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1 1NTRODUCT10N 

1.1 The airn of the study 

Let us define a macroeconomic model as a systern of simultaneous 
equations describing the behaviour of the economic units that we 
observe around us and want to explain. Models are the most widely 
known and used quantitative instruments for economic forecasting 
and evaluation of the effects af alternative government actions on 
the econorny1. When models are used for economic policy purposes, it 
is important that policy makers should be provided with a measure 
of reliability along with the forecasts. This study is concerned 
with the uncertainty inherent in economic models. The aim of the 
study is twofold: first to investigate how to improve the 
-r"eiiabiiity of- the moåei by minimizing the uncertatntyin the 
estimation phase of the madel and then how to calculate the 
variance-covariance matrix of forecasts so as to rneasure the 
reliability of a model. 

1.2 Outline of the study 

1n the construction of an econornetric model we need two rnain tools: 
e~onomic theory and statistical methods. Economic theory is used to 
generate the theoretical model of underlying basic relationships. 
The theoretical model is then transformed into an ernpirical one by 
applying statistical estimation methods. The transformation is the 
outcome of interaction between theory and the infQrmation contained 
in the data. 1f, for instance, the signs or magnitudes of the 
estimated parameters do not satisfy the theoretical a priori 

lSince policy evaluations can be interpreted as conditional 
forecasts, from now on we use the word forecast to also include 
policy evaluations. . 
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hypathesis -we have ta recansi der the theary and then ga back ta the 
data again. This search pracedure af back-and-farth mavements 
between theary and empirical results can be an impartant part af 
the empirical wark and has ta be carried on by means of single 
equation estimation methods, because they allow a very weak 
specification of the madel as a whale while individual equations 
are being examined. The method of ordinary least squares is the 
usual choice, even though it is knawn not to be theoretically 
aptimal when the madel is simultaneaus. 

During this search pracedure the structural form of the madel is 
specified: the functional forms of the equations, the 
classification of variables into endogenous and exogenous, the 
restrictions on the parameters and the lag distributians. 

Once the madel has been estimated,the next step is to test and 
analyze it. There are a great many tests available for examining 
the properties of both the parameters and 'the residuals and for 
detecting misspecification. In addition, multipliers are calculated 
so as ta examine the properties of the model. If the results of 
this testing and analysis procedure give poor fits, wrang signs ar 
wrong rnagnitudes af the multipliers in relatian to a priori 
expectations, the search pr?cedure betwee~'theory and the results 
is continued until the madel specificatiÖn is considered to be as 
correG:t as possible given the 'results of the search, test, and 
analysis procedures. 

This study starts from the point where the specificatian phase has 
been performed. Thepoint af departure is thus an empirical model 

, the structural form af which has been derived from economic theory 
and initial estimation from observed data. 

When a real-word macromodel is used in forecasting the usual way is 
to solve it deterministically over the farecast period. The 
forecasts are then the values of the endogenous variables from a 
si,multaneous salutian of the madel obtained by replacing the 
structural disturbances with their expected values, which are all 
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zero. The deterministic soTution has, however, two disadvantages. 
First, because models are as a r.ule nonlinear, nonlinearity indu,c,es 
bias into the deterministic solution. Secondly, the deterministic 
solution takes no account of the random nature of the model, giving 
only point predictors. 

One would not expect the generated point forecasts from the 
deterministic solution to be perfectly accurate; there will always 
be some forecast error. The main sources of forecast error are: 

a possible misspecification in the model, 
the uncertainty attaching to the exogenous variables, 
the use of parameter estimates in forecasting as 
opposed to the unknown true values of the parameters, 
and 
the presence of random disturbances in the behavioural 
equations. 

The first component is due to the fact that the specification 
search procedure may yield a model that fits the data well and 
seems to be quite good, on the basis of the test procedure, when it 
is in fact a poor approximation to the structure. Another point is 
that a given model is, even at best, only an approximation of the 
"real world". The structure of the real economy may be too unstable 
to be approximated closely by a model with constant parameters. The 
second source of forecast error is due to the fact that the accuracy 
of the forecast al so depends on the forecaster' s abi 1 i ty·.,to 
anticipate the values of the exogenous variables, i.e. those 
variables that are used in the model but not predicted by it. 

Given the point of departure for our analysis, the first source of 
error falls outside the scope of the study. Furthermore, we can 
dispense with the second error component by assuming that the 
values of the exogenous variables are known with certainty. 
Consequently, the components of forecast error considered here are 
those arising from the parameter estimates and from stochastic 
disturbances. These two components make the mQdel random, and so in 
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this sense the study deals with measuring the stochastic components 
of the model. The contribution of these two sources of randomness 
is measured by means of the variance-covariance matrix of the 
forecasts. A forecast obtained from a stochastic model is itself a 
stochastic variable. The calculation of the forecast variance makes 
it possible to treat the forecasts as random variables. This means 
that the point forecasts are reported along with an estimate of 
their second moment to indicate the tolerance interval ·of the point 

estimate. 

An alternative to the deterministic solution is the stochastic 
simulation, which takes account of both the nonlinear and the 
random nature of the model. A stochastic simulation is the solution 
obtained after assigning a pseudo-random value to the disturbance 
terms and/or the parameters. 

Several stochastic simulation methods have been proposed in the 
literature for estimating the contribution to forecast errors of 
these two error sources. All the stochastic simulation methods are 
based on the assumption of consistency of the estimators of the 
parameters, However, most macromodels are only estimated using 
ordi nary. 1 east squares, whi ch are known to produce estimates whi ch 
are both biased and inconsistent. 

Although the primary aim of this study is to measure the 
uncertainty present in forecasts, we first have to face the problem 
of estimating large simultaneous models consistently. In addition 
to consistency, efficiency is also an important quality of the 
estimators in this context, because the reliability measure of 
forecasts, the variance-covariance matrix, is a function of the 
variance-covariance matrix of the parameter estimates. 

The first part of the study is therefore concerned with finding a 
simultaneous estimation method which is optimal in terms of 
consistency and efficiency of the parameters. The ideal approach to 
the comparison of the relative merits of competitive estimation 
methods woul~ be to rely on analytical formulas for the properties 
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of the separate estimates. Analytical results have the merit of 
generality, thus covering the whole parameter space. Unfortunately, 
general analytical results can be derived only asymptotically. In 
most cases, however, an economic model has t9 be specified from 
finite samples. The reliance on asy~ptotic results can lead to 
serious problems of bias and a low level of inferential accuracy 

I 
when sample sizes are small and asymptotic formulas poorly 
represent sample behaviour. Analytical small sample properties of 
estimators can only be derived for limited static models, usually 
containing no more than two jointly endogenous variables. Therefore 
the analytical results for finite samples only permit the analysis 
of the behaviour of estimators in a small part of the parameter 
space. The severely limited analytical knowledge of small sample 
distributions has led to the use of sample experiments - that is 
the Monte Carlo approach, to obtain empirical information about 
the small sample behaviour of the estimators. The traditional Monte 
Carlo question is: Are the small sample properties of the 
estimators close to the large sample properties? Another question 
is: How serious are effects of departures from the theoretical 
models on the parameter estimators? 

The comparison of estimators in this study is made as complete as 
possible by using all available approaches for finding the optimal 
estimation methods. Thus, we use asymptotic theory to select the 
empirically applicable estimation methods and to provide an 
analytical background for integrating the empirical re~ults. We 
then use the available analytical 'finite sample results and Monte 
Carlo experiment results as complementary approaches for 
establishing an a priori ranking order of the estimators. These a 
priori selected estimation methods are then applied in the 
empirical estimation of one special model. The empirical ranking 
order is found by comparing the statistical measures of dispersion 
along with testing the within sample dynamic behaviour and the post 
sample one step ahead forecastability of the models built from the 
various estimates. 

One would not expect that a single estimation method performs best 
on all criteria and all problems. Nevertheless, a method can have 
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sufficient support to justify its choice as a method to be 
recommended. In this study, we end up by selecting the iterative 
instrumental method, which uses the numerical solutions of the 
madel itself as instruments. The method was first introduced by 
Brundy and Jorgenson (1971) but for some reason it has not been 
used in reported model estimations. This method is found to be 
optimal according to the analytical criteria of consistency and 
relative efficiency. The optimal property in terms of efficiency 
springs from the utilization of the information embedded in the 
model. The analytical finite sample properties of the estimators of 
the method cannot be found. The empirical results of this study 
show, however, that the estimates compete well with the ordinary 
least squares estimators in the small sample case. The comparison I 

of simulation behaviour was carried out for a sample size of 20. 
/ 

Monte Carlo expriments have revealed that this sample size favours/ 
ordinary least squares against simultaneous estimation methods. 
When sample size increases, simultaneous methods outweigh ordinary 
least squares. This gives us reason to believe that, with 
increasing sample size, the iterative instrumental simultaneous 
method will be preferable even in simulation behaviour. The method 
is especially well suited to estimation from undersized samples2, 
which is a problem that model builders generally have to face. 

Although the iterative instrumental method does not violate any 
assumption necessary for assuring consistency and efficiency, it 
does not rely on any subjectively made approximations, which are 
necessary in all the other applicable estimation methods. It 
removes the arbitrariness from different sources inherent in the 
other methods, thus being objective from the methodological point 
of view, when objectivity is defined to mean that every researcher 
applies the method equally using no subjective choice. 

2Swamy (1980) gives the following definition: An undersized sample 
is a sample where the number of the predetermined variables exeeds 
the number of the observations on which the estimation is 
performed. 
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Having dealt with the question of estimation, we then proceed to 
the second purpose of the study: to obtain an·estimate of the 
variance-covariance matrix of the forecast using different 
stochastic simulation methods. Compa·rison of the various methods 
results in the selection of the residual-based method proposed by 
Mariano and Brown (1984). A distinctive feature of this method is 
the absence of approximations, the same feature which characterizes 
the selected iterative instrumental estimation method. Compared to 
the other simulation methods, this reduces misspecification 
sensitivity. 

The suitability of the selected iterative instrumental estimation 
method and the residual-based stochastic simulation method is 
enhanced by the fact that, compared with other methods, they are 
both very easy to apply. The small amount of computational work 
that has to be done for instrumental estimation after the 
inevitable first ordinary least squares estimation, is more than 
compensated for by the resulting improvement in the quality of the 
parameter estimates and in the reliability of the forecasts. In the 
residual-based stochastic simulation method the simplification 
derives from the fact that, in the calculation of the variances of 
the forecast errors, the labourious procedure of generating a new 
random population becomes unnecessary since the method uses 
estimated sample period residuals instead of pseudo-generated data. 

In the empirical part of this study the methods were applied to the 
structural annual model of the Bank of Finland. The study is, 
however, based on the assumption that the basic properties of 
macroeconomic models are similar enough for the conclusions 
obtained from the use of a specific model to be generalized to 
other models. For the iterative instrumental method selected as the 
best one, the generalization is probably justified for all models 
with two features typical of most macromodels: 

nonlinearity in variables, 
undersized samples 
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In addition to the structural madel, we also apply the 
residual-based simulation method to a naive madel. This model is a 
system af completely separate autoregressive equatian~. The sarne 
endogenous variables that are estimated by a behavioural equation 
in the structural madel are simply regressed on a constant, time , 
and the first four lagged values. 



II ESTIMATION OF A SIMULTANEOUS MODEL 

The standard economic model with additive stochastic disturbance 
terms can be written as a structural form system of M equations: 

(1) f(Y,X,d) = u 

where 

Y 
X 
d 

u 

f 

is a vector of M endogenous variables 
is a vector of N exogenous variables 
is a vector of S structural parameters to be estimated 
is a vector of M structural stochastic disturbances 
having zero mean and independently and identically 
distributed over time, with a finite covariance matrix 
and independent of all the predetermined variables 
is a M·1 vector of functional operators, contlnuously 
differentiable with respect to the elements of y,x and d. 

The stochastic simulation technique, which is introduced in chapter 
111, is equally well applicable to models where f is linear or 
nonlinear in its parameters and/or the current endogenous 
variables. For estimation purposes, in this first part of the study 
we restrict the analysis to the cases where f is either linear or 
nonlinear in variables only1. 

If f is either linear or nonlinear in variables, linear single 
equation estimation is applicable. When the estimation method 
requires knowledge of the reduced form it is assumed to be linear. 

1The nonlinearity in parameters case is not likely to be used in 
estimation of macroeconomic models because it makes the search 
process impossible. 
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This assumption is an approximation only for the nonlinear case and 
it is dropped later on in section 11.3. 

In the first transformation of a theoretical model into an emprical 
model a simple estimation method has to be used. OLS is preferable 
because of its simplicity although it is known not to be 
theoretically optimal. The first question to be dealt with is how 
the estimators of the parameters can be improved by applying an 
estimation method that is more appropriate from the point of view 
of statistical theory. 

Statistical estimation methods are frequently justified in 
econometric work on the basis of certain desirable asymptotic 
properties of·the distribution of the estimators. This is the usual 
approach because of the relative easiness of deriving asymptotic 
properties as compared with finding the relevant small sample 
distributions. In addition, even though the limited degrees of 
freedom is a small sample problem, the high degree of 
overidentification of each separate structural equation can be 
regarded as a justification for the use of asymptotic criteria. 

Hendry (1976) has shown that almost all simultaneous estimators can 
be interpreted as numerical approximations to Full Information 
Maximum Likelihood estimators and hence one simple formula can be 
obtained which encompasses all of them. This interpretation leads 
to asymptotic equivalences between estimators but allows the 
numerical variants to induce very different finite sample 
properties. Consequently, using small sample properties is another 
way of ranking. T~is can be done in two ways: using analytical 
results or using Monte Carlo experiments. ~ 

The true structural specification of the model is rarely known and 
hence a valuable criterion for selection between estimators is 
their robustness to misspecification. A third method of comparison 
is thus to analyze the dynamic simulation behaviour of the 
empirical results. Here we refer to the statement of Klein that the 
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real test of the validity and usefulness of any theory is its 
ability to predict (Klein, A Textbook of Econometrics, 1956 p. 249). 
Dynamic simulation comparison will reveal the effect of 
misspecification on the parameter estimates. Sensitivity against 
specification errors may be a more important guide in the choice of 
the estimator than asymptotic properties or formal small sample 
properties assuming correct specification. 

We hope that the findings of these different methods of comparison 
in this study will also provide us with an answer to the question 
as to whether there is a contradiction between ranking based on 
asymptotic properties and the ranking order for small sample 
estimates. 

11.1 Ranking of estimation methods according to their asymptotic 
properties 

When the comparison of estimation methods is based on the 
asymptotic properties of the estimators, the desirable properties 
are consistency and asymptotic efficiency. An estimator is said to 
be consistent if and only if it converges in probability to a point 
at which the true distribution of observations is yielded (Hatanaka 
(1976)). An unbiased estimator is said to be efficient if its 
variance ~s smaller than the variance of any other estimator. If an 
estimator ~nnot be proved to be unbiased, only consistent, which 
is an asymptotic property, then the estimator can only be 
asymptotically efficient. An improvement in estimation is thus 
measured by the probability of concentration about the true 
parameter values. The most frequently used single equation 
estimation method, ordinary least squares, OLS, does not take 
account of the simultaneity between variables. As a consequence OLS 
estimators are not consistent. Although ranking according to 
asymptotic properties rules out the OLS method, this does not mean 
that it is useless. The other ranking criteria presented below will 
show that OLS estimates should be calculated along with 
simultaneous method estimates as possible alternatives. 



18 

Simultaneous methods have been developed so as toyield consistent 
estimators under classical statistical conditions that are listed 
for the disturbance vector in (1). By means of this quality, 
simultaneous estimators are on an equal footing, so that the 
comparison has to be based on their relative efficiency. 

