is greater than the standard one.
The results in Figure 8 are remarkable eg for nonstationary business
cycle time series, which quite often are known to contain, after first
differencing, contamination of the original IOs (see Chang 1982, p.
217).

Figure 8. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1), phi = 0.80, theta = –0.70; n = 200; st.dev of IO = 10,
simulations: 1000 replications; 2% IO outliers; robust (OLS/wacf) and standard
(OLS/acf) autoregression / autocorrelation are used in ESACF pattern
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Figure 8a: robust (upper) and
standard histogram

Figure 8b: robust and standard box plot

The ESACF procedure based on the OLS/wacf combination is a
theoretically valid method in case of a nonstationary time series; here
we have used an I(1) series. The results for the ARIMA(1, 1, 1) model
are displayed in Table 5 and Figure 9. The robust OLS/wacf performs
well and fails only in the AO5 case (Table 5). The results for the ratios
of different standard errors are in our ARIMA(1, 1, 1) example quite
similar to those for the ARMA(1, 1) (see Table 4). The histogram and
box plot of the sample distribution of the standard and robust vertex in
our ARIMA(1, 1, 1) model are displayed in Figure 9; as shown by the
Jarque-Bera test values, the differences in shape between the standard
and robust distributions are remarkable. The results of this ‘extreme’
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model (high parameter values) indicate the power of the OLS/wacf
combination with unit root and AOs in time series (here 2%). For
more general results, further simulations are needed.

The results for the ARIMA(1, 1, 1) model, where AR and MA
parameters, �1 and 	1, are of medium size, but with high variability of
the AO distribution, are displayed in Figure 10. The results show the
‘power’ of the MM/wacf combination also for the ARIMA(1, 1, 1)
model. Note that the degree of AO contamination is 5% and the length
of each simulated time series is only 50.

Further experiments are needed especially to study the biasedness
of AR(p) estimates in cases of high contamination and patchy outliers
(of selected types of outliers) with different ARIMA models. A future
study might also include sensitivity analysis of certain model/
contamination/outlier type combination(s) in searching for the highest
proportion of contamination(s), where such combination(s) are still
robust.

Figure 9. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARIMA(1, 1, 1), phi = 0.85, theta = 0.75; n = 200; st.dev of AO = 10;
simulations: 1000 replications; 2% isolated AO outliers; robust (OLS/wacf) and
standard (OLS/acf) autoregression/autocorrelation are used in ESACF estimation
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Figure 9a: robust (upper) and
standard histogram

Figure 9b: robust and standard box plot
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Figure 10. Histograms and box plots of theoretical
vertex in ESACF table

Model: ARMA(1, 1, 1), phi = 0.60, theta = –0.40; n = 50; st.dev of AO = 10,
simulations: 1000 replications; 5% isolated AO outliers; robust (MM/wacf) and
standard (OLS/acf) autoregression/autocorrelation are used in ESACF estimation
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Figure 10a: robust (upper) and
standard histogram

Figure 10b: robust and standard box plot

6.2.4 Sample distributions for single ESACF coefficients

As previously mentioned, it seems there are no studies in the literature
on the theoretical or sample distributions of single ESACF coefficient
estimates. Because these coefficients are the sample autocorrelations
of the transformed series )k(

t,kW  in iterations, we can expect sample

distributions analogous to those for the regular sample autocorrelation
coefficients. Surprisingly, our simulation results show that most of
these sample distributions of the standard ESACF are quite skewed
and not clearly platykurtic34 or leptokurtic, as can be seen from the
multiple small figures of the ARMA(1, 1) model in Appendix 1. Most
important is the sample distribution of the vertex. Its sample
distribution is quite symmetric (see the special frame display).  In
general, skewness of sample distributions decreases as the length of a
series increases. The sample distributions of the coefficients in the
first column of the ESACF table (variables, see ESACF theory,

                                          
34 The symmetric platykurtic distribution, with b2 < 3 (b2 = 3 in normal distribution), is
characterised by a flatter top and more abrupt tails than the normal curve; the symmetric
leptokurtic distribution, with b2 > 3, has a sharper peak at the mean and more extended
tails.
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Figure 11. Histograms of first 16 coefficient estimates
of upper-left part of ESACF matrix

Calculations based on simulation, 1000 replications. Area of SACF coefficients
(first row) separated by a dotted line.

Robust ESACF
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m edian  0.76
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J- B p  0
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m ean  - 0.36
m edian  - 0.36
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m ax  0.13
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skew   0.58
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J-B  165.48
J-B p  0
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m ean  0.02
m edian  0.02
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m ean  0.01
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J- B p  0.79
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m edian  0.01
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skew   0.02
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J -B  0.49
J-B p  0.78
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-0 .8 0.0

m ean  - 0.4
m edian  - 0.49
sd  0.21
m in  - 0.71
m ax  0.29
r m se  0.46
skew   1.01
kur t  2.93
J-B  168.6
J -B p  0

-0 .4 0.4

m ean  -0.02
m edian  0
sd  0.18
m in  -0.45
m ax  0.37
rm se  0.18
skew   -0.15
kur t  1.97
J- B  47.85
J- B p  0
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m ean  0.02
m edian  0.01
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J- B  0.13
J- B p  0.94
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m ean  0
m edian  0.01
sd  0.08
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m ax  0.33
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m edian  - 0.46
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Model: ARIMA(0, 1, 1), theta = 0.50
5% AO outliers

Theoretical Autoregression: MM-estimator
vertex Autocorrelation: wacf
frame St.dev. of outliers = 10

n = 200
ndiff = d = 1 (I(1) series)

cont.
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Standard ESACF

AR
 0

M A 0

0.0 0.8

m ean  0.53
m edian  0.54
sd  0.2
m in  0.02
m ax  0.95
r m se  0.57
skew   - 0.15
kur t  2.26
J-B  26.22
J-B p  0

M A 1

0.0 0.8

m ean  0.52
m edian  0.52
sd  0.2
m in  -0.06
m ax  0.94
rm se  0.56
skew   -0.14
kur t  2.27
J- B  25.38
J- B p  0

M A 2

0.0 0.8

m ean  0.5
m edian  0.51
sd  0.2
m in  -0.04
m ax  0.93
rm se  0.54
skew   -0.1
kur t  2.22
J- B  27.34
J- B p  0

M A 3

0.0 0.8

m ean  0.48
m edian  0.49
sd  0.2
m in  - 0.08
m ax  0.92
r m se  0.52
skew   - 0.12
kur t  2.3
J -B  23.22
J-B p  0

AR
 1

-0 .6 0.4

m ean  - 0.47
m edian  - 0.48
sd  0.07
m in  - 0.62
m ax  0.44
r m se  0.47
skew   4.45
kur t  41.87
J-B  66187.53
J-B p  0

-0 .3 0.2

m ean  0.01
m edian  0
sd  0.08
m in  -0.3
m ax  0.34
rm se  0.08
skew   0.52
kur t  4.56
J- B  147.37
J- B p  0

-0 .3 0.2

m ean  0.01
m edian  0
sd  0.08
m in  -0.31
m ax  0.29
rm se  0.08
skew   0.24
kur t  4.13
J- B  62.39
J- B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.08
m in  - 0.27
m ax  0.36
r m se  0.08
skew   0.5
kur t  5.1
J -B  225.77
J-B p  0

AR
 2

-0 .6 0.2

m ean  - 0.45
m edian  - 0.48
sd  0.1
m in  - 0.56
m ax  0.5
r m se  0.46
skew   4.13
kur t  28.74
J-B  30411.86
J-B p  0

-0 .6 0.2

m ean  -0.19
m edian  -0.23
sd  0.22
m in  -0.56
m ax  0.46
rm se  0.29
skew   0.3
kur t  1.8
J- B  75.92
J- B p  0

-0 .2 0.2

m ean  0
m edian  0
sd  0.06
m in  -0.24
m ax  0.29
rm se  0.06
skew   0.17
kur t  5.2
J- B  205.78
J- B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.07
m in  - 0.32
m ax  0.31
r m se  0.07
skew   0.06
kur t  6.45
J-B  495.13
J-B p  0

AR
 3

-0 .6 0.4

m ean  - 0.41
m edian  - 0.47
sd  0.15
m in  - 0.52
m ax  0.5
r m se  0.44
skew   3.04
kur t  14.46
J-B  7005.01
J-B p  0

-0 .6 0.2

m ean  -0.19
m edian  -0.21
sd  0.21
m in  -0.52
m ax  0.37
rm se  0.29
skew   0.28
kur t  1.8
J- B  72.37
J- B p  0

-0 .6 0.2

m ean  -0.14
m edian  -0.14
sd  0.19
m in  -0.5
m ax  0.35
rm se  0.24
skew   0.08
kur t  2.01
J- B  42
J- B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.06
m in  - 0.33
m ax  0.32
r m se  0.06
skew   0.02
kur t  7.49
J-B  839.29
J-B p  0

Model: ARIMA(0, 1, 1), theta = 0.50
5% AO outliers

Theoretical Autoregression: OLS-estimator
vertex Autocorrelation: standard acf
frame St.dev. of outliers = 10

n = 200
ndiff = d = 1 (I(1) series)
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Figure 12. Histograms of first 16 coefficient estimates
of upper-left part of ESACF matrix

Calculations based on simulation, 1000 replications. Area of SACF coefficients
(first row) separated by a dotted line.

Robust ESACF

AR
 0

M A 0

0.6 0.9

m ean  0.88
m edian  0.89
sd  0.06
m in  0.58
m ax  0.98
r m se  0.89
skew   - 0.89
kur t  4.09
J-B  181.66
J-B p  0

M A 1

0.6 0.9

m ean  0.85
m edian  0.86
sd  0.07
m in  0.55
m ax  0.97
rm se  0.85
skew   -0.82
kur t  3.67
J- B  129.9
J- B p  0

M A 2

0.5 0.9

m ean  0.82
m edian  0.83
sd  0.08
m in  0.46
m ax  0.96
rm se  0.82
skew   -0.82
kur t  3.64
J- B  130.05
J- B p  0

M A 3

0.4 0.9

m ean  0.79
m edian  0.8
sd  0.1
m in  0.39
m ax  0.95
r m se  0.8
skew   - 0.82
kur t  3.58
J-B  124.71
J-B p  0

AR
 1

-0 .3 0.1

m ean  - 0.09
m edian  - 0.1
sd  0.07
m in  - 0.33
m ax  0.17
r m se  0.12
skew   0.13
kur t  3.16
J-B  3.74
J-B p  0.15

-0 .3 0.1

m ean  0
m edian  0
sd  0.07
m in  -0.26
m ax  0.23
rm se  0.07
skew   0.06
kur t  2.95
J- B  0.77
J- B p  0.68

-0 .2 0.2

m ean  0.01
m edian  0
sd  0.07
m in  -0.23
m ax  0.24
rm se  0.07
skew   -0.1
kur t  3.13
J- B  2.28
J- B p  0.32

-0 .2 0.2

m ean  0
m edian  0.01
sd  0.07
m in  - 0.19
m ax  0.22
r m se  0.07
skew   - 0.08
kur t  2.84
J-B  2.08
J-B p  0.35

AR
 2

-0 .6 0.4

m ean  - 0.11
m edian  - 0.13
sd  0.32
m in  - 0.62
m ax  0.48
r m se  0.34
skew   0.11
kur t  1.53
J-B  92.38
J-B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.1
m in  -0.28
m ax  0.27
rm se  0.1
skew   0.09
kur t  2.49
J- B  12.03
J- B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.07
m in  -0.28
m ax  0.26
rm se  0.07
skew   -0.13
kur t  3.48
J- B  12.34
J- B p  0

-0.2 0.2

m ean  0
m edian  0
sd  0.07
m in  - 0.21
m ax  0.24
r m se  0.07
skew   0.02
kur t  3.06
J-B  0.18
J-B p  0.91

AR
 3

-0 .6 0.4

m ean  - 0.09
m edian  - 0.11
sd  0.32
m in  - 0.62
m ax  0.47
r m se  0.33
skew   0.08
kur t  1.52
J-B  91.74
J-B p  0

-0 .6 0.4

m ean  0.03
m edian  0.04
sd  0.28
m in  -0.52
m ax  0.53
rm se  0.28
skew   -0.11
kur t  1.9
J- B  52.46
J- B p  0

-0 .3 0.2

m ean  -0.01
m edian  -0.01
sd  0.1
m in  -0.29
m ax  0.25
rm se  0.1
skew   -0.04
kur t  2.6
J- B  6.87
J- B p  0.03

-0 .3 0.2

m ean  0
m edian  0
sd  0.07
m in  - 0.26
m ax  0.27
r m se  0.07
skew   0.01
kur t  3.2
J -B  1.62
J-B p  0.44

Model: ARIMA(0, 1, 0)
5% AO outliers

Theoretical Autoregression: MM-estimator
vertex Autocorrelation: wacf
frame St.dev. of outliers = 10

n = 200
ndiff = d = 1 (I(1) series)

cont.
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Standard ESACF

AR
 0

M A 0

0.2 0.8

m ean  0.78
m edian  0.81
sd  0.14
m in  0.15
m ax  0.98
rm se  0.8
skew   -1.1
kur t  4.22
J- B  262.41
J- B p  0

M A 1

0.2 0.8

m ean  0.76
m edian  0.79
sd  0.14
m in  0.17
m ax  0.97
rm se  0.77
skew   -1.03
kur t  3.99
J- B  215.61
J- B p  0

M A 2

0.0 0.8

m ean  0.73
m edian  0.76
sd  0.15
m in  0.08
m ax  0.96
r m se  0.75
skew   - 0.95
kur t  3.76
J-B  174.5
J -B p  0

M A 3

0.0 0.8

m ean  0.71
m edian  0.74
sd  0.16
m in  0.04
m ax  0.95
r m se  0.72
skew   - 0.9
kur t  3.67
J-B  153.4
J -B p  0

AR
 1

-0 .6 -0 .1

m ean  -0.43
m edian  -0.44
sd  0.07
m in  -0.64
m ax  -0.03
rm se  0.44
skew   1.37
kur t  6.49
J- B  818.31
J- B p  0

-0 .2 0.4

m ean  0
m edian  0
sd  0.07
m in  -0.34
m ax  0.36
rm se  0.07
skew   0.13
kur t  5.81
J- B  332.04
J- B p  0

-0 .2 0.4

m ean  0
m edian  0
sd  0.07
m in  - 0.35
m ax  0.35
r m se  0.07
skew   0.26
kur t  5.99
J-B  383.42
J-B p  0

-0 .4 0.1

m ean  0
m edian  0
sd  0.07
m in  - 0.36
m ax  0.3
r m se  0.07
skew   - 0.1
kur t  6.05
J-B  387.79
J-B p  0

AR
 2

-0.6 0.2

m ean  -0.42
m edian  -0.44
sd  0.1
m in  -0.6
m ax  0.38
rm se  0.43
skew   2.46
kur t  12.97
J- B  5141.67
J- B p  0

-0 .6 0.2

m ean  -0.14
m edian  -0.15
sd  0.19
m in  -0.52
m ax  0.25
rm se  0.24
skew   0.06
kur t  1.73
J- B  68.07
J- B p  0

-0 .4 0.2

m ean  0
m edian  0
sd  0.07
m in  - 0.36
m ax  0.36
r m se  0.07
skew   0.12
kur t  7.47
J-B  834.55
J-B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.06
m in  - 0.29
m ax  0.29
r m se  0.06
skew   - 0.03
kur t  6.48
J-B  503.14
J-B p  0

AR
 3

-0.6 0.4

m ean  -0.37
m edian  -0.43
sd  0.18
m in  -0.52
m ax  0.53
rm se  0.41
skew   2.38
kur t  9.25
J- B  2570.13
J- B p  0

-0 .6 0.2

m ean  -0.13
m edian  -0.14
sd  0.2
m in  -0.52
m ax  0.43
rm se  0.24
skew   0.02
kur t  1.86
J- B  54.21
J- B p  0

-0.4 0.2

m ean  - 0.1
m edian  - 0.1
sd  0.16
m in  - 0.5
m ax  0.28
r m se  0.19
skew   - 0.02
kur t  2.27
J-B  22.55
J-B p  0

-0 .3 0.2

m ean  0
m edian  0
sd  0.06
m in  - 0.27
m ax  0.29
r m se  0.06
skew   0.05
kur t  7.83
J-B  973.27
J-B p  0

Model: ARIMA(0, 1, 0)
5% AO outliers

Theoretical Autoregression: OLS-estimator
vertex Autocorrelation: standard acf
frame St.dev. of outliers = 10

n = 200
ndiff = d = 1 (I(1) series)
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Section 3.2.3 of this thesis and TT84, p. 87) are extraordinary in form.
In the first column the sample distributions of coefficient estimates
may be bimodal from the second row on. The slow decrease in
variability, with increasing lag q, can be found in general. This feature
can also be seen in Figures 11 and 12.

The simulation results indicate that robustifying the ESACF
procedure has direct effects on the sample distributions of the ESACF
coefficients. Generally, the sample distributions are ‘normalised’ in
case of robust ESACF. This means increased performance of ESACF
procedure as an identification tool. We found no distinction between
cases of isolated and patchy outliers, but further research is needed on
this question. The normalising effect can be seen in the increased p
value of the Jarque-Bera test. Skewness is diminished and/or kurtosis
turned towards a value of 3, ie of normal distribution. However, the
changes in these sample distributions are dependent on ARMA
structure and sample size and therefore no general exact ‘rules’ can be
obtained from our simulation results.

A striking feature of the robust cases is the increase in variability
of ESACF coefficients compared with standard ESACF. The robust
sample distributions have in most cases a more clear-cut form
compared with the standard ones. If we compare the AO results of
GM- and MM/wacf and OLS/wacf based ESACF, the skewness
remains more often in the OLS/wacf case. This indicates greater bias
for OLS estimates in the AR(p) fitting stage of the ESACF procedure.
Often in an OLS/wacf case, either skewness or kurtosis changes
towards the value of normal distribution, ie if skewness decreases,
kurtosis increases and vice versa, compared with the standard ESACF.
With outlier-free series, the sample distribution of the theoretical
vertex is similar in shape to the standard and robust ESACF. Although
we analyse here mainly the theoretical vertex points, the example of
the ARMA(1, 1) model of Appendix 1 and the results of Figures 11
and 12  show how the sample distribution of the other ESACF
coefficients changes in the robust case, particularly in a triangle area
of zeros.

Finally, we would emphasise that, besides the results for the
standard and robust ESACF estimates, we obtain in every case the
standard and robust results for the ordinary SACF estimates. In the
histograms of Figures 11–12 and in Appendix 1, we can see the
sample distributions of the robust and standard coefficients, for both
ESACF and ordinary SACF.
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6.2.5 Summary of main results

The simulation results of the ESACF procedure support the general
experience that AO outliers have more destroying effects on statistical
estimates than do IO outliers. The results show that the standard
ESACF procedure is robust to some extent, with low or moderate
contamination of data.

It is useful to compare results for the different standard errors. The
standard error of the robust estimator is larger than that of the standard
one35. From the results of the ARMA(1, 1) model in Appendix 1 we
see how the asymptotic standard error (n–k–j)–½ (‘Standard asymptotic
STD’) is clearly smaller than the Bartlett’s formula- and the
simulation-based standard error estimates. This result supports the
suspicion of Tiao (1985, p. 101) that the simple approximation
(n–k–j)–1 underestimate the variance of ESACF coefficients, rj(k).

Another new aspect of this thesis is the calculation of the
asymptotic distributions of single ESACF coefficients based on
simulation experiments. There are no studies in the literature on the
sampling properties of extended autocorrelations of TT84. In
Appendix 1, the histograms of 16 single ESACF estimates for an
ARMA(1, 1) model are displayed. The histograms are, in the standard
case, highly kurtic and skewed.

In summary, the most striking findings of the main Monte Carlo
results are:

1. the sample distributions of the standard ESACF coefficients
generally show skewness and excess kurtosis

2. there were normalisation effects of robustifying on these sample
distributions in most cases

3. the differences between sizes of the various standard error
estimates

4. in outlier-free time series, the standard ESACF and robust ESACF
based on MM/wacf perform equally well (see also Hella 2002)

Overall, the standard errors of robust ESACF estimates based directly
on simulation replications are greater than those of a) similar estimates
of standard ESACF, b) standard asymptotic estimates (n–k–j)–½, and

                                          
35 The confidence interval properties of robust estimators are in most cases an open
question. Birch and Martin (1981) investigated confidence intervals of some robust
estimators of  AR(1) processes; Gross (1977) studied confidence intervals for bisquare
regression estimates. The robust regression estimators and their standard error are
considered in Staudte and Sheather (1990, Section 7.6).
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c) estimates based on the Bartlett approximation formula in standard
ESACF. Also in the Bartlett case, the robust version has slightly
greater variability than in the standard one (see robust formulas 5.13
and 5.14). This feature is related to the robust confidence interval
analysis of estimators (see Section 5.4). An open question arises: how
can these results be utilised for constructing robust confidence
intervals for single ESACF coefficient estimates.

6.3 Three examples: nonstationarity, outliers
and differencing

A. ARIMA(1, 1, 0) model

For the generated ARIMA(1, 1, 0) model, with �1 = 0.8, N = 200 and
noise variable �t = N(0,1), we applied the ESACF directly to the
generated series. The standard ESACF pattern indicated correctly an
AR(2) model (AR(1 + 1); see Pankratz 1991, p. 63). If we assign an
AO outlier of value � = 2.3 at t = 121 (ie 4.0% of true value
y121 = 57.7), the standard ESACF works well, but if we increase � to
7.3 (12.7% of true value) the standard ESACF breaks down and
identifies an ARIMA(1, 1, 1). The robust ESACF, based on the MM-
estimator, performs well for � = 7.3.

The vertex of ESACF table is marked in bold.
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.99 0.98 0.97 0.96 0.95 0.93 AR0 X X X X X X
AR1 0.72 0.53 0.31 0.17 0.11 0.06 AR1 X X X 0 0 0
AR2 �0.03 0.20 0.07 �0.10 0.04 �0.08 AR2 0 X 0 0 0 0
AR3 0.12 0.20 0.11 �0.03 �0.01 �0.13 AR3 0 X 0 0 0 0

Values above marked with X are more than 2 * std errors away from zero,
using Bartlett type std error.

> y[121]<-60
> esacf(y)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.99 0.98 0.97 0.96 0.95 0.93 AR0 X X X X X X
AR1 0.71 0.52 0.31 0.16 0.10 0.09 AR1 X X X 0 0 0
AR2 �0.06 0.18 0.10 �0.10 �0.03 0.06 AR2 0 X 0 0 0 0
AR3 0.28 0.18 0.13 �0.13 0.02 0.09 AR3 X X 0 0 0 0
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> y[121]<-65
> esacf(y)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.99 0.98 0.97 0.96 0.95 0.93 AR0 X X X X X X
AR1 0.52 0.44 0.27 0.12 0.07 0.09 AR1 X X X 0 0 0
AR2 �0.38 0.15 0.10 �0.06 �0.06 0.01 AR2 X 0 0 0 0 0
AR3 0.14 0.23 0.15 �0.04 �0.10 0.02 AR3 0 X 0 0 0 0

Values above marked with X are more than 2 * std errors away from zero,
using Bartlett type std error.

> esacf(y,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.99 0.98 0.97 0.96 0.95 0.93 AR0 X X X X X X
AR1 0.69 0.51 0.31 0.15 0.09 0.08 AR1 X X X 0 0 0
AR2 �0.08 0.16 0.10 0.02 �0.01 �0.14 AR2 0 X 0 0 0 0
AR3 0.34 0.15 0.06 0.01 0.03 �0.13 AR3 X 0 0 0 0 0

B. ARIMA(1, 1, 1) model

In Section 5.5 we considered the robust ESACF as a complementary
tool in robust unit root testing. In this example we will show: 1) how
the robust ESACF performs in the case of the generated outlier-free
nonstationary series and 2) when the outliers are placed into this
series, what is the outcome of the identification for the standard
ESACF and various robust ESACF versions. Finally, we consider the
outliers and identification when first differences are used.

The process ARIMA(1, 1, 1) is generated with parameters �1 = 0.7
and 	1 = 0.4, sample size is n = 200 and noise variable �t = N(0,1).
The artificial series is given in Figure 13 below (the generated data
can be obtained on request).

As can be seen from the following tables, the ESACF estimation is
successful with both OLS and robust MM. In the ESACF table, we
find the vertex in coordinates (AR2, MA1) ie an ARMA(p’, 1) model,
where p = 1 and d = 1, so that p’ = p + d = 2 contains a unit root (see
Pankratz 1991, p. 75).
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The vertex of ESACF table is marked in bold.
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.91 0.87 0.84 0.81 AR0 X X X X X X
AR1 0.35 0.27 0.15 0.01 0.02 �0.03 AR1 X X 0 0 0 0
AR2 �0.40 0.09 0.14 �0.12 0.01 �0.04 AR2 X 0 0 0 0 0
AR3 �0.09 0.19 0.14 0.03 0.08 �0.02 AR3 0 0 0 0 0 0

Values above marked with X are more than 2 * std errors away from zero,
using Bartlett type std error.

> esacf(y,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.96 0.93 0.90 0.87 0.83 AR0 X X X X X X
AR1 0.33 0.30 0.17 0.02 0.05 0.00 AR1 X X 0 0 0 0
AR2 �0.35 0.12 0.19 0.07 0.05 �0.03 AR2 X 0 X 0 0 0
AR3 0.05 0.19 0.19 0.07 0.09 0.02 AR3 0 0 X 0 0 0

Figure 13. Original series Figure 14. Original series
including two isolated AO
outliers = series G

Time

y

0 50 100 150 200

0
10

20
30

40

Time

y

0 50 100 150 200

0
10

20
30

40
50

Outliers

In the next case, two additive outliers are located at t1 = 139, �1 = –10
and t2 = 193, �2 = 10. The contaminated series is displayed in Figure
14. In identification, the standard ESACF breaks down and indicates
an ARMA(1, 1) model while the robust versions, the MM- and GM-
estimators and the combination of OLS/wacf indicate correctly an
ARIMA(1, 1, 1) process.
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> y[139]<-10.98
> y[193]<-48.68
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.96 0.93 0.90 0.87 0.84 0.81 AR0 X X X X X X
AR1 �0.20 0.10 0.06 �0.02 0.03 �0.01 AR1 X 0 0 0 0 0
AR2 0.28 0.14 0.10 0.02 0.03 0.03 AR2 X 0 0 0 0 0
AR3 �0.47 0.32 0.15 �0.07 0.02 0.03 AR3 X 0 0 0 0 0

Values above marked with X are more than 2 * std errors away from zero,
using Bartlett type std error.