Simultaneous estimation methods can be divided into system methods 
and single equation methods. A general view is that the more 
information is utilized in a method the higher is the efficiency of 
the estimator. In system methods all the structural equations are 
estimated simultan~ously. These methods make use of all the 
information in data and the restrictions on the parameters of the 
full system. The si ngl e equati on methods make use of only the 
restriction concerning the particular equation in estimating each 
of the equations in turn. Single equation estimation methods draw 
on the rest of the system only to learn which predetermined 
variables, excluded from this equation, do in fact appear in the 
other structural equations. No use is made of estimates of 
parameters of other structural equations; nor do they make use of 
any a priori restrictions on the other equations. Measured by the 
utilization of information the class of system estimators is 
efficient relative to the class of single equation estimators. 

The main results on asymptotic efficiency derived for consistent 
estimates are (Theil, Principles of Econometrics, 1971): 

The full information maximum likelihood (FIML) estimator 
is asymptotically efficient. The asymptotic 
variance-covariance matrix2 converges to the Cramer-Rao 
lower bound for system estimators. Under certain 
regularity conditions the asymptotic variance matrix of 
three stage least squares (3SLS) estimators is identical 
to that of FIML estimators; thus 3SLS estimators are 
also asymptotically efficient. 

2From now on the variance matrix. 
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Limited information maximum likelihood (LIML) estimators 
are efficient in single equation estimation and the 
variance matrix reaches the Cramer-Rao lower bound for 
this class of estimators. Two stage least squares (2SLS) 
estimators and LIML estimators converge in distribution 
to the same limit so that 2SLS estimators are also 
efficient. 

Instrumental variable (IV) estimators are asymptotically 
efficient only when all the predetermined variables in 
the system are used as instruments. In this special case 
IV-estimators are identical to 2SLS estimators. 

When choosing between system estimation and single equation 

estimation, it also has to be borne in mind that, besides the 
efficiency criterion, system estimation is more complicated to 

. apply. The optimality properties of system estimation are not valid 
if there is any misspecification in the model. A misspecification 
in one equation affects only that particular equation in single 
equation estimation but is spread over the whole model if system 
estimation is used. 

Another factor that has to be considered when choosing between 
system and single estimation methods is the question of 
nonlinearity. Except for some models constructed for pedagogical 
use macroeconomic models are nonlinear in variables. The use of 
nominal and volume variables makes for nonlinearity. It is not 
possible to have a strictly linear economy if.one wants to build a 
system on accepted premises of economic theory. Each individual 
equation can be linearized so that single equation methods can be 
used in the ordinary way for linear models. But unless a model is 
completely linear, both in variables and in parameters, nonlinear 
methods have to be used in system estimation. 
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11.2 Limitations for estimation from undersized samples 

For models of even moderate size we face the situation where the 
. number of observations does-not exeed.the number of the exogenous 
variables in the system; Le. we are dealing with an undersizeq 
sample. This means that system estima:tion cannot be applied in the 
original asymptotically efficient form. A condition for the 
application of FIML and 3SLS estimation is that the number of 
observations is greater than the sum of the endogenous and 
exogenous variables. Nor can the above "conventional" 2SLS or the 
"best" IV single equation estimation technique be used. In 
estimation from small samples we are faced with the following 

..... -.. 
problem: is it possible to attain efficiency using some 
modification of the single equation methods that are asymptotically 
efficient in large samples but are not applicable in small samples? 

Sin~e system estimation cannot be applied, all the estimation 
methods to be discussed here are single equation estimation methods. 
Therefore it will be s~fficient to consider a typical equation in '\ 

\ the system specified in (1). Without loss of generality, the first 
equation may be considered "typical", which allows the use of 
somewhat simplified notations. 

The first equation in a system that can be linearly estimated may 
be written as: 

where 

Yl is ~ vector of T observations on the endogenous variable 
which has been normalized to "be "dependent" 

Y1 is a T.(G1-1) matrix of observations on the other 
included endogenous variables 
is a T.K1 matrix of observations on the included 
predetermined variables: exogenous and lagged 
endogenous. 
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dl = (b e)1 ,a veetor of (G1 -1 +K1) parameters to be estimated 

u1 is a veetor of T disturbanees 

In addition E(uu l
) = 02IT. The disturbanees are assumed to be 

mutually independent. The exogenous variables in the system are 
assumed independent of the disturbanee veetor while the mutual 
independenee assumption implies independenee of the lagged 
endogenous variables and the eurrent disturbanee veetor. No 
assumption about the distribution of the stoehastie disturbanee 
veetor is needed for estimation. The eonventional assumption of 
normality is neeessary only if maximum likelihood estimation is 
performed. Likewise, normality is required to define the effieieney 
of the estimators in terms of the Cramer-Rao lower bound. At a 
later stage we introduee normality to allow hypothesis testing and 
the eonstruetion of eonfidenee intervals for the parameter 
estimates. 

Let X be the T.K matrix of observations on all the exogenous 
variables and K2 the number of exeluded exogenous variables. Let G2 
be the number of exeluded endogenous variables. Then we have 
K = K1 + K2 and G = G1 + G2. The equation is identified only if 
G2 + K2 ) G -1. We will assume that this eondition is satisfied. As 
a rule G2 + K2 is far greater than G - 1 so that the equation ean 
be strongly overidentified. 

Sinee Y1 and the stoehastie disturbanees are eorrelated, the OLS 
estimators 

will be ineonsistent. To obtain eonsistent estimators we use 
instrumental variables for Y1. For IV estimation we require a T.K3 
(min K3 = G1-1) matrix W1 of instruments to estimate 
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The instrumental variables can be chosen in different ways. The 
statistical requirements for consistency are: 

IV variables are uncorrelated with the structural error 
terms 
IV v~riables are correlated with the predetermined 
variables. From this assumption it follows that the 
instruments are also correlated with the jointly 
dependent variables. 

In simultaneous equation systems the predetermined variables 
provide a choice of instrumental variables. Thus, we consider 
linear combinations of the predetermined variables 

where A1 is a K.K3 matrix, to form the matrix of instruments. A1 can 
eitherbe known or estimated as A1. It can be shown that among all 
the instrument matrices W1 = XA1 formed by linear combinations of the 
predetermined variables, the best choice, that is, the one that 
minimizes the asymptotic covariance of dIV, is W1 = XÅ1, where 

(4) Å = (X'X)-lX'Y 
1 1 

Theil (1961) defines a family of estimators called k-class 
estimators which are a generalization of the expression of dIV. 
This family includes all the commonly used simultaneous single 
equation methods. 

Let Y1 be the estimated value of Y1 obtained from the reduced form 
Y1 = X(X'X)-lX'Y1. Further, let VI be the matrix of estimated residuals 
residuals obtained from the reduced form so that Y1 = Y1 + VI. We 
define the instruments as 
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where we now use Y1 = Y1 - kV1. The k is taken as an arbitrary scalar, 
which could be stochastic or non-stochastic. For k = 0 we have OLS. 
For k = 1 we have 2SLS. For LIML k is a stochastic variable > 1. 

Nagar (1959) has analytically shown that a sufficient condition for 
consistency is plim k = 1, which is also the condition for k-class 
estimators to be IV estimators. Efficiency does not, however, 
follow from the same conditions as consistency. To have the same 
asymptotic variance matrix as the efficient optimal IV estimators, 
k must satisfy the stricter condition 

plim {f{k-1) = 0 

Thus, to be an IV estimator, that is consistent, we require 
plim{k-1)=O; for efficiency we need plimlf{k-1)=O. The choice of 

eliminates bias. Given the fact that the conditions for 
unbiasedness and efficiency are not the same, it follows that the 
unbiased estimates have larger standard errors than the estimates 
corresponding to the efficient k. 

In the following we only consider 2SLS and IV estimators. We omit 
the LIML estimators because 2SLS is an improvement over LIML in the 
sense that the computational burden is lighter, even if the 
asymptotic properties are the same for both methods. The definition 
of the k-class family is, however, introduced here because many 
results in estimation and other inference methods discussed below 
cover the whole class. 

When estimating from a small sample where T < K, the matrix XIX 

that is used for solving the reduced form residuals is singular 
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and cannot be inverted. In that case, we cannot app1y 2SLS or IV 
methods in their asymptotica11y efficient form. Even if K < T the 
situation may neverthe1ess be difficu1t because the 10w degrees of 
freedom for estimating the reduced form wi11 diminish the qua1ity 

-
of resu1 ti ng estimates. The usua 1 procedure i n the sma 11 samp 1 e 
case is to base the estimation on on1y a subset of the predetermined 
variab1es by 1eaving out of consideration some of the X variab1es 

that do not occur in the equation. Th~s" 1eads, ho~ever, to 10ss in 
effi ei ency and need not resu1 t i n cons.:istent estimates. There i s no 
ana1ytica11y derived unique way of chQosing the subset of 
predetermined variab1es "to be used as first stage regressors. The 
choice can be made in many ways. Here we consider three approaches: 

the b1ockdivision approach 
the use of principa1 components 
the iterative instrumenta1 variab1e method. 

The se1ection procedures have been considered in the 1iterature 

main1y as approximations to 2SLS. The procedures can equa11y we11 be 
interpreted as a1ternative methods of defining Y in IV estimation. 

The essentia1 criterion is the same; maximizing the vector 
corre1ation between Y and Y while preserving uncorre1atedness with 

the disturbance term. The fo11owing discussion of the se1ection 
techniques can therefore be thought ta app1y equa11y we11 to IV and 
modified 2SLS estimation~ Hence we use the concepts of first stage 
regressors and instrumenta1 variab1es as synonyms. 

11.2.1 B1ockdivision approach to 2SLS 

The arbitrary choice of first stage regressors can be based on 
b10cks into which the mode1 has been divided. In estimation of the 
separate equations, a11 the predetermined variab1es in the b10ck 

cou1d be used as first stage regressors. This procedure yie1ds 

consistent estimators if the Xl variab1es are inc1uded among the 
first stage regressors. Asymptotic efficiency depends, as in 
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block recursive system estimation, on how close to blockdiagonal 
is the variance covariance matrix of residuals and how close to 
lower triangular is the matrix of the structural r.arameters (Theil, 
1983). Most economic models are, however, highly interdependent 
with feedback between blocks and a blockrecursive form is not 
likely to be found. 

11.2.2 Principal cornponents 

Kloek and Mennes (1960) have proposed a modified 2SLS method using 
principal components of the predetermined variables. The method 
results in consistent estirnators if principal components of the 
predetermined variables are used together with the Xl variables as 
first stage regressors. This rnethod should also be efficient 
relative to other methods using a truncated number of first stage 
regressors. 1t is based on the known property that the first k 
principal components, computed on the basis of the correlation 
matrix (or variance matrix of normalized variables) of the 
predetermined variables, explain a larger percentage of the 
variation of the set of predetermined variables than any other set 
of k linear combinations of the same variables. 

The use of principal components is often suggested as a solution to 
the multicollinearity problem. The explanatory variables are 
replaced by a few of their first principal components, which are 
orthogonal by construction. 1n this application of the principal 
component metnod, some problems ari se. First, the principal 
components corresponding to the largest characteristic roots need 
not necessarily be the ones that are most correlated with the 
dependent variable, even though they capture the major part of the 
total variance of the explanatory variables. The other problem in 
this pure substitution of exogenous variables is that the 
substitute variables, the principal components, cannot be given any 
economic interpretation (Maddala, Econometrics 1977, p. 193). This 
problem of interpretation is not relevant in our case since we use 

\ 
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the principal components not as substitute variables but rather as 
auxiliary variables to be used only in the inital regression. In 
the empirical analysis, we shall see that the first problem is also 
irrelevant. The first principal components are also the main 
explanatory variables in the regressions. 

Kloek and Mennes (1960) experimented with the characteristic 
vectors extracted from the correlation matrix of all the 
predetermined variables X, the excluded predetermined variables X2 
or the excluded predetermined variables orthogonal to Xl. They 
suggested computing the k principal components on the basis of the 
characteristic vectors corresponding to the k largest 
characteristic roots. However, they considered a modification of 

\ 

this rule when the principal components are extracted from the 
correlation (or variance) matrix of all the predetermined variables 
X. This modification is to take account of the possibility of high 
correlation between one or more of the principal components and 
certain predetermined variables in Xl. Instead of selecting the k 
components with the largest characteristic roots, they selected in 
this case the k components with the highest value of the statistic 

vh being the characteristic root and Rh the multiple correlation 
coefficient in regressing the principal component on the Xl 
variables. 

When selecting k, the number of principal components to be used, 
there is no, unique a priori known optimal number. There are, 
however, two limits between which k has to be chosen (Kloek and 
Mennes, 1960): the lower one is the obvious requirement k > G1-1 
(see page 21 for the notions). The higher limit called for from the 
degrees of freedom requirement is k + K1 < T. In choosing k we have 
to consider the fact that if k + K1 is growing towards T the 
estimators converge towards the OLS estimators. Usually, the small 
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sample bias is greater for OLS than for consistent estimates. The 
number of k + K1 must therefore be less than T. On the other hand, 
efficiency is growing with growing k because the OLS estimators are 
known to have the optimal prope~ty of minimum variance (Schink, 
1971, p. 216). 

When the number of k grows towards T - K1, the efficiency of the 
estimators is affected in two opposite ways. The correlation 
coefficient of the first stage regression is growing, thus 
increasing the efficiency of the second stage parameter estimators. 
On the other hand the falling degrees of freedbm make the estimates 
unreliable, increasing their standard errors. The resulting effect 
on the parameter efficiency cannot be analytically derived but has 
to be established empirically. Empirical estimation results 
obtained by Klein (1969) and Fair (1973) indicate that the best 
number is not necessarily large relative to the.number of 
predetermined variables. 

11.3 The nonlinear case 

1n applying simultaneous methods in the estimation of the general 
model in (1) we have to solve two problems. The first problem, 
which arises from the limited sample size, is how to truncate the 
set of first stage regressors~ This problem was discussed in the 
previous sections. The other problem stems from the nonlinearity of 
the model. As we noted above, an economic model is as a rule 
non-linear in variables. Because the structural form is linear in 
parameters, we can use linear single estimation methods. However, 
2SLS estimation also requires knowledge of the reduced form, which 
is not necessarily linear. 

The steps applied in 2SLS estimation for linear models are: 

(i) designate one of the endogenous variables in each 
equation as the normalized one 
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(ii) obtain the reduced form 
(iii) replace the values of the other endogenous variables by 

their values predicted from the reduced form 
(iv) regress, using least squares, the normalized variable 

upon the new endogenous variables and the exogenous 
variables. 

In the modified 2SLS methods reported above we have used the 
analogue of the procedure followed in linear models by assuming a 
linearization of the unknown reduced form at stage (ii). Some 
difficulties could arise in doing this (Goldfeld and Quandt 1968). 
First, we do not know the effect of the nonlinearity upon the error 
term in the reduced form. Step (iii) above can be justified by the 
need to eliminate the stochastic component in the other endogenous 
variables (Yl = Yl- VI, see page 22). This may not be successful 
for nonlinear models because generally in this case the expected 
value of an endogenous variable calculated from the structure will 
not be the same as its expected value calculated from the reduced 
form. There are also other difficulties with estimation of the 
reduced form. Reduced form will not necessarily have a 
representation in closed form. Even when the reduced form can be 
expressed in closed form, it may not be linear in the reduced form 
parameters. 

11.3.1 First stage regressors in polynomial form 

To overcome the difficulties connected with the unknown reduced 
form, Goldfeld and Quandt (1968) proposed an approximation to the 
nonstochastic part of the reduced form by using an n-th degree 
polynomial in the predetermined variables representing the first n 
terms of a Taylor series expansion. Goltlfeld and Quandt 
experimented with two variants of the method: the first, 2SLSl, 
using both first and second order polynomials, the other, 2SLS2, 
using a second order polynomial of the predetermined variables of 
the initial stage. They used Monte Carlo experimeQts. to establish 
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the small sample properties, which we shall consider later on. 
Edgerton (1972) proved the consistency of the method by showing 
that the method is equivalent t6 the instrumental variable method. 