> esacf(y,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.95 0.92 0.89 0.86 0.83 AR0 X X X X X X
AR1 0.25 0.25 0.14 0.02 0.06 �0.02 AR1 X X 0 0 0 0
AR2 �0.44 0.06 0.07 �0.08 0.06 �0.05 AR2 X 0 0 0 0 0
AR3 �0.35 0.19 0.06 �0.12 0.03 0.00 AR3 X 0 0 0 0 0

First-order differencing

In the following phase the contaminated series, y, was differenced
once. The transformed series, z, is displayed in Figure 15. We find
that, due to the first-order differencing, the number of AO outliers is
doubled (d+1; see Chang 1982, p. 118 and 217) to four36. If our series
were a real nonstationary series, we would encounter the problem of
how to interpretate these additional, spurious AO outliers. Note that
with an isolated IO we still have this outlier in the differenced series
(Chang 1982, p. 217).

The result of the standard ESACF for z indicates an MA(1) model
(next ESACF table). The model is identified correctly as ARMA(1, 1)
by the robust ESACF procedure.

                                          
36 For each old isolated AO we have a new immediately following AO of the same size
but opposite sign.
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> z<-diff(y,lag=1)
> esacf(z)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.20 0.10 0.05 �0.02 0.03 �0.01 AR0 X 0 0 0 0 0
AR1 0.27 0.14 0.10 0.02 0.02 0.03 AR1 X 0 0 0 0 0
AR2 �0.46 0.32 0.13 �0.07 0.02 0.03 AR2 X X 0 0 0 0
AR3 0.01 �0.09 0.05 �0.06 0.02 0.00 AR3 0 0 0 0 0 0

Values above marked with X are more than 2 std errors away from
zero,using Bartlett type std error.

> esacf(z,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.26 0.25 0.14 0.02 0.06 �0.02 AR0 X X 0 0 0 0
AR1 �0.44 0.06 0.07 �0.06 0.07 �0.02 AR1 X 0 0 0 0 0
AR2 �0.35 0.19 0.06 �0.11 0.04 0.00 AR2 X 0 0 0 0 0
AR3 0.09 0.27 0.17 �0.10 0.05 0.01 AR3 0 X X 0 0 0

Figure 15. First-order differences of G-series
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C. ARIMA(0, 1, 1) model

Lastly we generated a nonstationary ARIMA(0, 1, 1) series, often
denoted an IMA(1, 1) series. This model is quite common in various
process industries and in macroeconomics, especially in modelling
business cycles.

We generated the series with parameter 	1 = 0.6, sample n = 200,
and noise variable �t = N(0,1). The artificial series is given in Figure
16 below. The standard and robust ESACF approach is applied
directly. The results are the following.
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The vertex of the ESACF table is marked in bold.
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.72 0.68 0.64 0.63 0.58 0.49 AR0 X X X X X X
AR1 �0.41 �0.03 �0.04 0.10 0.07 �0.19 AR1 X 0 0 0 0 X
AR2 �0.45 0.12 �0.04 0.08 0.05 �0.19 AR2 X 0 0 0 0 X
AR3 �0.49 �0.11 �0.19 0.03 0.00 �0.15 AR3 X 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(y,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.75 0.68 0.67 0.66 0.59 0.52 AR0 X X X X X X
AR1 �0.35 �0.06 �0.05 0.12 0.05 �0.20 AR1 X 0 0 0 0 X
AR2 �0.46 �0.04 �0.06 0.08 0.06 �0.20 AR2 X 0 0 0 0 X
AR3 �0.47 0.13 �0.18 0.04 0.01 �0.12 AR3 X 0 0 0 0 0

As can be seen, the vertices show that both the standard and robust
ESACF identified the correct model. The single estimates in the tables
have quite similar values. It is notable that, due to the ESACF
approach, we find directly the MA(1) part of the model. The SACF
estimates in both of the ESACF tables (first row) indicate
nonstationarity.

Two AO outliers

Next we added two isolated AO outliers to the original series at t = 74
and 144. In the first case, we introduced the classic decimal point error
(original value 2.6954; see below) and in the second case the sign
error (original value +6.1791). The new series (F) is displayed in
Figure 17 below.
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> y[74]<-26.954
> y[144]<--6.1791
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.32 0.31 0.27 0.30 0.32 0.31 AR0 X X X X X X
AR1 �0.49 0.02 �0.05 0.02 0.02 0.03 AR1 X 0 0 0 0 0
AR2 �0.45 �0.24 �0.06 0.03 0.00 0.05 AR2 X X 0 0 0 0
AR3 �0.49 �0.24 �0.37 0.03 0.00 0.03 AR3 X X X 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(y,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.71 0.65 0.63 0.64 0.60 0.54 AR0 X X X X X X
AR1 �0.29 �0.03 �0.07 0.11 0.08 �0.17 AR1 X 0 0 0 0 0
AR2 �0.49 0.04 �0.05 0.11 0.10 �0.17 AR2 X 0 0 0 0 0
AR3 �0.45 0.18 �0.16 0.12 0.09 �0.17 AR3 X 0 0 0 0 0

The results are interesting: a) standard ESACF indicates an
ARMA(1, 1) model, not a unit root, because the regular sample
autocorrelations in the first row of the standard ESACF table are
distorted by AOs; b) in the robust (MM/wacf) case, the sample
autocorrelations in the ESACF table indicate the existence of a unit
root and c) due to the robust ESACF approach we are able to identify
the correct model (we should then estimate robust 1�̂  and 1�̂  to check
the actual model). This identification illustrates the extreme case in
which we have not checked the series before modelling and there
occur two classic outliers; graphical inspection here reveals clearly the
AOs and we adjust them before the identification task. However, in
practice it may often be difficult to discover (or confirm) outliers eg
by graphical methods before modelling, and the robust procedures can
offer ‘insurance’.



103

Figure 16. Original series
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Figure 17. Original series including two isolated
AO outliers = F
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7 Applications of some real time
series

7.1 Some illustrative examples from the
literature

A. Spirit series

In the following we consider briefly the residual series of the famous
spirit consumption model of Prest(1949). In the literature, Fuller
(1996), Tsay (1986), Lee (1989), Chen (1994) and others have
analysed this residual series (Figure 18 below in text).

Tsay (1986) applied to this residual series the ESACF
identification procedure combined with an iterative outlier detection
and estimation method. The ESACF analysis of the original residual
series indicated an AR(1) model (Tsay 1986, Table 2). In the second
phase Tsay conducted the iterative outlier detection process with
AR(1) as the initial model structure of this residual series. After six
iterations, he obtained the outlier-adjusted version of the residual
series. The original ESACF analysis of this adjusted residual series
resulted in an ARMA(1, 1) model (Tsay 1986, Table 4).

In the following we also applied the standard ESACF procedure to
the spirit residual series and, in addition, three robust versions of the
ESACF. The results of our estimations show that by a robust ESACF
method we are able directly to find an ARMA(1, 1) model instead of
the AR(1) process found by Tsay.

In the next table we report standard ESACF and robust ESACF
results for spirit residual series. As a robust version, we use the
combinations MM/wacf, GM/wacf  and OLS/wacf.
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ESACF pattern estimates:

The vertex of ESACF table is marked in bold.
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.72 0.46 0.26 0.15 0.01 �0.14 AR0 X X X 0 0 0
AR1 0.14 0.13 0.01 0.17 0.02 �0.16 AR1 0 0 0 0 0 0
AR2 �0.49 0.12 �0.01 0.14 0.09 �0.16 AR2 X 0 0 0 0 0
AR3 0.24 �0.15 �0.05 0.12 0.12 �0.15 AR3 0 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(spirit,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.77 0.51 0.29 0.17 0.03 �0.13 AR0 X X X 0 0 0
AR1 0.41 0.17 0.16 0.19 0.05 �0.16 AR1 X 0 0 0 0 0
AR2 �0.10 0.08 0.09 0.00 0.07 �0.15 AR2 0 0 0 0 0 0
AR3 �0.12 �0.47 �0.07 0.10 0.07 �0.04 AR3 0 X 0 0 0 0

> esacf(spirit,method=GM)
Extended Autocorrelation Table
Calculated using GM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.77 0.51 0.29 0.17 0.03 �0.13 AR0 X X X 0 0 0
AR1 0.41 0.25 0.23 0.19 0.02 �0.17 AR1 X 0 0 0 0 0
AR2 �0.44 0.03 0.01 �0.02 0.07 �0.10 AR2 X 0 0 0 0 0
AR3 �0.56 �0.44 �0.05 0.07 0.10 0.01 AR3 X X 0 0 0 0

> esacf(spirit,method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.77 0.51 0.29 0.17 0.03 �0.13 AR0 X X X 0 0 0
AR1 0.48 0.28 0.09 0.19 0.04 �0.17 AR1 X 0 0 0 0 0
AR2 �0.39 0.25 0.09 �0.02 0.11 �0.15 AR2 X 0 0 0 0 0
AR3 0.47 �0.14 0.02 0.08 0.09 �0.07 AR3 X 0 0 0 0 0

It is worth noting that all the robust ESACF versions identified the
same ARMA structure.
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Figure 18. Residual series of the spirit model
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The preceding results show that, if Tsay had had the possibility of
using the robustified ESACF method, he could have estimated an
ARMA(1, 1) tentative structure directly to start the combined iterative
ARMA modelling procedure for detecting and estimating outliers
(Tsay 1986, Section 2.5). Perhaps he would have detected and
estimated a different set of outliers.

It is well known that the detected set of outliers is dependent on
the underlying core model (see eg Findley et al 1986, p. 141). As
Stockinger and Dutter (1987, p. 87) remark, the inadequate model
would declare a ‘normal’ observation to be atypical. In general, when
we use robust identification and estimation methods, we obtain true
outliers for which we usually can find a meaningful interpretation.

B. RESEX series

As the second example, we analyse the well-known RESEX monthly
series (residence telephone extensions inward movement) analysed
originally by Martin, Samarov and Vandaele (1983). Masarotto
(1987a) applied this series as an experiment for his version of the
robust autocorrelation and partial autocorrelation function (robust
lattice procedure). Because of the seasonal component, Masarotto
used the transformed 12-lag differenced series, RESEX12. In the
following, we apply both standard and robust ESACF procedures to
the series RESEX12.
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ESACF pattern estimates:

> esacf(resex12)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.41 0.03 0.02 0.03 0.01 0.09 AR0 X 0 0 0 0 0
AR1 0.36 �0.31 �0.01 0.02 0.01 0.11 AR1 X X 0 0 0 0
AR2 0.44 �0.30 �0.12 0.01 0.08 0.11 AR2 X X 0 0 0 0
AR3 0.21 �0.09 �0.06 0.00 0.03 0.11 AR3 0 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(resex12,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.65 0.59 0.51 0.43 0.36 0.35 AR0 X X X X X X
AR1 �0.36 �0.01 0.12 0.10 �0.04 0.11 AR1 X 0 0 0 0 0
AR2 �0.27 0.04 0.20 0.00 �0.10 0.10 AR2 X 0 0 0 0 0
AR3 0.41 �0.16 �0.02 �0.05 �0.15 0.07 AR3 X 0 0 0 0 0

In comparing the results of Masarotto (1987a) with our results, the
following points can be made:

1. When we use the standard ESACF, an MA(1) model is suggested
as in Masarotto (1987a, Table 3).

2. Our robust ESACF procedure (MM/wacf) suggests an
ARMA(1, 1) model, as in Masarotto, on the grounds of his robust
SACF and SPACF procedures (1987a, Table 2). Masarotto used
the M-estimator in his robust lattice procedure.

3. The robust sample autocorrelation estimates found by Masarotto
are nearly the same as the sample autocorrelation estimates in the
first row of our robust ESACF table.

C. The Lydia Pinkham annual advertising data

The well-known Lydia Pinkham annual advertising data (Figure 22,
Appendix 5) have been used by many authors in time series
modelling. The literature includes reports of different research results.
For instance, Chan (1989) carried out robust modelling and detected a
set of outliers in the series. Wei (1990, 1994) used the series in
constructing transfer function models. Chan and Wei obtained a
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different form of ARMA model. Hoek et al (1995) and Lucas (1996)
estimated a unit root value for this series. Thus, it is proper to
investigate the identification of this series also by standard and robust
ESACF procedure.

Chan (1989, p. 58–62) identified, using his proposed trimmed
(robust) SACF and SPACF, a tentative ARMA(1, 1) model and used
his modified iterative modelling procedure to obtain the same form of
final model with four significant outliers. Wei (1990, 1994, p. 304)
examined the SACF and SPACF of the original series (Xt) and of its
first differences (xt) and concluded that Xt is nonstationary and that a
stationary series xt can be modelled as an AR(2) process.

We carried out a sequence of quick computer runs of ESACF
estimation by standard and different robust estimators and with
different versions of robust autocorrelation functions. The results,
shown in Appendix 5, indicate that the original series, Xt, is a
stationary AR(1) or nonstationary ARIMA(0, 1, 0) model, except with
OLS/tacf, which indicated an ARMA(1, 1) model. For the series xt,
both standard and robust ESACF indicate a white noise model. Note
that Chan (1989) found four outliers in the original series, Xt.
Differencing the series Xt generated additional (spurious) outliers
(Figure 23, Appendix 5).

Perhaps we would detect a different group of outliers than Chan
(1989) if we began the iterative modelling procedure with an AR(1) or
an ARIMA(0, 1, 0) scheme. Then comparison of the results
concerning the final ARMA model and detected outliers might be
useful.

The Lydia Pinham annual series is an example of a time series that
is difficult to model. So it is important to use various identification
tools to search for a possible underlying model. Here both standard
and robust ESACF estimations encountered problems in this task.

7.2 Three monetary time series

Bond rate series

In practice a researcher often encounters the difficult problem of
choosing between two or three potential candidates for a tentative
model. In such a situation (often in the case of a nonstationary series),
it is important to have available a quick procedure of both standard
and robust identification to apply and to evaluate and compare results.
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In the following we conduct experiments which should provide the
tentative model structure of the monthly bond rate series37. We
analyse the series by the standard ESACF and robust ESACF based on
the MM/wacf and OLS/wacf combinations.

ESACF pattern estimates:

The vertex of ESACF table is marked in bold.
> esacf(bonds)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.94 0.90 0.86 0.81 0.77 AR0 X X X X X X
AR1 0.39 0.10 0.05 0.06 0.14 0.09 AR1 X 0 0 0 0 0
AR2 0.16 �0.14 �0.04 �0.02 0.13 0.01 AR2 X 0 0 0 0 0
AR3 0.47 �0.13 0.03 �0.02 0.12 0.00 AR3 X 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(bonds,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.93 0.89 0.86 0.82 0.78 AR0 X X X X X X
AR1 0.42 0.17 0.06 0.09 0.13 0.08 AR1 X 0 0 0 0 0
AR2 0.02 0.05 �0.10 0.01 0.10 0.00 AR2 0 0 0 0 0 0
AR3 �0.22 0.02 �0.19 0.01 0.11 0.00 AR3 X 0 X 0 0 0

> esacf(bonds,method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.93 0.89 0.86 0.82 0.78 AR0 X X X X X X
AR1 0.42 0.16 0.06 0.08 0.14 0.08 AR1 X 0 0 0 0 0
AR2 0.20 �0.03 �0.12 �0.01 0.10 0.02 AR2 X 0 0 0 0 0
AR3 0.52 �0.10 �0.08 �0.02 0.10 0.01 AR3 X 0 0 0 0 0

The results of the standard and robust ESACF suggest that an
ARMA(1, 1) model would be the relevant tentative structure for our
bond rate series. If there are many series to model, this kind of quick
procedure may help to classify the series into ‘difficult and clear
cases’ and thus indicate which require more effort and time for
explorative analysis. Tsay (2002) has applied the standard ESACF to

                                          
37 Source: Rousseeuw and Leroy (1987).
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the monthly stock returns series of the 3M company and obtained an
ARMA(0, 0) model. Because this series seems to contain some
outliers (Figure 2.7, op cit), it might be interesting to apply also a
robust ESACF and compare the results.

Money stock M3: Finland

The standard and robust ESACF procedures were applied to the
Finnish M3 money stock (January 1990 – December 2000). The
results of the standard and robust identification indicate a tentative
ARIMA(0, 1, 0) model. Instead of an MA(q) model there is a white
noise component in the Finnish M3 monthly series. The standard and
robust ESACF results are displayed below. The log transformation
was applied to M3 before the computer runs.

ESACF pattern estimates:

> esacf(log(M3Fin))
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.91 0.88 0.85 0.81 AR0 X X X X X X
AR1 �0.15 �0.07 0.01 �0.10 0.07 �0.08 AR1 0 0 0 0 0 0
AR2 �0.44 �0.09 �0.02 �0.08 �0.02 �0.08 AR2 X 0 0 0 0 0
AR3 �0.17 �0.15 0.05 �0.06 0.05 �0.05 AR3 0 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(log(M3Fin),method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.92 0.89 0.87 0.85 AR0 X X X X X X
AR1 �0.17 �0.04 0.00 �0.17 0.04 �0.03 AR1 0 0 0 0 0 0
AR2 �0.49 �0.10 �0.05 �0.19 �0.08 �0.04 AR2 X 0 0 0 0 0
AR3 �0.06 �0.14 0.00 �0.18 0.05 0.00 AR3 0 0 0 0 0 0

> esacf(log(M3Fin),method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.92 0.89 0.87 0.85 AR0 X X X X X X
AR1 �0.17 �0.04 0.00 �0.17 0.05 �0.03 AR1 0 0 0 0 0 0
AR2 �0.46 �0.07 �0.04 �0.18 �0.08 �0.04 AR2 X 0 0 0 0 0
AR3 �0.18 �0.14 0.03 �0.13 �0.01 0.00 AR3 0 0 0 0 0 0
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First-order differencing38

We take the first-order differences of log (M3Fin). The standard and
robust ESACF results indicate that the transformed series, M3Fin1, is
white noise, as Figure 19 below and the following ESACF tables
show.

> M3Fin1<-diff(log(M3Fin),lag=1)

> esacf(M3Fin1)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.16 �0.07 0.01 �0.10 0.07 �0.08 AR0 0 0 0 0 0 0
AR1 �0.45 �0.09 �0.03 �0.10 �0.03 �0.09 AR1 X 0 0 0 0 0
AR2 �0.22 �0.14 0.05 �0.05 0.05 �0.07 AR2 X 0 0 0 0 0
AR3 �0.17 �0.44 �0.30 0.04 0.00 �0.08 AR3 0 X X 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(M3Fin1,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.17 �0.06 0.00 �0.17 0.04 �0.03 AR0 0 0 0 0 0 0
AR1 �0.50 �0.10 �0.04 �0.18 �0.07 �0.03 AR1 X 0 0 0 0 0
AR2 �0.12 �0.15 0.01 �0.16 0.05 �0.01 AR2 0 0 0 0 0 0
AR3 �0.10 �0.43 �0.42 �0.14 0.00 �0.03 AR3 0 X X 0 0 0

> esacf(M3Fin1,method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.17 �0.06 0.00 �0.17 0.04 �0.03 AR0 0 0 0 0 0 0
AR1 �0.46 �0.07 �0.03 �0.18 �0.07 �0.04 AR1 X 0 0 0 0 0
AR2 �0.23 �0.14 0.03 �0.11 0.00 �0.02 AR2 X 0 0 0 0 0
AR3 �0.18 �0.43 �0.34 �0.06 �0.03 �0.04 AR3 0 X X 0 0 0

                                          
38 The author refers to the concepts of difference-stationary and trend-stationary, which
are important in econometric modelling (eg Chatfield 1996, p. 235). In our thesis we
make the series stationary by differencing.
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Figure 19. First-order differences of log (M3Fin)
y-axis: M3Fin1
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Money stock M3: Euro area

The identification result for the euro area M3 is similar to the Finnish
M3 series. All the ESACF analyses tentatively indicate an
ARIMA(0, 1, 0) model.

ESACF pattern estimates:

> esacf(log(M3Euro))
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.91 0.88 0.84 0.82 AR0 X X X X X X
AR1 �0.16 �0.16 0.04 �0.19 0.01 0.34 AR1 0 0 0 0 0 X
AR2 �0.50 �0.20 �0.03 �0.17 0.01 0.33 AR2 X X 0 0 0 X
AR3 �0.12 �0.37 0.11 �0.12 0.02 0.23 AR3 0 X 0 0 0 X

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.

> esacf(log(M3Euro),method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.95 0.93 0.91 0.88 0.85 AR0 X X X X X X
AR1 0.03 �0.20 �0.07 �0.26 0.12 0.42 AR1 0 0 0 X 0 X
AR2 �0.35 �0.20 �0.14 �0.22 �0.01 0.45 AR2 X X 0 0 0 X
AR3 �0.06 �0.23 �0.07 �0.20 �0.02 0.16 AR3 0 X 0 0 0 0
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> esacf(log(M3Euro),method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.95 0.93 0.91 0.88 0.85 AR0 X X X X X X
AR1 0.04 �0.17 �0.01 �0.25 0.12 0.43 AR1 0 0 0 X 0 X
AR2 �0.42 �0.17 �0.12 �0.25 0.12 0.45 AR2 X 0 0 X 0 X
AR3 0.05 �0.27 0.06 �0.15 0.06 0.18 AR3 0 X 0 0 0 0

Difference transformations

For the M3Fin series, first-order differencing makes it white noise. In
the M3Euro series we found by lag = 1 differencing the seasonal
component (Figure 20 below) and then by lag = 12 differencing the
outcome was white noise (Figure 21 below). The following standard
and robust ESACF patterns also suggest white noise.

> M3Euro1<-diff(log(M3Euro),lag=1)
> M3Euro112<-diff(M3Euro1,lag=12)

Figure 20. First-order Figure 21. (1�B)(1�B12)
differences of log(M3Euro) transformation of log(M3Euro)
y-axis: M3Euro1 y-axis: M3Euro112
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> esacf(M3Euro112)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.04 0.02 0.03 0.04 0.00 0.11 AR0 0 0 0 0 0 0
AR1 0.33 0.03 0.00 0.07 0.00 0.11 AR1 X 0 0 0 0 0
AR2 �0.40 0.03 0.01 �0.01 �0.04 0.12 AR2 X 0 0 0 0 0
AR3 �0.46 0.03 0.10 0.02 �0.02 0.11 AR3 X 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std error.
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> esacf(M3Euro112,method=MM)
Extended Autocorrelation Table
Calculated using MM method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.06 0.03 0.04 0.07 0.02 0.12 AR0 0 0 0 0 0 0
AR1 �0.48 0.03 0.02 0.10 0.06 0.11 AR1 X 0 0 0 0 0
AR2 0.26 0.45 �0.05 0.05 0.00 0.14 AR2 X X 0 0 0 0
AR3 �0.54 0.41 �0.21 0.09 �0.01 0.14 AR3 X X 0 0 0 0

> esacf(M3Euro112,method=ols,acf.fun=wacf)
Extended Autocorrelation Table
Calculated using ols method for AR fitting
and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 �0.06 0.03 0.04 0.07 0.02 0.12 AR0 0 0 0 0 0 0
AR1 0.30 0.06 0.06 0.08 0.01 0.12 AR1 X 0 0 0 0 0
AR2 �0.44 0.05 0.06 0.02 �0.02 0.15 AR2 X 0 0 0 0 0
AR3 �0.49 0.05 0.14 0.08 �0.01 0.14 AR3 X 0 0 0 0 0

For both the Finnish and euro area series, an alternative way to start
the modelling procedure is by carrying out a robust AR(p) filter
analysis, for instance an AR(3) fitting based on the MM-estimator.
Thereafter, for the filtered/cleaned series, it should be reasonable to
apply the standard ESACF procedure. This kind of approach to
ARMA modelling is suggested by Martin, Samarov and Vandaele
(1983). We could add the robust ESACF estimation of the
filtered/cleaned series (and the corresponding residual series) to this
approach and compare the standard and robust ESACF results.

7.3 Five real exchange rate series

In the following standard and robust ESACF exercises, we used five
long monthly time series of the real effective exchange rate, with
1995 = 100. The real rate is based on consumer prices. The following
countries’ series were studied: Unites States, Germany, United
Kingdom, Sweden and Finland. The period of the time series is
January 1972 – December 1999, totalling 336 observations. Before the
ESACF runs, the series were transformed into natural logarithms.

The Finnish markka

For the Finnish markka series, the results of all standard and robust
ESACF estimates based on the total period indicate an ARMA(1, 1)
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model with high values of sample autocorrelation estimates. This
result is consistent with an alternative ARIMA(0, 1, 1) model, as the
differencing operator (1–B) can be viewed as the AR operator
(1 –�B) with � � 1. An MA(1) model was obtained for the first-order
difference transform of the original series. In robust cases the
correlation estimates of the ESACF tables were more clearly
distributed to the separate ‘X’ and ‘0’ sub-fields (in the ESACF
matrix) compared with the standard OLS/acf estimation.  If we divide
the markka series into three sub-periods, we obtain the following
results:

(a) January 1972 � February 1989: both the standard and robust
estimates indicate an ARIMA(0, 1, 0) model, ie a random walk
model of the original series and white noise for the first-order
difference series.

(b) March 1989 � August 1992: includes three important monetary
and foreign exchange policy measures: revaluation of the markka,
linking the markka to the ECU and devaluation of the markka;
both the standard and robust estimates produce an ARMA(1, 1) or
ARIMA(0, 1, 1) model and an MA(1) model for the differenced
series.

(c) September 1992 � December 1999, in which the markka was
floated and Finland and ten other European countries adopted a
single currency, the euro, from 1 January 1999; the results
achieved are similar to those for period (b). More detailed ESACF
results concerning total series are given in Appendix 6.

Results for the other real exchange rates

The results are the following for the series of the other four countries.
For the US, UK and Sweden, the original series follow a stationary
ARMA(1, 1) or a nonstationary ARIMA(0, 1, 1) model and the first-
difference series follow an MA(1) model.