11.3.2 Iterative instrumental -variable methods 

There is, however, another method avoiding the linear approximation 
of the unknown reduced form. This method also avoids the 
difficulties associated with the approximation of the set of first 
stage regressors. The method is consistent an4, for linear models, 
also efficient. For nonlinear models it is efficient relative to 
other simultaneous methods applicable in undersized samples. It is 
a method which can be described as an iterative instrumental 
variable interpretation of the 2SLS. This method (lIV) is based on 
an iteration process using numerical values of the Gauss-Seidel 
solutions of the whole model as instruments. The method has been 
'proposed for linear models by Brundy and Jorgensen (1971), Ohrymes 
(1971) and Outta and Lyttkens (1974). Hatanaka (1978) has derived 
the asymptotic properties of the method extended to models nonlinear 
in variables. 

Following Hatanaka the estimation proceed~ as follows: In the case ; 
where the model is nonlinear in variables the-general form of (l) 
will be: 

(5) f{Y,X)B+XC = u 

where Y, X and u are defined as before and f{Y,X) fullfils the 
requirements of an endogenous function: 

its arguments contain at least one endogenous vartable 
it contains no unknown parameters. 

Let B,C and f be such that given X and u (5) yields one and only 
one solution to Y for each period 
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(6) Yt = g{xt,ut,d) 

where d is the vector of parameter estimates. 

The procedure for calculating the lIV estimator with OLS start is 

as follows: 

(i i) 

(i ii) 

(i v) 

In the first round of the estimation method, theOLS 
method is used to construct the first estimates of the 
vector of the structural parameters, aOLS • 

OLS AOLS Obtain Yt = g{xt,O,d ) through (6) as a numerical 
solution to the model. 

Obtain instrumental variable estimates for each equation 
separately using f{y~LS, xt ) and xt as instruments. Let 
dl be this estimate. 

If there are sufficient observations, one more round can 
be calculated, in which the consistently estimated 
variance matrix of the previous round is implemented 
into the estimation. This stage is analogous to the use 
of a 2SLS estimation error variance matrix to perform 
3SLS estimation. 

Starting the procedure by using OLS estimators for the Gauss-Seidel 
solution is well suited to current practice in macro-economic 
modelbuilding, where the first identification search process is 
carried out with OLS estimation. Even if estimation starts from 
inconsistent OLS estimators, the iterative method yields consistent 
estimators for both linear (Dutta-Lyttkens) and nonlinear models 
(Hatanaka) because the estimators from (iii.), and hence also (iv), 
fullfil the requirement of tnstrumental variables. Hatanaka also 
shows that iteration with OLS start does not result in consistent 
estimates in the case where lagged endogenous variables and 
autocorrelated disturbances coexist. 
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The method is also efficient for linear models. It takes into 
consideration the full specification of the model and is thus 
efficient relative to modified 2SLS and other IV methods. In fact, 
the third stage in the iterative process, the second instrumental 
variable estimator in the sequence, is asymptotically equivalent to 
the original efficient 2SLS estimator. In the·linear case the 
estimators are shown to attain the Cramer-Rao lower bound for 
single equation estimators. Stage (iv) gives iterative estimators 
that are efficient among system estimators. 

In nonlinear models the estimators are asymptotically inefficient 
owing to 

the discrepancy between the Gauss-Seidel solution, on the 
one hand, and the expectation of endogenous functions, on 
the other; 
the failure to take account of the nonlinear effect of 
the disturbance upon the deviation of endogenous 
functions from their expectations. 

In contrast to the other single estimation methods the lIV method 
estimator is not strictly speaking a limited information estimator 
because information on the structure of the entire reduced form 
parameter matrix is used in computations (when the solved reduced 
form is used as instruments). This feature has special significance 
for the estimation method. We pointed out above that if Y, the 
estimate of the right-hand endogenous variables, is obtained from 
the unrestricted reduced form, then Y can be used as e;ther 
regressors (2SLS) or as instrumental variables and the resultant 
estimators of the parameters are the same. This is no longer true 
if Y ;s obtained from the Gauss-Seidel solution, which is to be 
interpreted as the restricted reduced form. In fact, following 
Maddala (1971) we can talk about the RRF2SLS (restricted reduced 
form two stage least squares) and RRFIV (restricted reduced form 
instrumental variables) estimators and the two will be different. 
The RRFIV is the same as the lIV estimator above. The RRF2SLS is 
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the estimator that Wold suggests under the name of the fix-point 
method (Wold, 1965). 

The RRFIV method is shown to have the same asymptotic distribution 
as 2SLS but it is not possible to rank RRF2SLS in relation to 2SLS 
(Dhrymes & Pandit, 1971). The estimates of some parameters can be 
more efficient than those of 2SLS, and the estimators of some other 
parameters can be less efficient than those of 2SLS. 

We can very clearly see in this reasoning the contradiction 
embedded in the use of analytical properties of small sample 
estimators. These iterative methods have been developed to cope 
with undersized samples, hence by definition producing small sample 
estimators. Yet the properties of the estimators are discussed in 
terms of asymptotic distributions. It is unclear how much the 
asymptotic arguments can be relied upon. Small sample 
approximations are required to better evaluate both the RRF2SLS and 
the RRFIV estimators. Also, knowledge about the effect of the 
initial estimator being consistent or inconsistent on the small 
sample properties of the estimators remains to be established. 

This section concluded the theoretical comparison of the asymptotic 
properties of the estimators. Summarizing the results we have seen 
that all the simultaneous methods, both in the original and in the 
modified form, are consistent because they can be shown to be IV 
estimators. 

The other desired analytic property is efficiency. If we make the 
assumption that the error terms have a joint normal distribution we 
can derive the Cramer-Rao lower bound for the asymptotic variance 
matrix of the parameter estimators. The methods that yield 
estimators attaining this lower bound and thus being efficient can 
only be applied in estimation from samples where the number of 
observations is greater than the number of the predetermined 
variables. For undersized samples we have to use modified \ 
simultaneous methods the relative efficiency of which cannot be 
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analytically derived. The only exception is the lIV method. This 
method yields estimators that are efficient compared to the other 
methods applicable to undersized s~mples. 

This method is also intuitively appealing for another reason. When 

estimating from small samples. it seems as though one has to pay for 
shorter data by being forced to use more complicated modifications 
of the usual estimation methods. Yet there is a contradiction in 
this payoff because the limited information in short data cannot 
cope with sophisticated methods. 1n the iterative method there is 
no payoff between data and method. The method utilizes in a very 
simple way all the information available in the data and the model. 

1I.4 Ranking of estimation methods according to exact finite 
sample distributions of the estimators 

So far wehave discussed the asymptotic properties of estimates, 
this being the usual way of method ranking. A rational choice among 
alternative methods of ,estimation from small samples should of 
course be based nn knowledge of the small sample distributions of 
various types of estimators. The exact finite distributions are 
difficult to derive, so in comparison based on asymptotic 
properties the underlying assumption is that the s~me ordering is 
also valid in small samples. 

Let us anyhow see what is known about the small sample properties 
of estimators. The finite exact distributions of estimators can be 
sought in two ways: using analytical derivation or sampling 
experiments. The analytical approach deals with the derivation of 
exact expressions for and approximation to the sampling probability 
distributions and moments of estimators. 1n the sampling experiment 
approach, usually covered by the name Monte Carlo procedure, 
artificial data are generated from which the sampling distributions 
and moments are calculated. 1n comparing the estimates from the 
~10nte Carlo data, one estimation method is ranked superior to 
2 463110F 
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another if the estimates of the population parameters produced by 
it are "closer" to the true value of the parameter than those 
produced by the others. 

In the analytical derivation the formula for the exact or 
approximately exact value of bias is derived; in Monte Carlo 
experiments it can be calculated as the difference between the 
knowntrue parameter value and its estimated value. Both analytical 
derivation and Monte Carlo simulation have their pros and cons so 
the results from the different derivations should be used in a 
complementary way. 

The Monte Carlo procedure can only be applied to very small models 
to keep the sample generating work within manageable size. But 
these small models can be given complicated structures, which 
allowsthe measuring of the effects of different kinds of 
misspecification on the estimators. The weakness in the Monte Carlo 
procedure is that the results are tied to the model that is used in 
the experiment, i.e. they cannot be generalized. Moreover there is 
always the risk of a substantial sampling error that can be high 
depending on the number of replications. This defect is mainly due 
to a cost constraint that restricts the number of replications per 
experiment. 

In the analytical approach the purpose is to attain results which 
hold for the whole parameter space, thereby giving this approach a 
generality that is impossible to attain with sampling experiments. 
The limitation of this approach stems, however, from the 
simplifications that have to be imposed on the structure of the 
model to allow the analytical derivation. The stronger the imposed 
assumptions are, the farther the derivation can be carried. The 
inclusions of identities, lagged endogenous variables, non-normal 
e'rrors ets. do not effect the asymptotic results but are impossible 

to handle in the analytical derivation of finite sample properties. 

In the analytical derivation a distinction has been made between 
the case of two and the case of three or more included endogenous 
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variables. The latter case, which can be interpreted as the general 
case, allowing full generalization, leads to very complicated 
formulas and so most results concern the former case (Mariano 
(1982)). Even for this limited case the expressions for the sample 
distributions are fairly complicated, involving a double infinite 
series closely related to the hypergeometric function. The formulas 
are quite difficult to compute numerically except in special cases. 
As a rule, there is no guarantee that they can be expressed in such 
a way that could enable comparison between different estimators. 

One way of handling these complex expressions is to try to obtain 
approximations of them. The most common method is the Edgeworth 
approximation (Sargan, 1976). Even though it is an approximation, 
which by definition should imply a certain simplification, a 
typical Edgeworth expansion coefficient will be the sum of a large 
number of terms each of which is a complicated function of the 
whole set of parameters in the model. 

II.4.1 The existence of finite moments 

Most results for the case of simultaneous equations are, as pointed 
out above, derived for models limited to two jointly endogenous 
variables in the separate equations and for limited-information 
instrumental methods such as the k-class and the modified two-stage 
least squares (Mariano 1982, Sargan 1976, Phillips 1983, 
Handbook of Econometrics, pp •. 451-516). In the following we will 
summarize the main results selected according to their usefulness 
from the point of view of this study. 

Since it isvery difficult to work out the actual distributions of 
the sample functions, a somewhat simpler approach is to attempt 
to calculate only some of the important properties of the 
distributions, specifically their moments. 

Below we present the available results concerning the existence of 
moments for various estimators in the general case of a linear 
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system (following Mariano, 1982). The fact that some estimators 
from small samples do not possess finite moments means that the 
mean square error measure does not provide a basis for comparing 
the point estimates and the forecasts in evaluating the model's 
performance (Swamy, 1980). 

Moments of positive order for estimated structural coefficients for 
a linear simultaneous system satisfying classical assumptions are 
finite up to order (see page 15 for the interpretation of the 
notions underlying the variables): 

- 0 

- 0 

- 0 

for 2SLS and 3SLS 

for modified 2SLS where r is the number of 
linearly independent first stage regressors 

for the k-class estimates with k nonstochastic 
and 0 < k < 1 

for k-class with nonstochastic k > 1 

for instrumental variable estimators with 
non-stochastic instruments 

for LIML and FIML. 

According to these findings only OLS and modified 2SLS with at 
least one more principal component than joint endogenous variables 
and modified 2SLS based on block division of the model have finite 
moments of first and second order. That some estimators do not 
possess finite moments means that bias and RMSE are not meaningful 
parameters when the relative merits of alternative estimators are 
compared. According to Basmann (196~) the comparison should be 
based on the nonparametric treatment of MAE (or MAPE) and this 
point has been used in this study in the comparison of the 
empirically applied estimation methods. 
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11.4.2 The magnitudes of bias and relative efficiency 

The derived expressions for the two first moments are functions of 
the triple (p, ~2, v), where p is the correlation parameter between 
the structural error and the right-hand-side endogenous variable, 
~2 is the concentration parameter3 and v is the degree of 
overidentification. Next, the relevant results for the magnitude of 
bias and the relative efficiency for the estimation methods 
applicable in this study (still following Mariano, 1982) are 
summarized. The results are valid for the limited case where the 
model includes two jointly endogenous variables: 

The direction of the bias in the k-class estimator 
(non-stochastic k € 10,lJ, that is, OLS and 2SLS) is the 
same as the direction of correlation, p, between the 
structural error and the endogenous regressors, Y1' 
Negative correlation implies a downward bias; positive 
correlation implies an upward bias. 

The absolute bias is an increasing function of the 
absolute value of p, a decreasing function of the 
concentration parameter ~2 and a decreasingly concave 
function of k. Thus, whenever both exist, OLS bias is 
a1ways greater in absolute values than 2SLS bias. 

For 2SLS the absolute va1ue of the bias is an increasing 
function of the degree of overidentification. Since 2SLS 
probabi1ity distributions depend on samp1e size on1y 
through ~2 and since ~2 increases with additiona1 
observations, the 2SLS bias in absolute va1ues decreases 
with the inc1usion of more observations in the samp1e. 

3The term concentration parameter derives from the fact that as 
this parameter increases indefinitely, with sample size staying 
fixed, for k nonstochastic as well as for L1ML, the estimated 
k-class parameter converges in probability to the true value d. 
(See page 15). 
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The total effect of additional observations on OLS bias, 
on the other hand, is indeterminate. An increase in the 
sample size N produces a positive direct effect on the 
absolute OLS bias through the increase in the degrees 
of freedom and a negative indirect effect through the 
increase in ~2. 

The larger the absolute value of p, the larger the OLS 
bias becomes in relation to 2SLS. The size of OLS bias 
relative to 2SLS also becomes larger with higher ~2 or a 
lower degree of overidentification, v, or a bigger 
sample size. 

For 2SLS additional sample observations lead to a lower 
mean squared error. For the other fixed k-class 
estimators the net effect of increasing sample size is 
indefinite. 

Measured in relative magnitudes of MSE, larger values of 
~2 and large T favour 2SLS over OLS. In these cases the 
usual large-sample asymptotics take over and the 
dominant term is the inconsistency of OLS. In some cases 
with small values of p and T, OLS dominates 2SLS even 
for large values.of ~2. 

When the degree of overidentification becomes large, the 
2SLS and OLS distributions tend to be similar. The 
higher the degree of overidentification the more 
regressors can be used in the first stage of 2SLS and 
the more similar the 2SLS and OLS distributions will be. 

According to the above comments the usefulness of the derived 
results for small distributions of simultaneous estimates is 
limited. The results hold only for very small correctly specified 
models containing no lagged endogenous variables and they depend 
strongly on the unknown population parameters ~2 and p. Some 
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guidance for the ranking of the estimation methods can, however, be 
found. 

For very small samples OLS is in a strong position compared to the 
simultaneous methods. Despite its shortcomings in comparison to an 
asymptotic context, the OLS estimates are worth calculating along 
with the simultaneous estimates on the basis of small sample 
argumentation. 

11.5 Ana lyti ca 1 consequences of appro·ximate speci fi cati ons 

1n empirical work we have to make certain approximations; if 
perfection is the only acceptable objective no empirical work is 
possible. The asymptotic analytical properties of the estimators 
presented in the previous sections are valid only under the 
assumption of a correctly specified model. 

1n this section the asymptotic implications of misspecifications 
are discussed. First we discuss the question of whether 
simultaneous estimation is possible at all when the model size is 
necessarily always approximate. We then go on to discuss the 
implications of misspe~ifications for the estimation results within 
an approximate model. 