The result for Germany is an interesting exception: the original
series follow an ARIMA(0, 1, 1) model based on the standard ESACF
identification, but the robust ESACF based on the MM/wacf,
GM/wacf, OLS/tacf and OLS/rkacf provided an ARIMA(0, 1, 2) ie an
IMA(2) model. For the first-order difference series, the standard
ESACF indicates an MA(1) model, while the robust ESACF based on
the combinations GM/tacf, MM/tacf and OLS/tacf indicates an MA(2)
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model. This is the result which requires careful further research. More
detailed results from identification of our German series are displayed
in Appendix 6.
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8 Concluding remarks and
suggestions for further research

Concluding remarks

In this thesis we have designed a robustified version of the ESACF
procedure for identification of ARIMA time series models. The
different simulations and applications of the single real and artificial
time series show that this design is operational with alternative
statistical algorithms and estimators. A technically quick and flexible
system is incorporated in an integrated statistical program: data
generation, simulations with outlier modelling, ESACF estimations of
simulated and real series with or without outliers. In addition, it is
possible, using the saved results, to combine different summary
results. In the program both outlier types, AO and IO, can be
generated simultaneously for a time series, as isolated and patchy
configurations; furthermore, the generated and fixed outliers can be
simultaneously placed as determined and randomly.

The system described provides a benchmark for researchers in the
identification of mixed ARIMA processes by standard and robust
ESACF procedures. We also obtain the results for ordinary and robust
autocorrelation functions, since the first row of the ESACF table
displays the ordinary autocorrelation estimates of the series. One
drawback of the standard and robust ESACF procedures is that they
focus on small orders of p and q, ie on a small area of the ESACF
table. Of course, parsimony in model building is itself a common and
important goal. Another drawback is that the ESACF method is (in
practice) suitable only for non-seasonal time series. We did not
conduct robust experiments on ESACF for seasonal models, but we
believe that this restriction can be replaced by the modern robust
seasonal adjustment procedures (eg Findley et al 1998).

The key findings from the simulation experiments are:

– Identification of the ARMA(1, 1) and ARIMA(1, 1, 1) processes
by the robust ESACF procedure was quite successful in cases of
low contamination and low volatility of outliers; AOs were
problematic, as is known in the literature; in cases of high
contamination and volatility of outliers, the results were clearly
less satisfactory.



118

– No great differences in performance between GM- and MM-
estimators were found for series including outliers; in the case of
single series, the GM-estimator was found to take notably more
computer time compared with other robust regression estimators;
the combination MM/wacf performs well in almost all the cases
and is therefore recommended for use as the default combination.

– Due to outliers, the sample distributions of the standard ESACF
coefficient estimates are generally quite skewed and characterised
by excess kurtosis, and in the lower left part of the ESACF matrix
some sample distributions of the coefficient estimates may be
bimodal (Appendix 1).

– In the robust ESACF case, these sample distributions are more
symmetric in shape and, according to the Jarque-Bera test values,
also closer to a normal distribution, this occured particularly in the
area of triangle of zeros, as seen in Appendix 1. We have here
dealt with the results for the vertices, but in general these can be
viewed as valid ‘samples’ of the triangle region of zeros in the
ESACF table.

– The robust ESACF procedure based on MM/wacf performs well
also in case of an outlier-free series; it is impossible to determine
whether this depends more on the robust AR(p) fitting than on the
robust autocorrelation function. In the literature, robust methods
are often verified to be inferior to conventional methods in outlier-
free cases.

– The robust ESACF results of mixed nonstationary time series are
reasonable, but theoretically, these results remain open due to the
robust autoregressions. However, the combination of OLS
estimation of AR(p) iteration and a robust autocorrelation function
(OLS/wacf) was shown to be useful in the majority of the
nonstationary series with a low contamination level. Generally, the
promising robust results with nonstationary series provide a
possible contribution to robust unit root testing.

– In the case of ARMA(1, 1) models, the OLS/wacf combination
was successful (Table 4).

The sensitive experiments with single generated series containing
outliers showed the usefulness of the robust ESACF procedure, as did
the example of a generated nonstationary time series and its
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differencing, with outliers. Also the applications to series studied
earlier in the literature provided useful results, especially in the spirit
model’s residual series. In the case of telephone data, RESEX, the
robust ESACF suggested the same model form as did Masarotto
(1987a). For the real monetary series, money stock and real exchange
rate series, the robust ESACF gave relevant suggestions on the
existence of a unit root. The application of robust ESACF to sub-
series of the Finnish markka time series provided suggestions for
different model forms.

In summary, the results of our simulations and illustrative
examples of single real series show how useful it would be to compute
ESACF estimates by both robust and standard versions. This should
always be done, since the robust regression method, MM, performs as
well as the OLS method with pure, outlier-free data. In cases of high
contamination of data, the robust ESACF also gives more false
signals. In macroeconomic series, especially monetary series,
structural breaks may occur as outliers and the United ESACF
Identification Procedure (Figure 1) should be carried out as a routine
procedure. Comparison of the results provides statisticians and
econometricians with valuable suggestions for constructing
explanatory or forecasting models. In econometric modelling, the
combined robust and standard residual diagnostic methods are
becoming more important, and in this area our combined procedure
will make a definite contribution. In practical terms, the crucial
finding is that, with outlier-free data, the use of the robust ESACF
procedure based on MM regression entails no real risk of a false
inference.

Suggestions for further research

We have used three types of the robust autocorrelation function in the
robust ESACF procedure: weighted, trimmed and rank-based. For
comparisons of results, experiments based on the median-type
autocorrelation function might also be useful. Such a simple version is
the autocorrelation function of Sen (see Yoshida et al 1984).

A second aim of future research might be to obtain robust ESACF
estimates based on robust autocorrelation and partial autocorrelation
functions formed by a lattice structure (see eg Li & Dickinson 1988,
Masarotto 1987a). These estimates could be obtained from the
transformed )j(

t,kW  series in AR(p) iterations calculated via Durbin-

Levinson recursions. This system with computer-intensive methods
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requires extensive calculations, but is not a problem with modern
computer facilities.

A third aim might be to investigate the potential of the robust
vector autocorrelation function for developing a robust ESACF
procedure on the lines laid down by Jeon and Park (1986) and
Paparoditis and Streitberg (1992).

Overall, however, the most acute open problem is the standard
error of the robust ESACF coefficients with *

rt  values for constructing
the robust confidence intervals (see the flow chart of the proposed
united procedure in Figure 1). One could study a robust version of
Bartlett’s approximation. The use of the bootstrap technique would
help in searching for a relevant solution to the confidence interval
problem (see Paparoditis and Streitberg 1992, Aczel and Josephy
1992, Wilcox 1997, and Glendinning 1998). Currently, the most
promising method for computing robust confidence intervals when
using M regression (the M- and GM-estimator) seems to be the
percentile bootstrap (Wilcox 1997). But, as Maddala and Rao (1997)
remark, one should first investigate a robust version of the bootstrap.
In the ESACF procedure proposed in this thesis, this problem is more
complicated, since we use a robust regression in the AR(p) iteration of
the ESACF procedure in the first stage and a robust autocorrelation
function in the second stage.

Finally, the need for robust analysis of nonstationary time series,
with and without difference transformation, will be a permanent topic
of interest in statistics and econometrics. The robust ESACF
procedure is a potential tool to deal with the above modelling
problems (eg in a similar context as in Tsay 1984, 1985). We will
encounter these problems with both stationary and nonstationary
series and various types of outliers and their time configurations, ie
isolated and patchy outliers. Furthermore, the effects of the different
degrees of outlier contamination on robust procedures will be an
important goal of further research.
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Appendices 1–7

Notes:

1. The vertex of each ESACF table is marked in bold.
2. Besides the mean of the robust and standard ESACF estimates for

each model, the percentage of 1000 repetitions is given when the
ESACF estimate is greater than its two standard errors in modulus
(Appendices 1–3).

3. Standard error is calculated from simulated values (Sample s.e.).

Appendix 1

Example of the basic and an optional39 output from the main
simulation experiments

Model: ARMA(1, 1) process

Label: ARMA(1, 1) 5 % AO contamination
NSIMU: 1000 NTS: 50 AR: (0.8) MA: (–0.7) ndiff: 0 METHOD:
MM, wacf OSD:10

NSIMU = number of repetitions in simulation
NTS = number of observations in time series
AR = value of phi coefficient of autoregressive part
MA = value of theta coefficient the moving average part
ndiff = value of d in ARIMA(p, d, q) process; d = 0 is a

stationary process of order I(0); d = 1 is an integrated
process of order I(1)

METHOD = regression method, type of autocorrelation function
OSD = standard deviation of outliers
s.e. = standard error

Vertex of the ESACF table and its corresponding statistics are marked
in bold.

                                          
39 See also Appendix 7, p. 156 and 158.
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ESACF Tables (Patterns):

Robust ESACF Standard ESACF
Mean40 robust ESACF = ESACF based on robust

method of AR(p) fitting and robust ACF
Mean standard ESACF = original ESACF based

on ols AR(p) fitting and regular ACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.716 0.486 0.326 0.209 0.121 0.057 AR0 0.501 0.345 0.233 0.153 0.087 0.041
AR1 0.245 0.028 0.030 0.016 �0.005 �0.021 AR1 �0.072 0.038 0.030 0.025 0.005 �0.005
AR2 0.032 �0.076 0.011 0.015 0.014 �0.004 AR2 �0.021 �0.013 0.015 0.016 0.003 �0.001
AR3 0.026 �0.053 0.024 0.012 0.007 �0.003 AR3 �0.038 0.038 0.029 0.013 0.007 0.001

Sample s.e. of robust
ESACF = calculated from simulation

repetitions

Sample s.e. of standard
ESACF = calculated from simulation

repetitions

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.123 0.165 0.193 0.209 0.213 0.213 AR0 0.248 0.217 0.201 0.187 0.181 0.174
AR1 0.172 0.177 0.156 0.150 0.148 0.145 AR1 0.315 0.137 0.124 0.114 0.110 0.105
AR2 0.272 0.169 0.148 0.140 0.134 0.130 AR2 0.358 0.200 0.115 0.106 0.097 0.092
AR3 0.291 0.242 0.160 0.136 0.134 0.132 AR3 0.363 0.250 0.168 0.101 0.096 0.092

Asymptotic s.e.
(n�k�j)�½

MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.143 0.144 0.146 0.147 0.149 0.151
AR1 0.144 0.146 0.147 0.149 0.151 0.152
AR2 0.146 0.147 0.149 0.151 0.152 0.154
AR3 0.147 0.149 0.151 0.152 0.154 0.156

Robust ESACF Standard ESACF
Mean Bartlett s.e. (robust ESACF) Mean Bartlett s.e. (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.151 0.153 0.155 0.156 0.158 0.160 AR0 0.143 0.144 0.146 0.147 0.149 0.151
AR1 0.169 0.176 0.189 0.201 0.211 0.217 AR1 0.160 0.163 0.173 0.182 0.189 0.193
AR2 0.170 0.174 0.184 0.190 0.199 0.205 AR2 0.165 0.169 0.178 0.184 0.189 0.194
AR3 0.174 0.179 0.192 0.199 0.206 0.212 AR3 0.167 0.173 0.184 0.191 0.196 0.201

ESACF estimates greater than its two standard errors in modulus, %
of 1000 repetitions

A. asymptotic s.e. (n–k–j)–½

B. Bartlett s.e.

C. s.e. based on simulated values

A.

Percentage accepted > zero
(2 asymptotic s.e.) (robust ESACF)

Percentage accepted > zero
(2 asymptotic s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 99.7 87.6 57.9 36.0 23.5 17.1 AR0 77.8 57.7 37.4 23.4 14.2 9.4
AR1 41.1 11.0 5.4 3.8 3.8 3.4 AR1 50.5 5.3 3.7 2.7 1.5 1.4
AR2 34.8 10.9 4.6 3.0 3.4 1.7 AR2 59.8 15.9 3.0 2.4 1.1 0.7
AR3 41.0 26.1 6.7 2.8 2.1 2.3 AR3 63.1 29.3 9.6 2.1 1.2 1.1

                                          
40 Besides the arithmetic mean, we can list the median estimates from our simulation
results.
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B.

Percentage accepted > zero
(2 Bartlett s.e.) (robust ESACF)

Percentage accepted > zero
(2 Bartlett s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 99.6 85.7 55.9 32.5 20.8 14.5 AR0 77.8 57.7 37.4 23.4 14.2 9.4
AR1 29.9 3.1 1.3 0.7 0.5 0.7 AR1 44.3 2.4 2.1 1.2 0.7 0.5
AR2 21.9 7.4 1.5 0.5 0.7 0.3 AR2 55.2 12.9 1.7 1.3 0.7 0.3
AR3 25.5 19.5 1.8 0.8 0.5 0.3 AR3 58.0 22.2 6.9 1.6 0.8 0.6

C.

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 99.8 82.8 40.9 17.3 8.4 6.1 AR0 51.2 36.0 21.7 13.2 8.0 6.4
AR1 30.4 4.8 4.2 3.6 4.1 4.4 AR1 0.7 6.5 6.0 6.3 6.2 6.1
AR2 1.3 7.1 4.7 4.6 5.2 4.7 AR2 0.0 5.4 7.0 6.7 7.1 6.6
AR3 0.2 3.3 5.1 5.3 5.6 4.8 AR3 0.0 1.1 6.8 6.4 7.1 6.6
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Model: ARMA(1, 1)
Histograms of robust ESACF 4����4 matrix elements
[AR0 ↔ AR3]����[MA0 ↔ MA3], 1000 repetitions.
Area of SACF coefficients (first row) separated by dotted line.

A
R

 0

MA 0

0.2 0.6 1.0

mean  0.72
median  0.74
sd  0.12
min  0.14
max  0.95
rmse  0.73
skew  -0.73
kurt  3.52
J-B  100.49
J-B p  0

MA 1

-0.2 0.4

mean  0.49
median  0.5
sd  0.16
min  -0.16
max  0.88
rmse  0.51
skew  -0.43
kurt  3.05
J-B  31.05
J-B p  0

MA 2

-0.4 0.4

mean  0.33
median  0.34
sd  0.19
min  -0.45
max  0.84
rmse  0.38
skew  -0.31
kurt  2.97
J-B  16.12
J-B p  0

MA 3

-0.4 0.4

mean  0.21
median  0.21
sd  0.21
min  -0.44
max  0.79
rmse  0.3
skew  -0.16
kurt  2.71
J-B  7.75
J-B p  0.02

A
R

 1

-0.4 0.2 0.8

mean  0.25
median  0.25
sd  0.17
min  -0.36
max  0.72
rmse  0.3
skew  -0.12
kurt  2.72
J-B  5.54
J-B p  0.06

-0.6 0.0 0.6

mean  0.03
median  0.03
sd  0.18
min  -0.54
max  0.51
rmse  0.18
skew  -0.1
kurt  2.75
J-B  4.12
J-B p  0.13

-0.4 0.2

mean  0.03
median  0.04
sd  0.16
min  -0.49
max  0.46
rmse  0.16
skew  -0.28
kurt  3.05
J-B  13.05
J-B p  0

-0.4 0.2

mean  0.02
median  0.02
sd  0.15
min  -0.45
max  0.53
rmse  0.15
skew  -0.09
kurt  2.83
J-B  2.44
J-B p  0.3

A
R

 2

-0.6 0.0 0.6

mean  0.03
median  0.01
sd  0.27
min  -0.6
max  0.59
rmse  0.27
skew  0.11
kurt  1.96
J-B  47.26
J-B p  0

-0.6 0.0 0.6

mean  -0.08
median  -0.08
sd  0.17
min  -0.51
max  0.58
rmse  0.19
skew  0.06
kurt  2.93
J-B  0.87
J-B p  0.65

-0.4 0.2

mean  0.01
median  0.01
sd  0.15
min  -0.45
max  0.47
rmse  0.15
skew  -0.02
kurt  2.88
J-B  0.6
J-B p  0.74

-0.4 0.2

mean  0.02
median  0.01
sd  0.14
min  -0.44
max  0.54
rmse  0.14
skew  0.13
kurt  3.11
J-B  3.44
J-B p  0.18

A
R

 3

-0.6 0.2

mean  0.03
median  0.03
sd  0.29
min  -0.57
max  0.62
rmse  0.29
skew  -0.01
kurt  1.81
J-B  59.41
J-B p  0

-0.6 0.2

mean  -0.05
median  -0.06
sd  0.24
min  -0.58
max  0.7
rmse  0.25
skew  0.16
kurt  2.45
J-B  16.67
J-B p  0

-0.4 0.2

mean  0.02
median  0.03
sd  0.16
min  -0.43
max  0.51
rmse  0.16
skew  -0.06
kurt  2.84
J-B  1.72
J-B p  0.42

-0.4 0.2

mean  0.01
median  0.01
sd  0.14
min  -0.4
max  0.47
rmse  0.14
skew  0.05
kurt  3.15
J-B  1.4
J-B p  0.5

: Frame of theoretical vertex histogram
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Model: ARMA (1, 1)
Histograms of standard ESACF 4����4 matrix elements
[AR0 ↔ AR3] ����[MA0 ↔ MA3], 1000 repetitions.
Area of SACF coefficients (first row) separated by dotted line.

A
R

 0

MA 0

-0.2 0.4 1.0

mean  0.5
median  0.51
sd  0.25
min  -0.18
max  0.95
rmse  0.56
skew  -0.15
kurt  2.05
J-B  41.31
J-B p  0

MA 1

-0.2 0.4

mean  0.35
median  0.34
sd  0.22
min  -0.27
max  0.85
rmse  0.41
skew  -0.03
kurt  2.35
J-B  17.84
J-B p  0

MA 2

-0.4 0.4

mean  0.23
median  0.23
sd  0.2
min  -0.41
max  0.8
rmse  0.31
skew  0.11
kurt  2.68
J-B  6.14
J-B p  0.05

MA 3

-0.4 0.4

mean  0.15
median  0.14
sd  0.19
min  -0.4
max  0.76
rmse  0.24
skew  0.27
kurt  2.88
J-B  12.65
J-B p  0

A
R

 1

-0.6 0.2

mean  -0.07
median  -0.15
sd  0.31
min  -0.54
max  0.67
rmse  0.32
skew  0.54
kurt  2.13
J-B  80.24
J-B p  0

-0.4 0.2

mean  0.04
median  0.03
sd  0.14
min  -0.49
max  0.6
rmse  0.14
skew  0.02
kurt  3.71
J-B  20.78
J-B p  0

-0.6 0.0

mean  0.03
median  0.02
sd  0.12
min  -0.52
max  0.49
rmse  0.13
skew  0.03
kurt  4.24
J-B  63.88
J-B p  0

-0.4 0.2

mean  0.02
median  0.02
sd  0.11
min  -0.45
max  0.4
rmse  0.12
skew  -0.16
kurt  4.45
J-B  91.34
J-B p  0

A
R

 2

-0.6 0.2

mean  -0.02
median  -0.04
sd  0.36
min  -0.54
max  0.6
rmse  0.36
skew  0.1
kurt  1.54
J-B  90.68
J-B p  0

-0.6 0.0 0.6

mean  -0.01
median  0.01
sd  0.2
min  -0.55
max  0.54
rmse  0.2
skew  -0.28
kurt  2.87
J-B  14.26
J-B p  0

-0.4 0.2

mean  0.02
median  0.01
sd  0.12
min  -0.43
max  0.5
rmse  0.12
skew  0.12
kurt  5.01
J-B  170.47
J-B p  0

-0.4 0.2

mean  0.02
median  0.01
sd  0.11
min  -0.45
max  0.48
rmse  0.11
skew  0.25
kurt  5.5
J-B  270.76
J-B p  0

A
R

 3

-0.6 0.2

mean  -0.04
median  -0.08
sd  0.36
min  -0.52
max  0.7
rmse  0.36
skew  0.17
kurt  1.5
J-B  98.24
J-B p  0

-0.6 0.0 0.6

mean  0.04
median  0.05
sd  0.25
min  -0.55
max  0.53
rmse  0.25
skew  -0.27
kurt  2.26
J-B  34.82
J-B p  0

-0.4 0.2

mean  0.03
median  0.01
sd  0.17
min  -0.5
max  0.56
rmse  0.17
skew  0.23
kurt  3.44
J-B  16.85
J-B p  0

-0.4 0.2

mean  0.01
median  0
sd  0.1
min  -0.47
max  0.47
rmse  0.1
skew  0.46
kurt  6.44
J-B  528.77
J-B p  0

: Frame of theoretical vertex histogram
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Some theoretical forms of ESACF tables, asymptotic form

Indicator symbols: X = values beyond ± 2 standard errors
0 = values within ± 2 standard errors

Vertex is marked in bold. Ordinary SACF coefficients are marked by
shaded area and a triangle of zero values by two lines. In practice,
these ideal representations do not occur often, and the triangle may
become rectangular or trapezoidal in shape.

A. ARMA(1, 1) B. ARMA(2, 1)

AR MA order AR MA order
order 0 1 2 3 4 order 0 1 2 3 4

0 X X X X X 0 X X X X X
1 X 0 0 0 0 1 X X X X X
2 X X 0 0 0 2 X 0 0 0 0
3 X X X 0 0 3 X X 0 0 0
4 X X X X 0 4 X X X 0 0

C. ARMA(1, 2) D. ARMA(1, 1, 1)

AR MA order AR MA order
order 0 1 2 3 4 order 0 1 2 3 4

0 X X X X X 0 X X X X X
1 X X 0 0 0 1 X X X X X
2 X X X 0 0 2 X 0 0 0 0
3 X X X X 0 3 X X 0 0 0
4 X X X X X 4 X X X 0 0

E. ARIMA(1, 1, 0) � ARI(1, 1) F. ARIMA(0, 1, 1) � IMA(1, 1)

AR MA order AR MA order
order 0 1 2 3 4 order 0 1 2 3 4

0 X X X X X 0 X X X X X
1 X X X X X 1 X 0 0 0 0
2 0 0 0 0 0 2 X X 0 0 0
3 X 0 0 0 0 3 X X X 0 0
4 X X 0 0 0 4 X X X X 0
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Appendix 2

Main simulations: ARMA(1, 1) models (1�8)

NSIMU= number of replications, NTS = sample size, AR: ( ) value of phi
coefficient, MA: ( ) value of theta coefficient, ndiff: 0 stationary series, ndiff: 1
nonstationary I(1) series, OSD: st.dev of outliers, s.e. = standard error.

Robust ESACF Robust ESACF

Model 1
Label: ARMA(1, 1)2% AO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.648 0.320 0.141 0.043 �0.011 �0.039 AR0 0.602 0.298 0.129 0.036 �0.014 �0.040
AR1 0.292 0.043 �0.009 �0.034 �0.035 �0.028 AR1 0.224 0.057 0.002 �0.027 �0.031 �0.025
AR2 0.068 �0.058 0.023 0.023 �0.009 �0.007 AR2 0.046 �0.028 0.031 0.020 �0.007 �0.007

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 99.9 47.1 10.7 4.6 4.0 4.8 AR0 92.2 41.0 11.0 5.3 5.1 4.9
AR1 42.7 2.8 3.9 4.9 6.0 4.9 AR1 8.3 3.0 3.7 5.4 6.8 5.3
AR2 0.0 5.7 5.4 4.7 5.3 4.6 AR2 0.0 4.5 5.4 6.5 5.2 6.2

Model 2
Label: ARMA(1, 1)5% AO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.604 0.302 0.135 0.042 �0.010 �0.042 AR0 0.493 0.246 0.105 0.030 �0.010 �0.039
AR1 0.204 0.037 �0.004 �0.026 �0.025 �0.030 AR1 0.086 0.054 0.000 �0.015 �0.016 �0.022
AR2 0.018 �0.031 0.022 0.001 �0.001 �0.023 AR2 �0.004 0.012 0.019 0.002 �0.002 �0.019

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 99.5 47.4 11.3 4.7 4.8 5.2 AR0 73.1 31.7 10.0 4.5 5.2 5.1
AR1 17.9 3.8 4.2 4.8 5.0 4.3 AR1 0.2 4.4 4.9 5.6 5.9 6.1
AR2 0.2 5.0 4.5 4.9 4.3 5.0 AR2 0.0 5.9 6.0 6.1 7.3 6.9
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Model 3
Label: ARMA(1, 1)2% AO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.688 0.352 0.164 0.056 �0.005 �0.038 AR0 0.698 0.349 0.156 0.049 �0.011 �0.041
AR1 0.358 0.048 0.000 -0.030 �0.038 �0.031 AR1 0.369 0.061 0.005 �0.024 �0.038 �0.030
AR2 0.162 �0.074 0.023 0.019 �0.004 �0.007 AR2 0.151 �0.076 0.032 0.025 0.000 �0.011

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 58.5 12.8 6.0 4.9 4.7 AR0 100.0 61.8 12.9 5.7 5.2 5.2
AR1 76.7 3.1 3.1 3.7 5.6 6.1 AR1 80.8 2.6 3.0 4.4 5.8 6.1
AR2 0.1 6.0 4.1 3.6 5.4 5.6 AR2 0.0 7.1 4.8 4.8 5.4 6.7

Model 4
Label: ARMA(1, 1)5% IO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.694 0.369 0.182 0.069 0.003 �0.032 AR0 0.697 0.351 0.162 0.056 �0.003 �0.034
AR1 0.350 0.025 0.007 �0.024 �0.038 �0.030 AR1 0.362 0.049 0.010 �0.025 �0.034 �0.029
AR2 0.199 �0.095 0.024 0.018 0.005 �0.011 AR2 0.173 �0.087 0.035 0.019 0.004 �0.009

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 62.8 15.2 7.0 4.8 4.8 AR0 100.0 65.4 13.8 5.6 5.2 4.5
AR1 76.3 2.6 3.5 4.8 4.2 5.0 AR1 77.8 2.8 3.9 4.8 6.1 6.0
AR2 2.8 5.6 4.4 3.6 3.6 5.0 AR2 0.0 7.1 5.2 4.3 5.1 6.4

Model 5
Label: ARMA(1, 1)2% AO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.694 0.394 0.223 0.122 0.064 0.029 AR0 0.626 0.360 0.204 0.112 0.059 0.027
AR1 0.257 0.010 0.012 0.003 �0.006 �0.009 AR1 0.110 0.022 0.018 0.006 �0.002 �0.004
AR2 0.103 �0.071 0.001 0.006 0.010 0.005 AR2 0.045 �0.022 0.007 0.006 0.009 0.004