11.5.1 Approximation of the size of a model 

The consequences of approximation of the size of a model are 
discussed in the widest sen se by Fisher (1963). He refers to two 
views, each representing a kind of extremi.ty. The first one is 
that of Liu (1953). His argument goes as follows: 

Econometric models are even at best only an approximation of reality. 

By necessity the modelbuilder abstracts from the real world by 

limiting the number of equations and variables. 1n fact, there are 
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ahJaYs more variables in the "true·" structure than are included in 
the approximative equations and the equations forming the model are 
not a complete set of equations. Thus outside equations exist, 
either relating variables within the model or relating them to 
unincluded variables. This view has three serious implications: 

first, the usual form of a priori restrictions used for 
identification - the restriction that some parameters in 
the structural equations are zero - is likely to be 
incorrect. The restrictions at best will only hold 
approximately and that is not good enough. If the 
variables in question really belong to the equations, 
then the equations are underidentified and not 
overidentified as is supposed in empirical work. Hence, 
the parameters cannot be estimated by any reasonable 
technique; 

secondly, the exclusion of other variables and equations 
from the approximate model. means that the necessary 
order condition for identification is not satisfied 
either; 

thirdly, considering the complete system hardly any 

variable in the approximate model is truly exogenous. To 
include only the explicitly stated equations is to treat 
endogenous variables as exogenous. Once again it follows 
that underidentification is the usual case and 
overidentification the exceptional case. 

All in all, the current techiques of estimation are entirely 
misplaced. Structural estimation is generally not possible in 
simultaneous systems and only reduced forms can be obtained. 

The other objection ta simultaneous sy~tems referred to by Fisher 
is that of Wold (1953). According to Wold, the real world is not 
truly simultaneous at all, but the causation is unilateral and thus 
true systems are always recursive. 
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We can summarise these two opposing views as follows: Liu asserts 
that the world is too simultaneous to be estimated because of 
underidentification whereas Wold claims there is no simultaneity at 
alle Fisher takes a stand between these two positions. He does not 
deny the possibility that either Liu or Wold is right; the real 
world could be constructed as one of them describes it. But systems 
do exist in which simultanei"ty is present but not completely 
overriding. Thus, the usual kind of simultaneous estimation. is 
entirely possible. 

Fisher offers justification for the use of an approximate model by 

arguing that the "true" system can be interpreted as a 
self-contained set of blocks for which all the coefficients of 
omitted variables within the blocks are close to zero. This permits 
estimation of partial economic models which are in turn parts of 
models of the soc;o-phys;cal un;verse. The proper quest;on ;s not 
whether certain parameters are zero or not but whether they are in 
some sense sufficiently small. The problem ;s not of hav;ng 
underidentification if the restr;ctions hold and overidentification 
if they do not, but rather of hav;ng diminishing estimation 
inconsistency as the restrictions become better and better 
approximations. Similarly, the problem is not if the omitted 
variables really have zero coefficients or if variables assumed to 
be exoge'nous really are so, but whether these things are 
sufficiently so in an approximate sense. 

Fisher postulates theorems according to which the estimation 
inconsistency following from the approximate specificat;ons is 
negl i gi b 1 e i f 

all a priori restrictions are close approximations, 
omitted variables have small coefficients, 
the endogenous variables have negligible direct effects 
on the assumed exogenous variables, and 
the endogenous variables have negligible indirect 
effects on the assumed exogenous var;ables. 
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Fisher restricts his analytical derivation to limited information 
estimators like those belonging to Theil's k-class. The same 
derivation can be extended to full information maximum likelihood 
methods under the premise that misspe"cifications elsewhere in the 
system must be assumed to go to zero. 

Fisher's theorems speak only of the implications of approximations 
for consistency. They have nothing ,tosay about 'the efficiency of 
estimators nor about their small sample properties. lt is likely 
that the asymptotic variances are different for the various 
estimators and almost certain that their small sample properties 
are different. The choice among estimators may therefore depend on 
their behaviour under approximative misspecification, even though 
negligible inconsistency is assumed for all. This aspect is 
discussed in section 11.6 in the context of the results of Monte 
Carlo experiments. 

11.5.2 Misspecification within an approximate model 

Fisher delt with three sources of misspecification connected with 
the approximation of the size of the model: incorrect a priori 
restrictions, omitted variables and exogeneity. Sources of 
misspecifications within the model affecting the results of the 
estimation appear when the classical assumptions for the stochastic 
disturbances are violated. Departures from the classical 
assumptions are heteroscedasticity, autocorrelation and non-normal 
distribution. All three kinds of departures are known to cause 
inefficiency. Non-normal distribution affects only maximum 
likelihood estimation results but for all estimators the nominal 
significance levels and the powers of the ordinary F- and t-test 
statistics are incorrect because they are derived under the 
assumption of normality. 

Autocorrelation could from a rigorous point of view always be 

interpreted as a sign of misspecification in the defined equations, 
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which should be removed. We should continue to improve the 
specification until a white noJse dist~bution of the error term i5 
achieved (Spanos, 1984). Serial correlation is caused by omitted 
variables or wrongly modelled causality between variables. The 
direction of causality, that is, the division of the variables into 
exogenous, endogenous and normalized ones, is established in the 
specification phase of model building and is thus beyond the scope 
of this study. 

If model respecification does not remove the autocorrelation and 
the modelbuilder accepts the hypothesis of dependence between 
residuals as being inherent in the nature of the data generating 
process, there are a great many estimation methods developed for 
this type of equation. In the nonsimultaneous case there are among 
others the methods of Cochrane-Orcutt and Hildreth-Lu. In the 
simultaneous case many methods have been developed which seek to 
obtain consistent and efficient estimators even when 
autocorrelation and lagged endogenous variables appear together. 
(Sargan 1961, Amemiya 1966, Fair 1970, 1972), Dhrymes, Berner and 
Cummins 1974 and Hatanaka 1976). 

So far we have dealt with the effects of approximation in terms of 
inconsistency and inefficiency. Multicollinearity is another 
quality affecting the properties of the estimates. If the 
explanatory variables move together in a sample, this leads to 
singularity, indeterminacy and nonfinite values of some parameter 
estimates. If there is perfect correlation between two or more 
explanatory variables the determinant of the matrix XIX vanishes 
and we get indeterminate parameter estimates. If the dependence is 
not complete the estimates can be calculated but it is not possible 
to detect the separate contributions of related variables to the 
explanation of the dependent variable. (Klein and Nakamura 1962). 
In their paper, Klein and Nakamura have analytically shown that 
2SLS estimates are more sensitive to the presence of 
multicollinearity than the OLS estimates. (We also find empirical 
evidence for that in this study). Similarly, limited information 
estimates are more sensitive than are 2SLS estimates. 
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1f the parameters are estimable then the problem of 
multicollinearity in a simultaneous model is not necessarily a 
major one. Users of econometric models are not often really 
interested in all the particular structural parameters by 
themselves; rather they are interested in the solution to the whole 
system. Correlation between some parameters can, thus, be accepted. 

The reasoning in this section has been in very general terms. This 
is because exact measures of the effects of misspecification are 
difficult to derive analytically. 1n the next section, we examine 
results from Monte Carlo simulations, which is the only method for 
establishing the sensitivity of various small sample estimators to 
misspecification. 

11.6 Monte Carlo experiments for dei iving small sample properties 

of estimators 

Monte Carlo experiments are used as a complementary method to 
analytical asymptotic and analytical small sample results. 1n this 
method the distributions of the estimators are empirically 
generated, which makes it possible to draw conclusions on the small 
sample properties in cases for which no analytical small sample 
results are possible to derive. Cases of interest are those with 
lagged endogenous variables or different kinds of misspecification. 
1t is also possible to detect the effects of different sample sizes 
on the estimation results. 

The studies of interest in this field are those by Wagner 1958, 
Nager 1960, Summeri 1965, Goldfeld and Quandt 1968, Mikhail 1975 
and Mozzami and Buse 1984. The experiments are performed using 
small models in which various kinds of misspecification can be 
implemented and their effects analysed. One experiment consists of 
generating error terms from a known, usually multinormal 
distribution, and then solving the structural equation for the 
endogenous variables. Then the resulting data series, conditional 



on the generated error terms, known parameter values and known 
values of the exogenous variables, are used to estimate the 
coefficients of the equations using the estimation methods to be 
compared. 
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Wagner used two linear models, which differed only in the variance 
matrix of the random disturbances. Each model consisted of two 
equations; one being over~identified, the other just-identified. 
The model also contained a one-period lagged endogenous variable. 
Wagner examined the estimation methods LIML, OLS and IV. The IV 
method in this case has the same asymptotic properties as 2SLS. 
Wagner compared only the results for the first overidentified 
equation. Nagar extended the Wagner study by choosing the same 
model and same sample size of 20 observations to derive the results 
for 2SLS and also for the just-identified second equation. 

Summers (1965) compared the results of FIML, LIML, OLS and 2SLS 

estimation of a two over-identified equation linear model. He also 
investigated the consequences of misspecification for these 
estimation methods. In the misspecification model, the second 
equation was just-identified instead of being over-identified. 
Different degrees of multicollinearity were also introduced. 
Summers used sample sizes of 20 and 40. 

In their Monte Carlo study, Goldfeld and Quandt sought the answer 
to the question to what extent do the substantive conclusions 
derived from linear cases hold for nonlinear models. They used two 
models: one linear in 10gs, the other containing an endogenous 
variab1e of second order. They considered the estimation methods 
OLS, FIML, 2SLS14, in which they used on1y 1inear variab1es in the 
reduced form, and 2SLS24, with both linear and quadratic terms. 

4See page 28 and Appendix 111 for definition. 
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Mikhail compared the estimation results of OLS, 2SLS, 3SLS, 3S/0LS, 
three-stage via OLS, LIML and FIML on a linear two equation model 
for sample size of 20. 

The comparison of the results was made in terms of bias and 
variance of the estimated structural coefficients and also 
conditional prediction ability. For most cases it was apparent from 
the results that the choice of an estimatior depended very little 
on which of these variables was used. Different kinds of measures 
were used as criteria in the comparison, although the most 
frequently used was MMSE5. Bearing in mind the argument of Basman 
(1961) that, since the distributions of the various estimators do 
not possess finite first and second moments, biasand RMSE are not 
meaningful parameters, the nonparametric measure MAE5 was also 
used. The results indicated, however, that the appraisal of the 
estimation methods was essentially the same when RMSE was used as a 
criterion instead of MAE. 

In the following sections the results from the above-mentioned 
studies are put together. 

11.6.1 The basic case 

The same model was used in several experiments and it is therefore 
labelled here as thebasic case. A sample size of 20.observations 
wa~ used. This is the sample size that most annual models bases 
have to deal with. A low contemporaneous correlation coefficient, 
0.18, between the residuals was implemented. The following results 
were reported: 

The small sample bias of OLS exeeds the bias of the 
consistent estimation methods. Ranking according to the 

5See Appendix 111 for definition. 



biases of estimated parameters puts 3SLS on top 
followed by LIML, FIML and 2SLS. The two last places 
were taken by 3S/0LS and OLS. 
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OLS has smaller sampling variance around its biased 
expectation than the consistent methods. Ranking 
according to the estimated variances gave the order OLS, 
3S/0LS, 2SLS, 3SLS and then FIML and LIML. 

Judging by the mean-square error criterion, 2SLS is 
best and 3SLS in second place. OLS and 3S/0LS ranked 
third and fourth. Their small variances helped to offset 
a substantial part of the biases. Due to the small 
magnitudes of the biases of the other methods, their 
ranking was identical to the ranking of variances. 

Compared to the true asymptotic standard errors, the 

asymptotic estimated standard errors of 2SLS, 3SLS and 
FIML gave a rather satisfactory picture of the 
variability about the true value. OLS standard errors 
measure the variability of the estimators about the 
biased expectation, not about the true value. 

The results agree with the conclusion that, for thi~ kind of 
models, single-equation methods would not be worse than 
full-information methods. According to asymptotic theory, 
full~information methods produce a gain in efficiency over the 
other consistent methods only if the contemporaneous correlations 
are not close to zero. 
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11.6.2 The consequences of high contemporaneous correlation 

The effects af higher correlation between equations were 
investigated by generating the structural disturbances from a 
multinormal distribution with the correlation value 0.76. The 
following results were obtained: 

The biases af 2SLS, 3SLS, LIML and FIML were so close ta 
each other that no significant differences among them 
could be detected. As before, OLS bias was greatest of 
alle 

According ta the variance, it was found that in this 
case af relevant contemporaneous correlation between 
residuals, the single equation methods, which were well 
placed in the ranking in the basic model, now lose their 
good rankings ta the theoretically preferable 
full-information estimators. OLS is relegated from first 
ta fourth place and 2SLS from third ta fifth place. The 
first three positions are taken by 3S/0LS, 3SLS and 
FIML, respectively. 

According the mean-square error measure, FIML is the 
best method. Similarly, 2SLS is shown ta be best 
single-equation method followed closely by LIML. 

The findings confirmed the expectations based on asymptotic theory. 
The very small correlation in the error term matrix in the basic 
case neutralized the effects af joint estimation and stripped the 
full-information methods of their advantage. The introduction of 
large covariances brought about the kind af behaviour that the 
system methods were expected to have in the light of large sample 
theory. 

No attempt was made to determine the smallest value of g, the 
correlation between the disturbances in the equations which would 
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make it profitable to use full-information rather than --------­
single-equation methods, for the following reasons: 

The value of 9 favourable to one may not be such for 
another. 

Even if such a value for 9 could be worked out for each 
method, it would be subject to sampling error of 
considerable magnitude. 

The presumed 9 would be limited to the use of the 
particular model simulated in this experiment. 

The results show for the high contemporaneous correlation case not 
only the superiority of F1ML and 3SLS known from the theory for 
their consistency and asymptotic efficiency, but also that 3S/0LS 
with gls estimated inconsiste~tly by OLS did better than all the 
consistent single-equation methods, being only marginally less 
efficient than 3SLS. This would perhaps suggest that a preliminary 
investigation of the correlation between the disturbances, although 
inconsistently estimated, would be worthwhile. 

11.6.3 The effect of the sample size 

The sample size used in the different experiments were 20, 40 and 
60 observations. The findings were: 

OLS, compared to itself, measured in terms of bias, 
behaves best at the smallest sample size considered, 20, 
but does progressively worse as the sample size 
increases. 

For the consistent methods the bias and the variance 
decreases as sampie size increases. For large samples 
the RMSE1s are approximately proportional to the inverse 
of the square root of the sample size. 
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11.6.4 The effects of multicollinearity 

Multicollinearity between the variables was introduced in the 
experiments to measure the effects on the estimation results: 

OLS fared significantly less badly in the experiments 
where the multicollinearity was greatest, which 
indicates less sensitivity for misspecification in the 
OLS estimation. The closeness to singularity of the 
matrix of the jointly determined variables may be an 
important conditional variable in appraising the 
methods. 

FIML performs well under favourable conditions, but is 
loses ground when misspecification such as high 
interdependence between variables or structural 
misspecification ari se. This conclusion stands for the 
struc~ural parameter estimates. The prediction 
performance is not much affected. 

11.6.5 Non-normal or autocorrelated errors 

Misspecification in terms of non-normal or autocorrelated errors was 
found to have the following implications: 

The effects of departure from normality of the error 
distribution on the first and second moments of OLS and 
2SLS estimates are very slight. This finding illustrates 
the robustness of these estimates to non-normal error 
distribution (Knight, 1985). 

ln cases of autocorrelated errors Monte Carlo 

experiments indicate that for small samples the method 
of least squares is best; OLS for low values of the 
autocorrelation coefficient rand autoregressive least 
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squares for large r (Hendry and Srba, 1977), 2SLS for 
large samples and small r. For large samples and large r 
an autoregressive instrumental variable estimator 
performs best. 

11.6.6 Nonlinearity in the model 

The experiments made with anonlinear model showed that the 
conclusions obtained for linear cases also hold for nonlinear 
models. 

Only for the sample size of 20 did OLS perform well 
relative to nonlinear FIML and 2SLS2, but could not 
compete with 2SLS1.6 The situation changed significantly 
for larger sample sizes. 

As in the linear case, the RMSE's and also the 
divergence between different consistent methods decrease 
as sample size increases. 

Based on the performance of the methods with respect to 
the RMSE's the following ranking was obtained: 2SLS1, FIML, 
2SLS2 and OLS. The ranking between 2SLS1 and FIML is 
somewhat unclear but both beat 2SLS2 and OLS. 

From this experiment we can draw the conclusion that the Taylor 
approximation of the unknown reduced form of a nonlinear model is 
better when both first and second order polynomials are used than 
when only quadratic variables are implemented. 

6See Appendix 111 for definition. 



111 MEASURING THE UNCERTAINTY IN THE SIMULTANEOUS 
MODEL PREDICTIONS 

In the previous sections we have dealt with different aspects of 
estimation as the first task in the evaluation of a simultaneous 
model. In the following, .we focus on the main question of how to 
obtain a measure of dispe~sion for the forecast1 values of a 
macroeconomic model. As noted above,· the two parts, estimation and 
evaluation of predictive accuracy, are interrelated; the selection 
of a particular set of estimators determines the variance for the 
forecast and, on the other hand, the outcome of the derivation of 
the variance serves as a guidepost in the selection of the optimal 
estimator. 

No one expects the forecast to be perfectly accurate because any 
model is, even at best, merely an approximation of reality. Above 
all, approximationcontains the assumption of constant parameters. 
This implies the concept of no change in the economic structure. 
This assumption makes already theforecasts, when presented as mean 
values, deviate from the Ireal world l

• 

The forecasts are thus expected to differ to some extent from the 
true values but they are also expected to fluctuate around their 
calculated mean values, the point predictors. There are four main 
sources of error causing the forecast to fluctuate. They are: 

the presence ofrandom disturbances, 

the use of parameter estimates in forecasting as opposed 
to the unknown true values of the parameters, 

lBy the forecast we mean the values of the endogenous variables 
generated from the model solution over a time period not belonging 
to the sample estimation period (see Appendix 111). 



the uncertainty of the values of the exogenous 
variables, and 
misspecification in the model 
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The two first sources make the model random. A forecast made with a 
random model is also a random variable and should also be reported 
as such. The ideal case would be to present the forecast along with 
the confidence interval calculated on the basis of the probability 
distribution and the variance of the forecast. 1n the following we 
present a summary of the existing derived results of estimation of 
the distribution and the variance ofthe forecast. We proceed 
according to the type of model examined, starting with the linear 
static case and concluding with the model for which no analytical 
results are possible to derive. 1t will be seen that prediction 
regions are impossible to derive analytically for dynamic and/or 
nonlinear systems due to the general non-normality of the 
endogenous variables. Thus, unlike linear systems, the distribution 
of the endogenous variables is not characterized by their first and 
second moments. 1n the nonlinear case we have to confine ourselves 
to measuring the dispersion of the endogenous variables by their 
second moments. Not even for this second moment can analytical 
results be derived but it is, however, possible to find an estimate 
for the variance matrix of the forecast error using stochastic 
simulation techniques which, as it turns out, are applicable 
equally well to the simpler linear nondynamic single equation 
models and simultaneous dynamic equation models. 

111.1 Analytical results 

1n all the analytical derivations the exogenous variables are 
assumed to be known with certainty. The model is also assumed to be 
correctly specified2• Thus, in the analytical derivation the 

20ne of the stochastic simulation methods (Fair, 1980), to be 
presented later on, also deals with these two sources of forecast 
error. 
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components of the forecast error are-only those that arise from the 
presence of the random disturbance in the equations and from the 
use of random parameter estimates. 

111.1.1 Two-variable single equation models 

We beginby presenting the following model so as to introduce the 
notions that will be used throughout the subsequent analysis. 

The general form of this model is: 

(1) for i = 1, ••• ,N 

where 

,Yi is the dependent variable 
xi is the non-stochastic independent variable 
ui are normally distributed random disturbances, terms with 

mean zero and constant variance o~. The normality assumption 
is necessary for the derivation of the variance of the 
various test statistics 

are unknown constant parameters. 

The best linear unbiased estimate, OLS, of aO and a1 would be used 
in making forecasts of YF (F being the forecast period) as follows: 

while the true but unobservable value of YF is 
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The unobservable forecast error in period F is given by: 

The variance of eF is given by: 

and 

x = IIN lXi 

An unbiased estimate of o~ is given by: 

where ~~ is an unbiased estimate of o~. This expression is a result 
of straightforward analytical derivation and can be found in any 
basic econometric textbook. 

Expression (5) indicates that as the sample size N increases, o~ 
decreases and as (xF - x)2 increases, that is when forecasts are 
made for values of x further away from the mean X, o~ increåses. 

The statistic 

( 7 ) t = (YF - YF) I 8F 

is distributed according to the Student "t" distribution with N-2 . 
degrees of freedom. Consider the following probability statement 

(8) prob (YF - 0F t a,N-2 < YF < YF + OF t a,N-2) = I-a 
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Since YF is a random variable, the i~terval (YF ± -Of t a,N-2) 
cannot be interpreted as a confidence interval in the sense that 
one would be able to state a confidence interval for an unknown 
parameter such as aO or a1. 

The proper interpretation of the interval defined by expression (8) 
is that a future value of YF will be contained in the interval 
(YF ± -aF t a,N-2) with probability (l-a) (Fraser & Guttman, 1956). 
Such an interval is called a beta-expectation tolerance interval 
with confidence level 1-a. 

A more powerful probability statement would be that a given 
tolerance interval about YF contained beta percent of the future 
values of YF with probability 1-a. Such a tolerance interval is 
called a beta-content tolerance interval with confidence level 1-a. 
It has only been possible to derive this stronger statement for the 
simple two variable single equation model. Even this derivation 
obtains only approximative beta-content tolerance intervals because 
a chi-squared approximation to the normal distribution is employed 
in the derivation (Wilson A L, 1967). It is, however, possible to 
derive the beta-expectation tolerance interval for more complicated 
models as we shall see below. 

111.1.2 Nondynamic simultaneous equation models 

The general form of this model is given by 

(9) YB + XC = V 

where 

Y is an N x·G matrix of dependent variables 
X is an N x K matrix of nonstochastfc independent variables 
B is a nonsingular G x G matrix of unknown parameters 
C is a K x G matrix of unknown parameters 
V is a N x G matrix of structural disturbance terms. 
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.A typical row of V, Vi, is distributed according to the 
multivariate normal ditribution with expected value zero and G x G 
variance matrix Yv. The rows of V are assumed independent of one 
another. 

The derived reduced form corresponding to (9) is given by: 

(10) Y = XA + U 

where 

-1 A = -CB and U = VS-1 

A typical row of U, Ui, is distributed according to the 
multivariate normal distribution with expected value zero and G x G 
variance covariance matrix J.u defined by: 

While the structural model given by (9) is the one estimated the 
derived reduced form model (10) is employed in making forecasts. 
Let the model (9) be estimated using some consistent estimation 
method yielding the estimates B, C and Yv. Th~ corresponding 
consistent estimates of A and >u are given by 

(11 ) Ä = -CS-1 and ~ = 03-1)1 Y (S-l). /.u .v 

Denoting the forecast period variables as before, the unobservable 
vector of forecast error, EF, is given by: 

Define the K G x 1 vector a* as: 

where the A.i are columns of A. The vector å* would be defined in 
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the same way as a* except on the basis of the columns of A. Denote 
K G x K G var;ance matrix of the elements å* by I§.*. In addition, 
define the G x K G matrix ZF as: 

Z = r X I 0 0 1" F F 

0 XF 
I 0 ...... 

L O .xF 
I . . J 

, A 

If a consistent estimate of I§.* can be defined, the~ a consistent 
estimate of the variance matrix of for~cast error, J.F, is given by: 

The difficulty in evaluating expression (12) is finding a 
consistent estimate of Iå*. Since Å is a nonlinear function of B 
and C, Iå* is a nonlinear function of ~he elements in the variance-

A A 

covariance matrix of the elements of B and C. In the study by 
Goldberger, Nagar and Odeh (1961) an explicit technique is 
developed for obtainingAa consistent estimate of Iå*, and thereby a 
consistent estimate of LF as in expression (12). 

Goldberger et ale make the first-order Taylor expansion of 
expression (II) and determine an approximate linear relationship 
between the elements of å* and the elements of B and C. They also 
show that the approximation becomes more accurate as the sample 
s;ze increases. Given an approximate linear relationship between 
the elements of å* and the elements of C and B, it is relat;vely 
~;mple to determine a linear relationship between the elements of 
Iå* and the consistently estimated var;ance covar;ance matrix of 

A A 

the elements of C and B. 

Hyman (1969) has used the above cited results of Goldberger et ale 
to define the statist;c 
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(13) 

which is asymptatically distributed as Hatelling's "T2 1
• Therefare, 

the statistic ((N-K-G+1) T2/{N.G)) is asymptatically distributed as 
Snedecar's F with G and (N-K-G+1) degrees af freedam. Hymans then· 
canstructed an asymptatic beta-expectatian talerance ellipsaid far 

YF· 

111.1.3 Linear dynamic madels 

The linear dynamic structural madel is af the general farm: 

(14) YB + Y-i B-i + XC = V 

while its carrespanding reduced farm is given by: 

(15) Y = Y-i A-i + XA + U 

where 

A-i = -B-i B-1, A = -CB-1 and U = VB-1. 

Y-i is an N x G matrix af endagenaus variables lagged i 
periods 

B-i is the carrespanding G x G matrix af unknawn parameters 

The matrices Y, X, B, C, V, A and U are as defined befare and the 
G x G matrix A-i cantains the unknawn derived reduced farm 
parameters assaciated with Y-i. 

The asymptotic expressions derived by Goldberger et ale presented 
abave are valid far madels which are static in the sense that the 
true abserved values are usedfar the lagged endagenaus variables. 
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Peter Schmidt (1977) has considered the asymptotic distributions of 
dynamic forecasts where the model itself generates the lagged 
valuesof endogenous varia61es. The results are derived for linear 
reduced form models only. In the calculation of the variance matrix 
ofthe forecast error, the variance matrix of the reduced form 
parameter estimates is also needed. It is obtained using the 
formulas developed by Goldberger et al. 

The asymptotic covariance of the forecast error (YF - YF) is of the 
form (l/T)e + ~. The term (l/T)e is due to errors in the estimation 
of the reduced form parameters: that is, it arises because we do 
not know the parameters of the model, but only have estimates of 
them. The term ~, on the other hand, is due to the random nature of 
the variable YF being forecasted and is invariant with respect to 
the size of the sample used to estimate the parameters of the 
model. 

In the expression (l/T)e + ~, the term (l/T)e can be ignored if we 
are interested only in asymptotic results. Under the null 
hypothesis of correct specification the test statistic 

converges in distribution to ~, where G is the dimension of y. 
Similarly, the test statistic formed by dividing any element of 
(YF - YF) by the square root of the corresponding diagonal element 
of ((l/T)e + ~) converges in distribution to N(O,l). 



61 

111.1.4 Nonlinear dynamic models 

The nonlinear dynamic structural model is of the general form 

(16) for k = 1, ••• ,p 

where f is a G x G matrix valued nonlinear rational function with 
unknown parameters. 1n this study we concentrate on the derivation 
of an estimate of the variance matrix of forecasts mad~ with models 
of the type (16). 

1t is assumed that the simultaneous equation system (19) yields one 
and only one solution for each period for relevant values of the 
coefficients, the predetermined variables and any value of the 
disturbance terms. Drawing an analogy with the linear model this 
solution would be expressed in the reduced form: 

(17) k = 1, ••. ,p. 

The reduced form may not be expressible in a simple closed form in 
this nonlinear case. 1n practice the model is solved iteratively 
in the normalized form. 

Let F be a time period not belonging to the sample estimation 
period and let themodel be used to forecast over the time interval 
(F+1, F+h). Given the values of the endogenous variables at time F, 
YF, and the values of the exogenous variables in the forecast 
periods, xF+1, xF+2, ••• ,xF+h, the values of the endogenous 
variables in the forecast period can be obtained through the 
normalized form: 
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(18) k = O, ••• ,p 

These are the true forecast va1ues conditiona1 on unchanged 

structura1 re1ationships, certain know1edge of the va1ues of xF, 
xF+l, ••• ,xF+h, and "true" parameters d. 

When forecasting with an estimated mode1 we do not know the true 

parameter vector d. The usua1 way of forecasting is to insert in 

the norma1ized form (l8) the va1ues of the predetermined variab1es 

xF+l, xF+2, ••• ,xF+h, the estimated parameter vector d, the expected 

va1ues of zero for the disturbance terms uF+l, uF+2, ••• ,uF+h and 
sol ve the mode1 

(19) YF+l = g{YF-k' xF+l ' d, 0) k = O, ••• ,p 

YF+2 = g(YF-k+l' xF+2' d, 0) 

YF+h = g(YF-k+h-l' xF+h' d, 0) 

This forecast is then conditional on the correct specification of 
the mode1 and no'errors in the exogenous variab1es. The forecasts 

YF+l, ••• , YF+h differ from the endogenous variab1es YF+l, ••• ,YF+h 
because the estimated va1ues are used instead of the unknown 

vector d, and because of the existence of the random error terms 

uF+l,···,uF+h· 



Then the observed forecast errors are as follows: 

et = Yt - Yt 

where 

et is an G x 1 vector(t = F+1, ••• ,F+h) 

The asymptotic expected value is expressed as 

while the asymptotic expected value of the variance matrix of 
forecast errors is given by: 

- -
(21) E(et et) = E((Yt-Yt)(Yt~Yt)') 
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Even in the most straightforward case where the Ut are assumed 
serially independen~ and contemporaneously normally distributed, 
analytical derivation of expressions (20) and (21) is essentially 
impossible (Schink, 1971). 

Even if it were possible to evaluate the expressions for (20) and 
(21) for the model (16), these asymptotic results would be of 
limited usefulness. In practical forecasting the forecaster would 
like to know'what the expected forecast bias and variance matrix of 
forecast error are for sample size T. Moreover, the small sample 
analysis of (20) and (21) is unfortunately intractable analytically 
for a model such as (16). 

The problem of constructing tolerance intervals for the forecasts of 
this kind of model must be postponed until more is known about the 
relevant small sample distributions. 



64 

III.2 Simulation techniques 

In empirical applications for real world dynamic nonlinear models 
the analytical derivation of the forecast dispersion has to be 
replaced by an other method. Simulation techniques are used to 
generate the empirical outcomes of the unknown joint forecast 
distrJbution for the endogenous variables. From these generated 
dåta series both small sample and asymptotic estimates· of the 
forecast bias and variance can be computed. The distributions 
themselves remain unknown because the two moments are not enough to 
sufficiently characterize the joint distributions. Thus the 
prediction regions are impossible to construct. The data can, 
however, be used to get an idea ofwhat the marginal distributions 
of the separate endogenous variables are like. 

There are four methods of simulation to derive a measure of the two 
first moments. The four methods are: 

Stochastic simulation and re-estimation (Schink 1971) 
Monte Carlo on residuals and coefficients (Fair 1980) 
Analytic simulation (Bianchi and Calzolari 1980) 
Residual based simulation (Brown and Mariano 1984) 

The two first methods are based on Monte Carlo techniques, thus 
involving sampling from a known distribution. The analytic 
simulation is a combinati~n of analytical methods and numerical 
simulation. These three stochastic methods have been empirically 
compared (Bianchi and Calzolari 1982) but so far no empirical 
results exist for the fourth one, the residual-based simulatibn 
method. This study will, to our knowledge be the first one to 
compare empirical results from this new Brown and Mariano method to 
the other stochastic simulation methods. 