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 99.8 62.4 21.0 9.4 5.0 AR0 100.0 97.1 51.5 19.3 8.9 5.4
AR1 82.1 4.3 3.8 4.3 5.5 3.9 AR1 8.0 3.6 3.3 3.0 4.8 4.9
AR2 0.6 8.4 5.7 5.0 5.6 5.1 AR2 0.0 6.0 5.7 5.2 5.0 5.2
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Model 6
Label: ARMA(1, 1)5% AO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.650 0.370 0.209 0.115 0.061 0.030 AR0 0.512 0.293 0.166 0.090 0.048 0.023
AR1 0.174 0.004 0.009 �0.001 �0.005 �0.008 AR1 �0.053 0.019 0.019 0.003 0.002 �0.003
AR2 0.003 �0.040 0.004 0.003 0.009 0.003 AR2 �0.031 �0.003 0.012 0.010 0.007 0.000

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 99.3 57.6 18.6 7.9 5.0 AR0 99.9 86.7 42.4 14.2 8.2 4.6
AR1 48.1 4.1 3.9 4.2 4.3 3.8 AR1 6.3 4.6 4.0 4.4 4.8 5.7
AR2 0.0 6.7 5.9 5.5 4.3 4.3 AR2 0.0 5.5 6.7 6.1 4.9 6.1

Model 7
Label: ARMA(1, 1)2% IO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.730 0.423 0.243 0.136 0.072 0.033 AR0 0.742 0.428 0.243 0.134 0.070 0.032
AR1 0.343 0.018 0.016 0.003 �0.003 �0.007 AR1 0.351 0.024 0.017 0.003 �0.006 �0.010
AR2 0.287 �0.092 0.005 0.009 0.014 0.009 AR2 0.288 �0.088 0.007 0.008 0.012 0.006

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 99.6 69.4 24.1 10.3 5.2 AR0 100.0 99.8 70.4 23.9 9.8 5.7
AR1 99.6 3.7 3.3 3.8 3.7 5.0 AR1 99.5 4.5 2.7 4.2 4.2 4.8
AR2 53.3 7.2 4.6 5.4 5.7 4.6 AR2 47.8 6.9 4.7 5.4 5.7 5.9

Model 8
Label: ARMA(1, 1)5% IO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 0 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.738 0.442 0.259 0.147 0.080 0.040 AR0 0.744 0.432 0.247 0.137 0.071 0.034
AR1 0.349 0.014 0.012 0.004 �0.014 �0.012 AR1 0.348 0.023 0.023 0.008 �0.011 �0.010
AR2 0.301 �0.097 0.003 0.006 0.002 0.004 AR2 0.290 �0.093 0.014 0.014 0.006 0.007

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 71.4 25.9 9.4 6.8 AR0 100.0 99.9 74.0 25.4 10.0 5.8
AR1 99.9 3.6 3.5 3.8 4.5 3.9 AR1 99.5 4.3 2.8 4.2 4.8 6.0
AR2 63.2 5.7 4.9 4.2 4.2 4.1 AR2 46.0 7.8 6.7 5.6 5.0 6.0
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Appendix 3

Main simulations: ARIMA(1, 1, 1) models (17�24)

The vertex of the ESACF table is marked in bold.
NSIMU= number of replications, NTS = sample size, AR: ( ) value of phi
coefficient, MA: ( ) value of theta coefficient, ndiff: 0 stationary series, ndiff: 1
nonstationary I(1) series, OSD: st.dev of outliers, s.e. = standard error.

Robust ESACF Robust ESACF

Model 17
Label: ARIMA(1, 1, 1)2% AO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.932 0.839 0.735 0.629 0.527 0.433 AR0 0.923 0.828 0.722 0.616 0.515 0.422
AR1 0.602 0.353 0.214 0.137 0.089 0.056 AR1 0.466 0.322 0.194 0.123 0.079 0.052
AR2 0.160 0.000 �0.018 �0.017 �0.012 �0.007 AR2 0.073 0.036 �0.004 �0.009 �0.008 �0.006

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 99.7 93.3 74.0 55.0 AR0 100.0 100.0 99.5 93.8 75.5 55.3
AR1 98.5 58.9 19.8 8.8 5.9 4.8 AR1 45.1 47.4 19.4 8.5 6.3 5.6
AR2 10.8 3.2 4.0 3.7 5.3 4.5 AR2 0.1 3.8 4.9 5.7 5.8 6.3

Model 18
Label: ARIMA (1, 1, 1)5% AO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.922 0.832 0.730 0.628 0.529 0.437 AR0 0.909 0.817 0.715 0.612 0.513 0.423
AR1 0.486 0.311 0.194 0.126 0.083 0.054 AR1 0.240 0.253 0.159 0.104 0.066 0.046
AR2 0.005 0.025 �0.019 �0.002 �0.017 �0.003 AR2 �0.052 0.066 0.014 0.006 �0.003 0.002

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 99.6 93.4 75.7 55.2 AR0 100.0 100.0 99.6 92.4 74.5 54.4
AR1 81.0 49.0 17.0 8.7 6.0 5.1 AR1 13.1 30.7 15.3 9.2 6.3 5.7
AR2 2.5 3.7 4.1 4.7 4.7 4.8 AR2 0.0 6.6 6.4 6.2 6.6 6.3
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Model 19
Label: ARIMA(1, 1, 1)2% IO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.942 0.850 0.747 0.644 0.544 0.451 AR0 0.933 0.838 0.732 0.626 0.526 0.432
AR1 0.689 0.384 0.226 0.137 0.080 0.039 AR1 0.702 0.392 0.236 0.149 0.095 0.055
AR2 0.294 �0.039 �0.028 �0.026 �0.020 �0.021 AR2 0.300 �0.035 �0.025 �0.020 �0.018 �0.016

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 99.5 94.3 79.3 60.7 AR0 100.0 100.0 99.5 93.6 77.9 58.0
AR1 100.0 64.8 20.9 9.1 5.1 3.9 AR1 99.9 66.8 24.2 10.4 5.1 4.4
AR2 47.6 3.8 4.9 5.1 4.6 4.4 AR2 50.7 3.9 4.6 4.9 5.0 4.3

Model 20
Label: ARIMA(1, 1, 1)5% IO contam.
NSIMU: 1000 NTS: 50 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.942 0.851 0.747 0.642 0.540 0.443 AR0 0.932 0.836 0.730 0.623 0.521 0.426
AR1 0.691 0.386 0.216 0.118 0.057 0.013 AR1 0.700 0.389 0.234 0.149 0.095 0.051
AR2 0.305 �0.043 �0.036 �0.031 �0.026 �0.029 AR2 0.307 �0.041 �0.030 �0.016 �0.009 �0.014

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 99.9 95.3 80.6 58.2 AR0 100.0 100.0 99.8 94.0 79.1 56.8
AR1 100.0 68.0 19.6 8.9 5.6 4.1 AR1 100.0 69.5 24.0 10.5 6.5 4.8
AR2 57.6 3.6 4.7 4.2 5.0 5.2 AR2 57.5 3.8 4.7 5.9 5.5 6.0

Model 21
Label: ARIMA(1, 1, 1)2% AO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.983 0.959 0.930 0.899 0.867 0.834 AR0 0.982 0.957 0.928 0.897 0.865 0.832
AR1 0.638 0.389 0.235 0.147 0.097 0.068 AR1 0.429 0.331 0.201 0.126 0.082 0.057
AR2 0.177 0.038 0.009 �0.004 �0.005 �0.004 AR2 �0.229 0.082 0.008 0.005 0.001 0.003

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 100.0 100.0 100.0 100.0 AR0 100.0 100.0 100.0 100.0 100.0 100.0
AR1 100.0 99.3 62.0 26.7 12.3 9.0 AR1 57.2 87.6 49.0 24.1 12.3 8.7
AR2 39.8 5.6 3.6 3.9 4.5 5.0 AR2 2.6 11.4 4.6 5.0 4.7 5.5
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Model 22
Label: ARIMA(1, 1, 1)5% AO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.980 0.957 0.930 0.900 0.869 0.839 AR0 0.979 0.955 0.927 0.897 0.866 0.835
AR1 0.517 0.340 0.206 0.133 0.087 0.066 AR1 0.164 0.239 0.144 0.095 0.060 0.048
AR2 �0.002 0.044 �0.010 0.000 �0.004 0.001 AR2 �0.244 0.117 0.018 0.019 0.012 0.013

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 100.0 100.0 100.0 100.0 AR0 100.0 100.0 100.0 100.0 100.0 100.0
AR1 100.0 98.6 61.6 27.2 13.0 10.0 AR1 13.6 70.5 35.5 20.6 11.7 9.2
AR2 4.5 7.1 4.3 3.4 4.5 4.6 AR2 0.0 26.5 6.0 5.9 7.1 6.6

Model 23
Label: ARIMA(1, 1, 1)2% IO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.986 0.963 0.934 0.904 0.873 0.841 AR0 0.984 0.960 0.931 0.900 0.869 0.837
AR1 0.732 0.434 0.259 0.156 0.096 0.062 AR1 0.745 0.441 0.265 0.164 0.107 0.074
AR2 0.332 �0.001 �0.004 �0.009 �0.009 �0.011 AR2 0.338 0.001 �0.003 �0.009 �0.009 �0.007

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 100.0 100.0 100.0 100.0 AR0 100.0 100.0 100.0 100.0 100.0 100.0
AR1 100.0 100.0 75.1 31.4 13.0 8.1 AR1 100.0 100.0 79.0 34.5 14.4 9.1
AR2 98.6 3.6 3.0 4.5 5.1 4.6 AR2 99.2 3.6 2.8 4.5 5.0 5.0

Model 24
Label: ARIMA(1, 1, 1)5% IO contam.
NSIMU: 1000 NTS: 200 AR: (0.6) MA: (�0.4) ndiff: 1 METHOD:
MM, wacf OSD: 5

Mean robust ESACF Mean standard ESACF

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.986 0.962 0.934 0.903 0.872 0.840 AR0 0.984 0.959 0.930 0.899 0.867 0.834
AR1 0.735 0.442 0.266 0.157 0.091 0.052 AR1 0.745 0.443 0.270 0.169 0.109 0.073
AR2 0.333 �0.018 �0.009 �0.009 �0.010 �0.016 AR2 0.333 �0.009 0.001 �0.004 �0.005 �0.009

Percentage accepted > zero
(2 Sample s.e.) (robust ESACF)

Percentage accepted > zero
(2 Sample s.e.) (standard ESACF)

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 100.0 100.0 100.0 100.0 100.0 100.0 AR0 100.0 100.0 100.0 100.0 100.0 100.0
AR1 100.0 100.0 74.8 30.4 11.2 6.3 AR1 100.0 99.9 75.8 33.0 15.2 9.5
AR2 99.8 4.2 4.7 4.4 4.2 3.9 AR2 99.1 3.6 3.3 3.1 4.5 4.2
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Appendix 4

Simulation experiments with some common ARIMA models in
econometrics and special configurations of outliers

Summary of simulation results: mean of theoretical vertex1) of triangle ESACF
table for an ARIMA(p, d, q) model, 1000 replications

Model
Percentage: vertex
value beyond �2

standard errors2) , %

Mean of the theoretical
vertex value

(expected value = 0)

Outlier type3) and con-
tamination, proportion (%),

isolated or {patch}
n:o n A B A B
ARIMA(0, 1, 1) ����1  = 0.5          ����o  = 10
1 200 4.7* 4.2* 0.002 0.007 AO2
2 200 6.2 4.8* 0.005 0.016 AO5

ARIMA(0, 1, 0)                         ����o  = 10
3 200 75.34) 7.0 –0.329 –0.037 AO2
4 200 99.4 24.64) –0.431 –0.095 AO5

ARIMA(0, 0, 0)                         ����o  = 10
5
6

200
200

5.1
5.9

4.6*
3.9*

–0.004
–0.004

–0.004
–0.005

AO2
AO5

ARIMA(0, 1, 1) ����1  = 0.5         outlier-free
7 200 4.8* 4.5* 0.002 0.003

ARIMA(0, 1, 0)                        outlier-free
8 200 4.9* 4.3* 0.003 0.003

ARIMA(0, 0, 0)                        outlier-free
9 200 5.0* 4.2* –0.007 –0.007

ARMA(1, 1) ����1 = 0.7  ����1 = 0.4
10 200 7.0 3.2* 0.046 0.012 AO{8, 7, -5} end

and AO{8, -5} randomly
ARIMA(0, 1, 0)
11 100 99.6 5.5

 2.4Ba
–0.425 –0.036 AO{-5, 6} randomly

ARIMA(0, 0, 0)
12 100 68.1 7.2 –0.197 –0.040 AO{-5, 6} randomly

4.2Ba
1) Point at which row and column coordinates of vertex of triangle of asymptotic ‘zero’ values
correspond to AR order p and MA order q, respectively.
2) Standard error based on 1000 replications.
3) AO = additive outlier.
4) Identifies ARIMA(0, 1, 1) model.
A = OLS estimation
B = Robust estimation: MM-estimator
Ba = based on Bartlett’s approximate standard error
* = correct identification at 5% level
n = sample size
�o = standard deviation of outlier distribution
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Appendix 5

Standard and robust ESACF identification of Lydia Pinkham
annual advertising data

Vertex is marked in bold only for robust MM/wacf case for the original series.
This series is an example of a very difficult case of identification a possible
underlying model.
std error = standard error

Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.81 0.60 0.53 0.50 0.32 0.12 AR0 X X X X X 0
AR1 0.19 �0.37 �0.09 0.44 0.21 �0.07 AR1 0 X 0 X 0 0
AR2 0.39 �0.40 �0.07 0.49 0.21 0.03 AR2 X X 0 X 0 0
AR3 0.02 0.44 0.07 0.33 0.21 �0.06 AR3 0 X 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std errors.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.83 0.63 0.52 0.46 0.33 0.16 AR0 X X X X X 0
AR1 [�0.01] �0.17 0.05 0.39 0.13 �0.26 AR1 [0] 0 0 X 0 0
AR2 �0.24 �0.05 0.06 0.35 0.10 �0.30 AR2 0 0 0 X 0 0
AR3 0.35 0.23 �0.04 0.16 0.10 �0.25 AR3 X 0 0 0 0 0

Extended Autocorrelation Table
Calculated using ols method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.83 0.63 0.52 0.46 0.33 0.16 AR0 X X X X X 0
AR1 0.22 �0.11 0.08 0.43 0.21 �0.02 AR1 0 0 0 X 0 0
AR2 0.37 �0.19 0.11 0.42 0.21 0.06 AR2 X 0 0 X 0 0
AR3 0.06 0.46 0.06 0.26 0.21 �0.02 AR3 0 X 0 0 0 0
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Figure 22. Original series Figure 23. First difference series
y-axis: Pinkham y-axis: q
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Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.05 �0.40 �0.09 0.43 0.04 �0.34 AR0 0 X 0 X 0 X
AR1 0.12 �0.40 �0.08 0.44 0.05 �0.35 AR1 0 X 0 X 0 0
AR2 �0.11 0.52 �0.06 0.11 �0.08 �0.16 AR2 0 X 0 0 0 0
AR3 0.13 0.49 0.20 0.03 �0.07 �0.19 AR3 0 X 0 0 0 0

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.00 �0.14 0.09 0.35 0.12 �0.27 AR0 0 0 0 X 0 0
AR1 �0.14 �0.16 0.08 0.33 0.11 �0.29 AR1 0 0 0 X 0 0
AR2 0.35 0.30 �0.03 0.08 0.04 �0.15 AR2 X 0 0 0 0 0
AR3 �0.14 0.23 �0.20 0.07 0.00 �0.17 AR3 0 0 0 0 0 0

Extended Autocorrelation Table
Calculated using ols method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.00 �0.14 0.09 0.35 0.12 �0.27 AR0 0 0 0 X 0 0
AR1 0.09 �0.21 0.03 0.34 0.12 �0.27 AR1 0 0 0 X 0 0
AR2 �0.07 0.51 �0.01 0.08 �0.09 �0.18 AR2 0 X 0 0 0 0
AR3 0.13 0.52 0.31 0.10 �0.05 �0.19 AR3 0 X 0 0 0 0
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Appendix 6

Standard and robust ESACF identification of real exchange rate
series: FIM and DEM

Period: January 1972 � December 1999 = 336 observations; std error =
standard error. Vertex of the ESACF table is marked in bold.
FIM (ffirecm)
Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.96 0.94 0.92 0.90 0.87 AR0 X X X X X X
AR1 0.26 0.02 0.01 0.13 0.21 0.11 AR1 X 0 0 X X 0
AR2 0.19 �0.10 0.00 0.04 0.15 0.01 AR2 X 0 0 0 X 0
AR3 0.32 �0.01 �0.04 0.03 0.14 0.02 AR3 X 0 0 0 X 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std errors.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.96 0.94 0.92 0.89 0.86 AR0 X X X X X X
AR1 0.27 0.07 0.03 0.07 0.09 0.07 AR1 X 0 0 0 0 0
AR2 0.09 �0.01 �0.02 0.06 0.07 �0.07 AR2 0 0 0 0 0 0
AR3 0.39 �0.02 �0.02 0.06 0.07 �0.06 AR3 X 0 0 0 0 0

Experiments with first sub-sample [1:206]: Jan 1972 � Feb 1989

Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.93 0.90 0.87 0.84 0.80 AR0 X X X X X X
AR1 0.10 �0.05 �0.04 0.08 0.13 0.02 AR1 0 0 0 0 0 0
AR2 0.44 �0.09 �0.03 0.05 0.12 �0.02 AR2 X 0 0 0 0 0
AR3 �0.41 0.31 0.04 0.02 0.09 �0.03 AR3 X X 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std errors.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.97 0.94 0.91 0.88 0.85 0.82 AR0 X X X X X X
AR1 0.06 �0.03 �0.04 0.08 0.16 0.06 AR1 0 0 0 0 X 0
AR2 0.32 �0.03 �0.06 0.03 0.12 0.03 AR2 X 0 0 0 0 0
AR3 0.06 0.14 �0.02 0.04 0.11 �0.06 AR3 0 0 0 0 0 0
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Figure 24. Log (ffirecm)
y-axis: log(ffirecm)
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Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.25 0.01 0.00 0.11 0.19 0.08 AR0 X 0 0 X X 0
AR1 0.22 0.05 0.00 0.04 0.15 0.03 AR1 X 0 0 0 X 0
AR2 0.18 0.00 �0.02 0.03 0.14 �0.06 AR2 X 0 0 0 X 0
AR3 �0.09 0.30 �0.01 �0.06 0.14 0.01 AR3 0 X 0 0 X 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std errors.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.27 0.07 0.03 0.07 0.09 0.07 AR0 X 0 0 0 0 0
AR1 0.09 �0.01 �0.01 0.06 0.07 �0.07 AR1 0 0 0 0 0 0
AR2 0.38 �0.01 �0.02 0.06 0.07 �0.06 AR2 X 0 0 0 0 0
AR3 0.13 0.03 �0.02 �0.02 0.07 �0.02 AR3 X 0 0 0 0 0

Figure 25. First difference of log (ffirecm)
y-axis: z
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DEM (fgerecm)
Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.95 0.92 0.89 0.86 0.83 AR0 X X X X X X
AR1 0.32 0.08 0.05 �0.01 �0.06 �0.02 AR1 X 0 0 0 0 0
AR2 0.07 �0.11 0.05 �0.01 �0.06 �0.01 AR2 0 0 0 0 0 0
AR3 0.48 �0.01 0.11 0.03 0.01 0.00 AR3 X 0 0 0 0 0

Values above marked with X are more than 2 std errors away from zero,
using Bartlett type std errors.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.98 0.96 0.93 0.90 0.87 0.85 AR0 X X X X X X
AR1 0.32 0.13 0.05 �0.01 �0.02 0.01 AR1 X X 0 0 0 0
AR2 �0.03 �0.04 0.07 �0.01 �0.01 0.01 AR2 0 0 0 0 0 0
AR3 �0.44 �0.01 0.12 0.03 �0.02 �0.01 AR3 X 0 0 0 0 0

Figure 26. Log (fgerecm)
y-axis: log(fgerecm)
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Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.30 0.06 0.02 �0.04 �0.08 �0.04 AR0 X 0 0 0 0 0
AR1 0.13 �0.05 0.02 �0.02 �0.07 �0.04 AR1 X 0 0 0 0 0
AR2 0.34 0.02 0.10 0.01 �0.01 �0.03 AR2 X 0 0 0 0 0
AR3 0.27 �0.24 0.09 0.08 0.00 �0.01 AR3 X X 0 0 0 0
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Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.31 0.11 0.02 �0.03 �0.04 �0.01 AR0 X 0 0 0 0 0
AR1 0.00 0.04 0.03 �0.02 �0.02 �0.02 AR1 0 0 0 0 0 0
AR2 0.39 0.01 0.10 0.01 �0.02 �0.01 AR2 X 0 0 0 0 0
AR3 �0.11 0.08 0.23 0.13 0.05 0.01 AR3 0 0 X 0 0 0

Figure 27. First-order difference of log (fgerecm)
y-axis: k
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Appendix 7

�Tsrob� program: optional robust estimators, weight functions
and default choices
An illustration of the simple experiment with the united standard
and robust ESACF procedure

This appendix contains robust scale estimators, autocorrelation
functions and robust regression estimators and their weight functions.
We also refer to the use of information on the large set of result files
through customised R functions. Finally, a simple example of the
proposed united ESACF procedure is illustrated.

Scale estimators

The default value is the MAD, ie the median of absolute median
deviations. The other highly robust scale estimator is Qn (Croux and
Rousseeuw 1992, Hampel et al 1986).

MAD(xi) = 1.4826 medi{ )x(medx jji � }, where 1.4826 is the

consistency factor.

Qn = 2.2219 { ji;xx ji �� }(k), where the factor 2.2219 is for

consistency and � � 4/k n
2� .

Autocorrelation functions

TACF:

The default of symmetric trimming is 0.05.

WACF:

The default weight scheme is Huber.psi function (Wang and Wei
1993).
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Regression parameter estimators

M-estimator:

The initial estimator is that of ordinary least squares. The robust
weight function is Huber.psi and the default scale estimator is the
MAD (see ‘rlm’ function, eg Venables and Ripley 1996, p. 216). The
maximum of iterations is 20, convergency accuracy is 1e-4.

GM-estimator:

The initial estimator for this method is the LMS (the least median of
squares) (Rousseeuw and Leroy 1987). The MAD or Qn can be used
as the scale estimator. The robust weight functions are Huber.psi and
redescending bisquare function, and we can use either the Schweppe
or Mallows type (default) weight function (see Stockinger and Dutter
1987). Maximum iteration steps are 10 for Huber.psi and 2 for
bisquare; convergency accuracy is 1e-4.

MM-estimator:

The high breakdown point MM-estimator contains three phases
(Yohai 1987, You 1999). The initial estimator is the S-estimator
(Rousseeuw and Yohai 1984). Maximum iteration steps is 20, and
convergency accuracy is 1e-4. The estimator uses the Tukey bisquare
weight function. The MM-estimator is the default estimation method
in the ESACF AR(p) iterative fitting. Note that the MM-estimator
procedure in ‘Tsrob’ does not contain a controlling test procedure for
bias, as does the S-Plus program package (see also Yohai, Stahel and
Zamar 1991). Based on our simulation results, this can be regarded
only as a ‘small’ drawback of our MM-estimator procedure. In our
simulations and in the case of single series, there sometimes occurred
‘warnings’, but they proved not to be serious.

The Huber and Tukey bisquare weight functions with certain
tuning constants are commonly used in various robust regression
estimators (see eg Franses and van Dijk 2000, p. 65–67, Marazzi 1993
and Yohai, Stahel and Zamar 1991). Marazzi (1993) gives the most
comprehensive survey of the various weight functions, tuning contants
and  computational descriptions for various robust estimators and
procedures.
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Tsrob R program and use of comprehensive simulation results:

The saved ESACF simulation results can be used through various
‘summary.simu.esacf’ R code commands to summarise the optional
ESACF results. We can produce and print different matrices and plot
curves, histograms and box plots (even the coefficients of variation of
certain estimates) based on the results of each model from the large set
of files named individually ‘simutulosxxR.data’ of single file xx.

I An example of the generated ARMA(1, 1) process with 5%
isolated AOs

Model: � = 0.5, 	 = 0.3, a = N(0,1), n = 200; AOs occur in 5%
probability; standard deviation of AO distribution is 10.

> nts<-200
> aofun<-function(n){
+ osd<-10 #outlier standard deviation
+ ctnpr<-0.05 #per cent of data contaminated
+
+ a<-rep(0,n)
+ oloc<-runif(n)<ctnpr
+ ncont<-sum(oloc)
+ a[oloc]<-rnorm(ncont,0,osd)
+ a
+ }
> y<-arima.sim(nts,ar=0.5,ma=0.3,aofun=aofun)
> plot(y)
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II An illustration of the simple experiment with the united
ESACF procedure

Data BJA: Series A, Chemical process concentration readings (Box
and Jenkins 1970, 1976).

Joint R command:
print(esacf(BJA,method=ols),se.crit=2.2);print(esacf(BJA,method=
MM),se.crit=2.5)

Vertex is marked in bold. Note that the confidence limits are
calculated by different C values in the standard and robust cases.
std error = standard error
Extended Autocorrelation Table
Calculated using ols method for AR fitting and acf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.57 0.50 0.40 0.36 0.33 0.35 AR0 X X X X X X
AR1 �0.39 0.04 �0.06 �0.01 �0.06 �0.01 AR1 X 0 0 0 0 0
AR2 �0.29 �0.27 �0.04 0.01 �0.05 �0.01 AR2 X X 0 0 0 0
AR3 �0.50 �0.01 0.10 �0.01 �0.01 �0.03 AR3 X 0 0 0 0 0

Values above marked with X are more than 2.2 std errors away from zero,
using Bartlett type s.e.

Extended Autocorrelation Table
Calculated using MM method for AR fitting and wacf for ACF calculations.

MA0 MA1 MA2 MA3 MA4 MA5 MA0 MA1 MA2 MA3 MA4 MA5
AR0 0.58 0.50 0.41 0.39 0.35 0.36 AR0 X X X X X X
AR1 �0.32 0.05 �0.08 �0.01 �0.04 �0.02 AR1 X 0 0 0 0 0
AR2 �0.27 �0.14 �0.05 0.02 �0.01 �0.01 AR2 X 0 0 0 0 0
AR3 �0.49 0.08 �0.06 0.03 0.00 0.00 AR3 X 0 0 0 0 0

Values above marked with X are more than 2.5 std errors away from zero,
using Bartlett type s.e.

It is interesting to compare the corresponding results of the same
series in TT84, Table 6. Note furthermore that the MM/wacf robust
estimation gives the same result for this outlier-free series.
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