Brown and Mariano (1984) have derived the large sample properties 
through asymptotic expansions for the prediction in bias and 
variance of the deterministic predictor (19) and of the predictors 
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resulting from application of the Monte Carlo and the 
residual-based methods of stochastic simulation. The results imply 
that, asymptotically, the deterministic forecast is biased while 
the predictors from the simulation methods are unbiased. The 
analytical results also imply that among the simulation methods the 
residual-based method has asymptotically optimal properties. 1t 
seems, however, evident that its strenght lies in its applicability 
in small samples. 1n a recent paper (1985) the authors also carry 
out an analytical investigation of the finite-sample properties of 
the alternative stochastic predictors for the static non-linear 
model. 

111.2.1 Assumptions and notations 

The general form of a -dynamic model is given in (16) on page 151. 
The general model can be either linear or nonlinear in variables. 
Real world macroeconomic models are as a rule nonlinear. 

The simulation results are derived under the assumption of correct 
specification and consistent estimation. 

The assumption of serial independence of the structural 
disturbances is indispensable for the derivation of the results. 1f 
serial correlation is detected then the structural model has to be 
transformed to leave correlation-free disturbances. The assumption 
of serially independent error terms enables not only the 
pseudo-generation of the proxies for the disturbances and the 
parameters, but also a decomposition of the vector of the forecast 
error. 

When the error term is assumed serially independent, the vector of 
estimated structural parameters, which is obtained from an 
estimation procedure applied to the data of the sample period, is 
independent of the vector of the random error termsrin the forecast 
period, which is again outside the sample estimation period. 1n 
3 463110F 
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that case, it is possible to decompose the vector of forecast 
errors in the forecast period F+h, assuming exact knowledge of all 
the predetermined variables, into two independent components as 

foll ows: 

(22) YF+h - YF+h g(YF-k+h-1' xF+h' d, 0) -

g(YF-k+h-1' xF+h' d, uF+h) 

19(YF-k+h-1' xF+h' d, 0) -

g(YF-k+h-1' xF+h' d, 0)] 

+ 19(YF-k+h-1' xF+h' d, 0) -

g(YF-k+h-1' xF+h' d, uF+h)]· 

The first component in this decomposition is due to the uncertainty 
arising from the use of estimated parameters instead of the unknown 
true ones. The second component is due to the random error term in 
the stochastic behavioural equations. 

The forecast error in this decomposition is the sum of two random 
vectors: the first is a function of several variables, among which 
only the vector of estimated coefficients, d, is random; the second 
is also a function of several variables, among which only the 
vector of structural disturbances, uF, is random. From the 
assumptions of serial independence of the disturbance terms and of 
forecasting outside the sample period it follows that the two 
components of the forecast error are independent. Thus it is 
possible to analyse the two components separately, and, in particular, 
an estimate of the variance of the forecast errors can be obtained 
by summing the estimated variances of the two components (Bianchi 
and Calzolari, 1982). 

The independence between the two components does not hold exactly 

if lagged endogenous variables are present among the predetermined 
variables. In this case the two terms are both functions of the 



random lagged endogenous variables. The above considerations, 
however, is still conditional on a given value of the lagged 
variables (for example, it could be the historical value). 
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The decomposition of the forecast error can be extended from 
one-step (or static) simulation to the case of dynamic simulation 
producing conditional forecasts. The simulations must, however, 
always be done outside the sample estimation period. 

1n the following we examine how different simulation methods deal 
with the estimation of these two components of the forecast error. 

111.2.2 Stochastic simulation and re-estimation 

The method of stochastic simulation and re-estimation has been used 
to analyse the small sample behaviour of estimation methods when 
analytical investigation is difficult or impossible (Hendry and 
Harrison (1974), Mariano (1980), Mikhail (1972)). 1ts use for 
calculting the forecast errors of nonlinear econometric models is 
proposed and described in Schink (1971). He used it for calculating 
directly a small sample estimate of the variance of (YF - YF). 1n 
this method, the complete forecast error due to two error sources 
together is analysed. 

The application of this method requires the specification of the 
distribution of the disturbance terms. 1t is assumed multivariate 
normal Ut ~ N(O,Y). Note that this assumption is required in the· 
estimation phase only if maximum likelihood estimation is applied. 

A consistent esttmate of the variance matrix is calculated in the 
following way. Let us first look at the linear case. Let 

t = 1,2, ••• ,T 

be a representative equation in a linear madel in its structural 
form, where 
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Yt is the vector of the endogenous variables at time t 
Zt is the vector of the predetermined variables at time t 
Ut is the vector of the structural stochastic disturbances at 

time t. 
A,B are matrices of the structural coefficients. 

Furthermore the vectors Ut are assumed to be independent and 
identically distributed with a multivariate normal distribution 
with zero mean and a covariance matrix, YUt,constant over time. 

The estimated structural model is 

where Ut are the estimated residuals and 

is a consistent estimate of the variance matrix of the structural 
equation. 

The restricted reduced form, which is used in model forecasting, is 

where 

is the vector of the reduced form disturbances at time t. 

It is clear that 

Vt ~ N (0, A-l YA'-l) 



so that a consistent estimate of the reduced form covariance 
matrix, Q, is available.as 

provided the matrix A is ~onsingular. 
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If the model is nonlinear the direct transformation in {26} cannot 
be applied. In the nonlinear case, 

d is a vector including all the structural parameters, because a 
clear distinction between the elements of A and B is not possible. 

The explicit analytic expression for the reduced form 

is, in general, unknown. Nevertheless, the variance matrix of the 
reduced form {27} can be computed by simulation and the reported 
methods differ from one another in the way this simulation is 
performed. 

In the stochastic simulation and re-estimation method we make 
random draws from the distribution N {O,J.Ut} and produce via 
model simulation the elements of the reduced form error matrix of 
the forecasts. 

The method can be summarized as follows; 

1. Let a consistent estimate of the variance matrix be 
denoted by lUt' estimated according to {24}. T vectors 
(one for each sample estimation period) of pseudo-random 
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2. 

3. 

error terms, withAzero mean and a variance matrix equal 
to the available J.Ut' are inserted into the system (16). 

The system is solved over the sample period, keeping the 
structural coefficients fixed at their originally 
estimated values. The simultaneous solution provides 
pseudo-random values of all the endogenous variables 
over the sample period. 

Each set of pseudo-random vector values for the 
endogenous variables is used, like a new set of data, to 
re-estimate, along with the values of the predetermined 
variables, the vector of the structural parameters of 
the model. 

4. The generated coefficients are inserted into the model 

to produce, via deterministic solution, a vector of 
pseudo-forecasts over the forecast period (F+l, F+h). 

The process is repeated for steps 1 to 4, say, N times. The sample 
variance of the generated vectors of the N valued pseudoforecasts 
for each endogenous variable is then the desired small sample 
estimate of the forecast variance. 

This method can be applied with several variants. The re-estimation 
can be performed with different estimation methods. Moreover, when 
the model is dynamic, the possibility of different choices arises 
from the treatment of the lagged endogenous variables in the 
simulation. The simulation phase can be either static or dynamic 
and in the re-estimation phase the endogenous variables can be 
given their historical values or their simulation values can be 
used. 



71 

111.2.3 Monte Carlo on residuals and coefffCients 

Apart from the assumption of ~ known distribution of the 
disturbance term, this method also requires knowledge of the 
distribution of the estimated structural parameters. As we saw from 
the previous discussion above the estimation results, it is not 
possible to derive the small sample distribution of the parameters. 
For simpler models, as in the linear dynamic and the nonlinear 
static cases, the distribution of the estimated coefficients can be 
proved, under sufficiently wide conditions, to follow 
asymptotically a multinormal distribution. Therefore, the 
assumption of parameter normality is used for the parameter 
distributions in the Monte Carlo simulation method. 

An estimate of the variance matrix of the asymptotically normal 
distribution is also required. ln system estimation this matrix is 
a standard by-product supplied by the method. För limited 
fnformation estimators Theil (1971) has proposed a formula for 2SLS 
estimates and Brundy and Jorgensen (1971) for lIV estimates. The 
formulas are naturally valid only asymptotically. 

This method has been used by Cooper and Fisher (1974), Haitovsky 
and Wallace (1972) and Fair (1980). Fair has derived the 
application to also treat the uncertainty arising from a presumed 
misspecification of the model. He also stresses the possibility of 
comparison between empirical models provided by this method (Fair 
(1980)) • 

The variance of the second forecast component is simulated as 
foll ows: 

1. G (the number of the stochastic equations in the model) 
vectors of pseudo-random numbers for each forecast 
period from the distribution N (O,YUt) are generated and 
inserted in (16). 
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2. The system is solved over the forecast period thus 
producing pseudo-random vector forecasts of all the 
endogenous variables. 

The two steps are repeated, say, N times. The variance of the N 
pseudo-forecasts for each endogenous variable is then the estimate 
of the variance of the second component in the error decomposition 
i n (22). 

The variance of the first component is calculated as follows: 

Let the available estimate of the covariance matrix of the 
structural parameters d be y. d. Then the steps in the application 
are: 

1. A vector of pseudo-random numbers from a multivariate 
normal distribution with mean d and covariance Y d is 
generated. These pseudo-random coefficients replace the 
original estimates d. 

3. The model is solved over the forecast period, obtaining 
the vector of pseudo-forecast for the endogenous 
variables. 

The process is repeated, say, N times, and the estimate of the 
variance matrix of the element of (YF - YF) is calculated from the 
N vectors of pseudo-forecasts. 

The variances of the two components are summed to give the variance 

of the whole forecast error (YF - YF). If we are not interested in 
the separate error components, only in the total variance, the 
simulation is made by inserting in the model at the. same time 
random numbers for the error term and for the parameter estimates. 
The total variance is obtained directly as the variance of the 
pseudo-random forecasts from the model simulations. 
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111.2.4 Analytic simulation 

This method requires the assumptions of knowledge of the 
distribution of the random error term, of the distribution of the 
parameters and ån estimate of the variance matrix of the structural 
parameter estimates. ln the previous simulation methods, the 
methods of Schink and Fair, the errors from the stochastic 
disturbance term and the random nature of the parameter estimates 
were calculated together. ln the analytic simulation methods the 
forecast errors of the two components, as presented in (22), are 
always calculated separately. 

ln the analytic simulation method the computation of (26) is based 
on a nonexplicit linearization of the model in the neighbourhood of 
the solution point corresponding to the period F under 
consideration. From equations (25) and (26) it is clear that 
the elements of the matrix A-l are the partial derivatives of the 
endogenous variables with respect to the elements of the vector Ut. 
These derivatives can be computed via numericalsolution and stored 
;n a matrix Ot. The reduced form covariance matrix (n) at time t 
can be computed 

The steps are as follows: 

l~ A deterministic solution is computed at time t with 
all Ut set to zero. 

2. A value ~ui is assigned to the disturbance of the first 
stochastic equation, all the others being still zero, and 
the model ;s solved again at t;me t. 

3. The second step is then repeated for all the structural 
stochastic equations and the differences between the 
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disturbed solutions and the control solution divided by 
the values adopted for ~ui. 

AYi / ~ui 

supply the numerical values of the elef!1ents of the matrix of the 
partial derivatives in Dt. The diagonal elements of the matrix 

.. 
where Y ut is computed as in (24), are the variance of the forecast 
error due to the random disturbance term in the model. 

In the linear case this is an alternative to using equation (26) 
directly. In the linear case the matrix in (28) is a constant but 
in the nonlinear case Dt will be time-varying. When this method 
is used for dynamic forecasting, the derivatives in the matrix Dt 
have to be calculated separately for each period t. 

The advantage in also using analytic simulation for a linear model 
as against uSing (26) directly is that the model is difficult to 
express in the form of (23), which form is necessary for the 
inversion of the A matrix. For medium and large-size models, the 
Gauss-Seidel iterative algorithm for the solution is expressed in 
a form where each equation is normalized with respect to different 
endogenous variables. It is then not possible to distinquish the 
elements of the A matrix from the elements of the B matrix. In such 
a case it is much easier ta compute the Dt (= Ä-l) matrix by 
numerical simulation. 

As far as the first component is concerned, its variance matrix can 
be computed by means of a similar linear approximation which is, in 
many cases, asymptotically exact. If we assume that, as T, the 
sample size, increases asymptotically 



and define GF+1 as the (M x s) matrix of first order partial 
derivatives of the vector of the functions 9 with respect to the 
e1ements of d,computed at the point (YF,XF+1,d,0,), then, 
asymptoti cally, 

(30) /r (g(YF'xF+1, d, 0,) 

-g'(yF' xF+ l' d, 0,)) 
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An estimated variance matrix of a mu1tivariate distribution, which 
approximates the variance of the first component of the forecast 
errors, is obtained by ca1cu1ating GF+1 at the point 
(YF'xF+1, d, 0,), :ep1acing the )d with the avai1ab1e estimate J.d' 
and dividing GF+h ~d GF+h' by the actua1 length of the sample 
period T. This approximation is asymptotical1y exact if the 
functions of the vector gare continuous1y differentiable (Rao, 
1973 p. 388) and if the estimated structura1 coefficients are 
consistent and asymptotically normally distributed. There is no 
forma1 proof for the condition of norma1ity to ho1d for non1inear 
models, so the procedure should be considered approximate, not on1y 
for sma11 samp1es, but even in the large sample case. 

Continuity and differentia1ability af the elements of the unknown 
vector of the reduced form functional operators y is ensured by the 
implicit function theorem, which a1so provides a way of computing 
the partia1 derivatives 

(31) ay _ (af)-l af 
Tc!'--ayr W 

where the derivatives of the structural form operators, vector f, 
which is known, can a1so be ana1ytica11y computed, once a 
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deterministic solution of the model at" time F+1, ••• ,F+h is kno\'ln. 

For medium- or large-scale models it may be more convenient to 
perform the above derivations with numerical methods rather than 
analytically. Finite differences, ~d, are then inserted into the 
model (16) and the corresponding differences in the endogenous 
variable, dy, from the model solution over the forecast period are 
calculated. The ratio ~y/~d is an approximative value of the 
derivative when AY are the differences. in the endogenous variables 
between a control solution and the disturbance solution with the 
increments dao The derivatives AY/~d are stored in a matrix G. ln 
that case the diagonal elements of the matrix 

G 

~~ are the variances of the first error component in (22). 

111.2.5 Residual based simulatio~ 

This method \'las put forward by Brown and Mariano (1984). The method 
onlytakes account of the second component of the decomposed 
forecast error in (22). Empirical studies have, however, revealed 
that the second component covers the greater part of the total 
error (Bianchi & Calzolari, 1982). 

The residual-based procedure requires no knowledge of the 
distribution of the residual term in the model. Only the assumption 
of no serial correlation is necessary. Nor is the variance matrix 
of the parameter estimates required. Thus this method avoids the 
need for approximate specification because it is characterized by 
low parametrization. ln the Monte Carlo methods, presented above, 
where assumptions about the unknown distribution terms are 
required, there is a risk that if the wrong distribution is used to 
generate random dra\'ls, bias could be introduced in the predictions. 



77 

There is then an asymmetry between the estimation phase and the 
Monte Carlo prediction phase because the application of estimation 
methods giving desirable properties for the estimators of models 
like (16) does not need precise specification of the error 
distribution. 

The Brown-Mariano method reduces the computational burden in the 
calculations and also the misspecification sensitivity inherent in 
the Monte Carlo predictor. This new stochastic predictor simply 
uses the calculated sample period residuals as the stochastic 
proxies for the disturbance term rather than random draws as in the 
Monte Carlo predictors above. The method then gives as many 
pseudo-forecasts as there are observations in the estimation 
period. The variance of these T forecasts is then the estimate of 
the forecast error variance. 

III.3 Asymptotic properties of the stochastic predictors 

The forecasts obtained from estimated real-world macromodels are 
usually generated as deterministic simulations of models in which 
structural disturbances are replaced by their expected values. The 
deterministic solution has, however, two disadvantages. First, 
because models are as a rule nonlinear, nonlinearity induces bias 
into the deterministic solution, since expected values of nonliriear 
functions are not in general equal to the nonlinear functions of 
the expected values of the random variables: 

E f(x,u) * f(x, Eu) 3 

3There are exceptions. For example, if f is an odd function of u, 
then the deterministic predictor would be asymptotically unbiased. 
Also, if f is monotonic in u, then the deterministic predictor would 
be a consistent estimator of the median of YF. (&rown and Mariano 
1983). 
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This bias is called the simulation bias and does not exist for 
linear models. 

Secondly, the deterministic solution takes no account of the random 
nature of the model, giving only point predictors. 

The use of stochastic simulation procedures in forecasting with 
nonlinear models takes account of both the nonlinear and the 
stochastic nature of the models. 

In the following, we first examine asymptotic behaviour before 
going on to consider the finite sample properties of the predictors 
in a nonlinear simultaneous system. 

III.3.1 Asymptotic bias, AMSPE and variance 

Brown and Mariano (1983, 1984) have derived the asymptotic 
expressions of the forecast bias, mean square prediction error and 
variance for the second component in the decomposition of the error 
term in (22), for t'he deterministic predictor, the Monte Carlo 
predictor (Fair, Bianchi and Calzolari) and their own residual­
based predictor. The results are then conditional on the estimated 
parameters, the exogenous variables and a correct specification of 
the model. The expressions are composed of the leading terms of the 
Taylor expansion of the forecast error. The expansion requires the 
following assumptions: 

The model contains no lagged endogenous variables, an 
assumption which makes the forecast static so that the 
results also cover multiperiod forecasts. 

The two first moments of the predicted values are 
assumed to be finite for relevant parameter estimates, 
given the the values of the exogenous variables. 
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The stochastic disturbances are assumed to be mutually 
independent and identically distributed with mean zero 
and a known variance matrix. 

Under these assumption the Taylor expansion leads to following 
conclusions: 

1. Asymptotic bias 

The deterministic prediction based on consistent 
parameter estimates, d, is in general asymptotically 
biased due to the nonlinearity in the system. The 
asymptotic bias is of order 0(1) as T+oo. 

If the model is correctly specified, the Monte Carlo 

predictor and the residual-based predictor, both based 
on consistent estimates, have an asymptotic bias of 
order O(l/T). They thus share the property of being 
asymptotically unbiased. 

If the distribution of the disturbance is incorrectly specified, 
the Monte Carlo predictor becomes biased but the residual based 
predictor remains unbiased, provided that the functional form is 
correctly specified and consistently estimated. The residual-based 
predictor does not depend on any specific error distribution and is 
therefore less sensitive to distributional assumptions than the 
Monte Carlo predictor. 

2. Asymptotic mean square prediction error (AMSPE)4 

When the estimation~of d is based on the maximum likelihood method 
(MLE), we can deri ve anexpressi on for the lO\'/er bound of the 
AMSPE: 

4See appendix 111 for definition. 
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Because of its nonvanishing asymptotic bias, the 
deterministic predictor is dorninated in terms of AMSPE 
by both the Monte Carlo and the residual-based predictor 
in large samples. 

The Monte Carlo predictor approaches the lower bound in 
the MLE case when S, the number of the stochastic 
replications, grows large relative to T. However, little 
is to be gained in increasing replications beyond a 
moderate nurnber since the consequent reduction in AMSPE 
is at most a small fraction of the total. 

For S substantially larger than T when the Monte Carlo 
predictor approaches the lower bound of AMSPE, the Monte 
Carlo predictor is asyrnptotically efficient relative to 
the residual-based predictor. 

For S = T, T being the maximum number of replications 
possible for the residual-based procedure, the residual­
based predictor is asyrnptotically efficient relative to 
the Monte Carlo predictor. 

But although itis possible to order the Monte Carloand the 
residual-based predictors according to their AMSPE in the cases 
S = T and S » T, the differences in AMSPE are very small relative 
to the total AMSPE of either predictor. 

3. Asymptotic second moments 

As in the comparison of AMSPE, the comparison of the second rnoments 
is possibleonly between the stachastic predictars; the 
deterministic predictar does nat pravide estimates of the inherent 
variance or distribution of the forecasts of the endogenous 
variables. 

As in the comparison of the AMSPE, the camparison of the secand 
moment has to be made in the framework af maximum likelihood 



81 

estimators because it provides a measure of the lower bound of the 
second moment. Tn the MLE context the following results are 
obtained: 

The residual-based estimators of the second central 
moments are consistent. 

When S = T, the residual-based predictor is efficient 
relative to the Monte Carlo estimator in terms of the 
second moment, as it was in terms of AMSPE: 

For S sufficiently larger than T the Monte Carlo 
estimator becomes efficient relative to the 
residual-based predictor. 

Unlike the results of the comparison of the AMSPE 
measure, the inefficiency in terms of variance is not 
necessarily a small fraction of the total. 

Tt would be of major interest to use the estimated variance matrix 
obtained either by the Monte Carlo method or by the residual based 
procedure to construct prediction regions centred on the mean of 
the replicated stochastic simulations. Unfortunately, the 
probability content of such a prediction region cannot be 
approximated using asymptotic normality since the leading term in 
the expansion of the forecast error is not generally normally 
distributed. Although we could try to use directly the 
pseudo-forecasts from the stochastic simulations and perhaps accept 
the hypothesis of their normality, we still lack knowledge of the 
joint distribution of the predictors from the model as a whole. 
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111.4 Finite sample properties of the stochastic predictors 

The finite sample results are investigated in Mariano and Brown 
(1985). The results are very limited. They do not cover relative 
efficiencies of the stochastic predictors with respect to the 
deterministic predictor, neither do they provide an answer as to 
the relative magnitude of bias and efficiency between the 
stochastic predictors. The only analytical results are that the 
smallsample biases and efficiency differ between methods but the 
relative ordering is·ambiguous. 

111.5 The simulation error 

As we saw above, the deterministic prediction is biased whereas 
both the Monte Carlo predictor and the residual-based predictor are 
asymptotically unbiased. Thus we can use the deviation of the 
deterministic solution from the mean of the replicated stochastic 
solutions as a measure of the simulation bias. 1t has also been 
suggested that this difference,could be used as a measure of the 
stochastic importance of the nonlinearity in the model (Fair, 1980, 
Bianchi and Calzolari, 1983). A sizable discrepancy has two clear 
implications: First, forecas'ts and policy analysis should be 
conducted via stochastic simulation, rather than deterministic 
simulation, which of course increases the computional burden. 
Secondly, many estimation methods rest on the use of conditional 
expectations of the endogenous variables, and if these are not 
correctly calculated in the nonlinear model, the properties of the 
estimation methods will be adversely affected. 

Empirical examinations have, in fact, revealed (Fair, 1980, 
Calzolari and Bianchi, 1983) relatively little difference between 
the deterministic solution and the mean of replicated stochastic 
solutions. These findings have led to the conclusion that 
nonlinearity is not of major concern. Salmon and Wallis (1982) 
argue, however, that this is a dangerous position to make for a 
number of reasons: 
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First, the specification of most models is biased towards linearity 
through the statistical techniques used in both estimation and 
specification tests. The estimation method used in the 
specification phase of the econometric model is mostly OLS. Through 
its Deglect of the simultaneity in the model, the OLS estimator 
also ignores the stochastic importance of nonlinearity. Further, 
most of the common summary statistics are in effect linear 
measures: R2 is a measure of linear correlation and the 
Durbin-Watson statistic tests a linear first order autoregression. 
Hence their use also leads to models that are biased towards 
linearity. 

A second reason for believing that this approach to the measurement 
of nonlinearity is not correct is pointed out by Mariano and Brown 
(1983). In the asymptotic expansions they refer to for the first 
two prediction moments of a nonlinear model, the leading term in 
the asymptotic prediction bias in the deterministic solution is 
decomposed into two terms. One is due to possible inconsistencies 
in the parameter estimates and the other due to nonlinearity. The 
leading term for the stochastic simulation prediction bias depends 
only on potentially inconsistent parameter estimates. Thus, from 
this point of view, the neglect of simultaneity in a deterministic 
solution is of the same order of magnitude as the neglect of the 
stochastic importance of nonlinearity. 

Thirdly, another point that follows from the work of Mariano and 
Brown is that, if inconsistent parameter estimates, like OLS, are 
used when comparing deterministjc and stochastic simulations, then 
it is impossible to separate the effects of nonlinearity from the 
effects of the use of inconsistent parameter estimates. Thus, the 
fact t~at the empirical simulation experiments may have found few 
differ~nces between deterministic and stochastic simulations may 
either imply that the stochastic effects of nonlinearity are weak 
or, as has usually been the case, that inconsistent parameter 
estimates have been employed. 
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Brown and Mariano also suggest that the use of nonstochastic 
simulations in specification searches may lead the model builder 
away from the true specification to one that performs better in 
deterministic simulations. 

111.6 Stochastic simulation methodology 

Stochastic simulation can be performed in many different ways. 

111.6.1 Number of replications 

The three kinds of methods, Monte Carlo simulation, analytic 
simulation and residual-based simulation, differ from one another 
in the number of required simulations. In the residual-based 
simulation, the maximum number of simulations that can be made is 
the number of observations in the estimation period. Thus, the 
number of simulations is for most models something between 20 and 
40. The analytic simulation requires for estimation of the second 
error term as many solutions as there are stochastic equations in 
the model and for the estimation of the first component of the 
error term as many solutions as there are structural coefficients 
to be estimated in the model. By means of the Monte Carlo 
procedure, either on the residuals or the coefficients, there is no 
a priori given number for the required simulations. The accuracy of 
the estimated variances increases with the number of replications, 
the estimates being asymptotically exact. The analytic simulation 
procedure, on the contrary, is not exact because it involves, via 
linearization, a systematic approximation. 

Bianchi, Calzolari and Corsi (1979) have made an empirical study to 

check the effects of the number of solutions chosen for the Monte 
Carlo simulation against the effect of the linearization in the 
analytic simulation method. They computed the variance of the 
second error component of the nonlinear Klein-Goldberger model, 
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estimated with 2SLS with 4 principal components, using both the 
analytic simulation procedure and by means of the stochastic 
simulation approach after 50, 500, 5000 and 50000 replications. The 
results are displayed in table XXI for the main variables of the 
model. The results give an idea of the great accuracy of the 
analytic simulation method. The same accuracy is found for 17 
replications in the analytic simulation as for 50000 replications 
in the Monte Carlo experiment. 

111.6.2 Antithetie variates 

There are ways of using variance reduc~ion techniques instead of 
direct sampling in the Monte Carlo methodology. The most common 
technique is to reuse the known random numbers, either directly or 
after transformation. This reduces the number of simulations thus 
economizing on the generation of the random numbers as well as 
reducing their variability. 

Following Hendry (1984) we can describe the technique of using 
antithetie random variates as follows: 
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TABLE 1 

Klein-Goldberger Model: Reduced-form standard errors at 1965 

Variable Standard Errors 

Name Computed Stochastic simulation Analyti c 
Value Number of replications simulation 

50 500 5 000 50 000 

Cd 55.33 2.78 2.48 2.44 2.42 2.42 

X 530.1 9.05 8.44 8.52 8.54 8.53 

W 310.8 5.24 4.77 4.73 4.77 4.78 

Pc 41.97 6.44 6.21 6.16 6.11 6.11 

p 1.225 .040 .035 .036 .036 .036 

Cd = consumption of durables 
X = gross national product 
W = wages and salaries and supplements to wages and salaries 
Pc = corporate profits including inventory valuation adjustmen 
p = implicit GNP deflator 

Let b and b* be two unbiased estimates for an unknown parameter b 
-

such that the "pooled estimator" b = 1/2 (b + b*) has the 
expectation E(b) = b and variance 

(32) V(5) = 1/4 (V(b) + V(b*)) + 1/2 Cov (b,b*) 

In direct random sampling b and b* are~ased on independent sets 
.~ -

fUit so that Cov (.) = 0 and V(b) + Y(b*) = 4V(b). When the random 
draws ui are known it may be possible to select pairs which offset 
each others variability, that is, they are antithetie. For example 
fUt} ~ ~(O,J.u) and f-ut} are perfectly negatively correlated. 
Basing b on one and b* on the other of an antithetie pair can 



87 

include a negative covariance in many cases thus reducing the 
variance in (32). ln dynamic models it has proved difficult to 
locate antithetic transformations which generate negative 
covariances between estimators. ln certain cases only the number of 
simulations is doubled, but nothing is gained in variance reduction. 

Calzolari (1980) made use of antithetic variate sampling on the 
same non-linear Klein-Goldberger model in estimating the variance 
of the second component. By comparing the standard error for the 
forecast estimated by means of direct sampling and by means of 
antithetic sampling, it appeared that the gain in efficiency due to 
the antithetic variates varied for different endogenous variables 
in the model from 500 to 50000. That is, it would be necessary to 
perform between one and one hundred million simple random 
replications (depending on the variable) in order to obtain the 
same accuracy in the estimated standard error as is obtained from 
1000 pairs of simulations which make use of antithetic variates. 

lt is, however, noticeable that the findings of Bianchi and 
Calzolari (1982) show that no significant changes in the expected 
values of the forecast errors were observed after the first 40 or 
50 replications in Monte Carlo simulation. Only the variances of 
the pseudo-forecasts were reduced by increasing the number of 
simulations or using antithetic sampling. 

111.6.3 Blockdiagonal variance matrix 

The use of antithetic variates in the previous section is one way 
to reduce the number of random sampling and model simulations in 
the Monte Carlo method. There is another way of simplifying both 
the analytic simulation and the Monte Carlo method. lt involves the 
construction of the variance matrix of the structural parameter 
estimates. This matrix is used in the computation of the variance 
of the first error component. 
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The variance matrix of the structural disturbances, which is needed 
in calculations of the second error term, is easily computed from 
the estimated residuals as (24). But the asymptotic variance matrix 
of the structural coefficients is directly available only if a 
full-information estimation rnethod is used. As we have seen above, 
it is rather difficult to apply system estimation to real-world 
macroeconomic models because the estimation has to be made from 
undersized samples. Tf a consistent single equation estimation 
method is used, only a blockdiagonal variance matrix is supplied by 
the method. Additional computations must be perforrned to obtain 
covariances between coefficients of different equations as the 
off-diagonal blocks. Theil (1971) has proposed a formula which can 
be used to compute these off-diagonal covariances in the case of 
2SLS estimation. 

The difficulty in applying system methods and the burden involved 
in the above mentioned additional computations for single-equation 
methods have raised the question of the importance of the 
contribution of the covariances to the standard error of the 
forecasts. 

Bianchi, Calzolari and Corsi (1980) have made a comparison for 
three real-world models to evaluate the effects of the elements in 
the off-diagonal blocks on the estimated variance of the first 
error component. As in the case of the study of the effects of 
using antithetic variates, the study is purely empirical so that 
the results should not be generalized. 

The calculations are made using three models with different 
degrees of non-linearity and different dimensions. They all give 
the same empirical evidence in the comparison. 

The first model is the linear Klein 1 model with the complete 

variance matrix of size 12 x 12. The block-diagonal matrix consists 
of three blocks of dimension 4 x 4. The second model is the 
nonlinear Klein-Goldberger model with 54 structural coefficients. 
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The complete matrix is then 54 x 54. The third model is the 
nonl i near ISPE model of the Ital tan economy. The full matri x i s of 
size 75 x 75. 

The comparison for all three models between the standard errors 
computed with the full variance matrix and with the block-diagonal 
matrix indicate that very minor differences exist between the two 
cases. The models used cover a wide class of econometric models, 
which perhaps suggest that the computation of the standard errors 
could be based on a block-diagonal interpretation in cases when no 
information is available on the covariances ofthe structural 
coefficients between equations, or the computation of them is 
difficult. 

II I. 7 Compari son of .empi ri ca 1 resul ts 

Only the first three methods have been applied empirically and the 
results have been compared for various models. Bianchi and 
Calzolari (1982) performed some experiments on a set of small, 
medium and large size real-world models, both linear and nonlinear, 
comparing the results and performance of these three methods. They 
based the comparison on the estimated variance of the static 
forecasts one period ahead. In a later paper (May 1982), the 
authors extended the comparison to multiperiod dynamic simulations 
of the same real-world models. 

In the static comparison only the first component of the forecast 
error was considered. The conclusions concerning the equivalence or 
nonequivalence of the methods are therefore based on the different 
treatment given ta the errors in the estimated coefficients. In 
estimating those, both the Schink and the Fair methods use the 
Monte Carlo technique, thus having inherent the risk af 
non-convergency connected ta this method. 

The differences between the methods can be summed up as follows: 
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The method of stochastic simulation and re-estimation by 
Schink does not require knowledge of the variance matrix 
of the structural coefficients. The moments of the 
coefficients are generated empirically through the 
s imul ati ons." 

The Fair method, Monte Carlo on coefficients, requires 
knowledge of thedistribution of the estimated 
coefficients and the technical availability of a 
pseudo-random numbers generator from such"a 
distribution. 

The third method, analytical simulation, requires the 

assumption of asymptotic normality of the estimated 
coefficients. The forecast variances are then computed 
using the assumed distributionof the coefficients, 
together with partial derivatives which are numerically 
calculated through successive simulation of the model. 

Although the methods differ technically, Bianchi and Calzolari found 
an ftPproximate equivalence of results for one period forecasts in 
all cases in which Monte Carlo converged; in other words, no Monte 
Carlo experiment ever converged to values which d~ffered 
substantially from those produced from the analytic simulation 
method. The only cases in which large differences occurred were 
those in which Monte Carlo did not converge anywhere. The results, 
therefore, indicate that the nonconvergency of Monte Carlo, due to 
sorne matrix to be inverted being close to singular, could be the 
only source of large differences in the results produced by the 
three methods for models actual'y used for forecasting purpose. 
This is, however, not true for some models when passing from 
one-period static forecasts to multiperiod dynamic forecasts. Even 
if the matrix to be inverted is the same as in the converging 
static case, the dynamic simulation mechanism increases the risk of 
generating values of the determinant close to zero. 
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In long dynamic forecasts the analytical simulation method behaves 
best and the method of re-estimation gives results close to this 
only in the case of efficient re-estimation methods. The Fair 
method gives rather different results. 

For nonlinear models no univocal results can be established. Three 
kinds of cases occur in the empirical results: 

All Monte Carlo methods converge and their results are 
close to each other and to analytic simulation results. 

Some methods, usually those applying efficient 
estimation~ converge to results similar to those 
produced by analytical simulation, others do not 
converge. 

Some or all methods converge, but their results are 
close to those produced by analytic simulation in the 
first period of forecast, but diverge from each other 
and from analytical simulation after a few periods. 

Nonlinearity isthe usual feature of real world models and the 
empirical results above show that no a priori conclusions are 
possible in the selection of the proper method of simulating the 
first component of the forecast error of a special model. The 
analytical simulation seems to be the most reliable method. It 
requires, however, the stongest assumption, which is asymptotic 
normality of the estimated coefficients. In practice the method was 
also applied when this assumption was violated and the results 
seemed to be numerically reasonable, even if with unpredictable 
statistical properties. 



IV EMPIRICAL ESTIMATION 

In the empirical part of this study the estimation methods and the 
stochastic simulation methods were applied to the structural annual 
model of the Bank of Finland. We also applied the simulation 
technique to an autoregressive naive model. 

IV.1 The structural model 

The structural model that will be used in the empirical part of 
this study is the KT-model of the Finnish economy developed at the 
Bank of Finland. It was originally built by Korkman and Rantala 
(1980, 1981, 1982), and subsequently re-specified and re-estimated 
by Ahlstedt and Viren (1984). 

The model consists of sixteen stochastic equations plus sixteen 
identities. In addition to these 32 endogenous variables there are 
80 exogenous variables. The number of endogenous variables is large 
enough to make the model a significant tool in forecasting and 
policy evaluation. At the same time, the size of the model is such 
as to make it possible to detect the direction of the causality 
relationships between its different blocks. 

By its structure, the model is a member of the Keynesian family, 
its main purpose being the explanation of aggregate effective 
demand and its components, consumption, investment and exports. The 
supply si de i s not modell ed. The only endogenous component from 
the supply side is imports but this behavioural equation is 
specified as aeweighted average of the demand components. Apart 
from the real demand sector, the model consists ofa price sector 
and a monetary sector. The variables and the structural equations 
are listed in Appendtx 1 and II. 
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The model is specified from annual data. The lack of longer data 
series is the main constraint for estimation. Reliable data are 
available for the period 1960-1983. The lag structure limits the 
start of the estimation period to 196~ while the last year, 1983, 
was saved for ex post forecast computations. The estimation period 
is thus 1963-1982, which makes the sample undersized in relation to 
the exogenous variables, according to the definition by Swamy 
(1980). The model is nonlinear in variables but linear in 
parameters. The empirical specification was carried out using 
ordinary least squares. This estimation method is known to give 
biased estimates becauseit does not take account of the 
simultaneity present in the model. 

IV.2 The naive model 

The usual way of assessing the relative performance of a structural 
model is to compare it with a naive model in which each endogenous 
variable is simply a function of its own lagged values. The outcome 
of the naive model then serves as a benchmark for prediction 
performance of the structural model. In general policy simulations 
the naive models have no content. If they are modified to include 
exogenous policy variables they cease to be naive alternatives. But 
if for prediction purposes the sophisticated models fail to 
outperform a naive extrapolation rule, then we would be led to 
conclude that the structural model had underutilized the 
information available because of statistical and economicerrors of 
specification and sampling errors of parameter estimates. 

There were not enough observations to specify an autoregressive 
moving average model sowe had to limit ourselves to the estimation 
of a purely autoregressive model consisting of a set of completely 
unrelated equations. A model with 4 lags, a time trend variable and 
a constant term was estimated for every endogenous variable that 
had a behavioural equation in the structural model. An 
autoregressive model was also estimated for the aggregate variable 
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GDP and its price deflator PQ. The lag length was found in a search 
procedure where the maximum number of lags was chosen to correspond 
to approximately the same degrees of freedom in the naive model as 
in the structural form. 

IV.3 The selected methods 

As we have seen above the presence of autocorrelation causes 
inconsistency when conventional estimation methods are used. To 
cope with autocorrelation we have to use more complicated nonlinear 
estimation methods. The first thing that it is necessary to do in 
the empirical estimation is to test the behaviour of the residuals. 

To detect autocorrelation we used the asymptotically relevant 
Durbin-Watson test statistic for equations without lagged 
endogenous variables and the Durbin h-test for models with lagged 
endogenous variables. The equations were tested up to the fourth 
degree of autocorrelation. Taking into account the fact that 
asymptotic properties do not necessarily hold for small samples we 
only used the test statistic to indicate the equations where serial 
correlation might be present. These equations were then 
re-estimated under the assumption of autocorrelation. The only 
equation where t~e estimated parameter of the autocorrelation 
coefficient reached the s;gnificant value 0.3 (Maddala, 1971, p. 
283) was that-for short-term foreign debt DLUFS. This implies that 
some degree of inconsistency is incorporated in the estimates of 
this equation. However, since the autocorrelation was only in one 
equation, a more complicated method was not necessary. Of course, 
we know nothing about how autocorrelation affects the small sample 
properties, nor do we know about the small sample properties in 
general of the estimators obtained frommethods were 
autocorrelation is taken into consideration. The Monte Carlo 
results of Moazzami and Buse (1984) indicate that for low values of 
p and small sample size, OLS would have a comparative advantage 
over the simultaneous methods. 
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The following methods were used in the estimation of the structural 
model: 

(i) Ordinary least squares (OLS). 

(ii) Two stage least squares (2SLS) with instruments selected 
on the basis of a block-division of the model. 

(iii) Two stage least squares using principal components as 
instruments. 

(iv) Iterative instrument estimation. 

In the specification of the model ordinary least square estimation 
was applied to each equation. In thefollowing sections the results 
of the simultaneous estimation methods are reported. 

The analytical finite sample results and the Monte Carlo results 
reported above indicated that the correlation between stochastic 
disturbance terms in different equations is the principal reason 
why a simultaneous-equation system econometric model must be 
estimated using simultaneous estimation methods. The correlation 
matrix of the residuals obtained from the stochastic'equations thus 
measures the simultaneity of the whole system. 

Let us first examine the correlation matrix of the OLS residuals 
for the model in question so as to get an idea of the degree of 
simultaneity. If this matrix were diagonal there would be no 
contemporaneous correlation between the residuals in the system. 
Very low off-diagonal elements indicate that no gain is obtained 
from the use of simultaneous methods. 

Table 1 presents the correlati~n matrix of the OLS residuals. Only 
the correlation coefficients from 0.3 upwards are shown. Values 
lower than that can be regarded as insignificant according to 
empirical findings for small sample correction (Maddala, 1971, p. 
283). Although the matrix is by definition symmetric the whole 
matrix is shown so as to faicilitate the study of it. As can be 
seen, less than one third of the correlation coefficients are 



The correlation matrix of the structural residuals of OLS estimation 

XQ MTQ LHW CQ IQCl KF VVlQ PW PC PI PG IVP 

XQ 1.0 -0.5 0.4 -0.3 0.4 
MTQ 1.0 0.4 0.7 0.6 
LHW 1.0 -0.4 0.4 0.3 -0.3 
CQ -0.4 1.0 0.3 -0.5 0.3 -0.4 
IQCl 0.4 1.0 0.3 0.4 0.5 
KF 0.4 1.0 0.3 -0.5 
VVlQ 0.3 1.0 -0.5 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
PW -0.5 0.'3 -0.5 1.0 -0.3 0.3 -0.4 
PC 0.4 -0.5 -0.5 1.0 
PI 0.7 -0.3 0.3 0.3 -0.3 1.0 0.5 
PG -0.3 -0.4 0.4 0.3 1.0 
IVP 0.4 0.6 0.5 -0.4 0.5 1.0 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
S6230 0.3 -0.3 
T123H 0.3 0.3 
LPH 0.4 0.3 0.5 
DLlI -0.4 -0.5 -0.4 

TABLE 1 

S6230 T123H LPH DLU 

0.4 -0.4 
-0.5 

0.3 

0.3 

- - - - - - - - - - - - -

-0.3 

-0.3 -0.3 0.5 -0.4 

- - - - - - - - - - - - -
1.0 0.3 

1.0 
1.0 

0.3 1.0 

~ 
0'1 
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greater or equal to 0.3. Only about one tenth are greater than 0.3. 
Measured in this way correlation between equations does not seem 
very high but nor is there any indication of diagonality in the 
matrix either. 

The model underlying the correlation matrix consists of a real 

block, a price variable block and the monetary block. The block 
of the real variables is formed by the endogenous variables XQ, 
MTQ, LHW, CQ, IQC1, KF and VVIQ. The price block contains the price 
variables, PW, PCF, PI, PG and IVP. The variables S6230, T123H, LPH 
and DLUFS form the monetary block. 

On the whole, the correlations are very low. Most of the 
correlation both in terms of values and frequency is found between 
the real sector and the price sector, as one would expect. The 
monetary sector seems to be quite independent. This feature of the 
model points to a strong position for the OLS estimates. 

Since the efficient 2SLS estimation method cannot be applied, we 
have to choose a subset of first stage regressors from the number 
of predetermined variables of the whole model. It is possible, 
without losing consistency, to choose different sets of regressors 
for different equations. The choice has to be based on own 
judgement, as there are no objective rules that can be applied. The 
only necessary requirement for consistency of 2SLS modified 
estimators is that 

4 463110F 

the same set must be used for all of the right hand 
variables in the 'same equations; and that 

the predetermined variables, exogenous and 'lagged 

endogenous, in the particular equatian ta be estimated 
should be included in the set af first stage regressors. 
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IV.4 2SLS based on blockdivision of the model 

In the empirical estlmation we have based the selection of the 
first stage regressors on two different block divisions of the 
model. All predetermined variables in the block were used as first 
stage regressors. Nothing can be said on analytical grounds about 

the efficiency of the estimates. Consistency can be assumed, 
however, if the error terms are not serially correlated or if there 
are no lagged endogenous vari'ables among the predetermined 
variables. This assumption is fulfilled for all the equations 
except the DLUFS equation. 

In the first division we used the three blocks described above: the 
real block, the price block and the monetary block (model 2TS). 
Since we have no objective decision rule, this choice can be 
considered as good as any other arbitrary method of selection. 

The blockdivision in the model 2TS seems natural, perhaps because 
simulation results are always reported according to these sectors. 
Of course, one coul d try to measure the efficiency of the 
estimation based on this division by examining the matrix of the 
parameters of the endogenous variables. If we could find an order 
of the equations which would make the matrix of the parameters 
either triangular as a whole or blocktriangular, the model would be 
recursive and no simultaneous estimation would be needed. This, 
however, seems to be impossible and we have to try to find maximal 
efficiency within a non-recursive system. The efficiency depends on 
how close to blockdiagonal the parameter matrix is when the 
equations are in the same order as in the blocks. A pure 
blockdiagonal representation with only zero values outside the 
diagonal blocks means that the model can be partioned into 
self-contained subsystems. Here zero means that the variable does 
not appear in the equation considered. 
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The matrix of the parameters of the blockdivision in the 2TS model 
> 

was printed. 1 It turned out that there were only 14 parameters 
within the diagonal blocks and 16 outside them. This implied that 
the division could probably be improved in the sense that we could 
get more parameters into the diagonal blocks. After a lot of 
experimentation with the ordering of the equations, we ended up 
with a partioning in which we had three blocks as before but which 
now contained 20 parameters inside the diagonal blocks and only 10 
outside them. This division was considered to be as close as 
possible for this model to a division giving a pure blockdiagonal 
parameter matrix. Most of the improvement resulted from transfering 

the consumer price variable, PC, from the price block to the 
monetary block and transferring the short term foreign debt 
equation DLUFS from the monetary block to the real block. The model 
was estimated with 2SLS based on this blockdivision (model BL). 

IV.5 2SLS using principal components 

The idea behind the use of principal components is to reduce the 
number of first stage regressors by replacing the predetermined 
variables in the model with a smaller number of constructed 
variables. When the predetermined variables are strongly 
correlated, which most certainly is the case for economic 
variables, the few first principal components usually represent the 
major part of the variation in the predetermined variables. 

1For space reasons they are not reported but can be provided on 
request. 
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TABLE II 

Princi~al components of predetermined variables 

COMPONENT CHARACTERISTIC CUMULATIVE FRACTION 
ROOT OF VARIANCE EXPLAINED 

1 23.309 0.48561 
2 5.436 0.59888 
3 4.050 0.68325 
4 3.282 0.75162 
5 3.019 0.81452 
6 2.226 0.86091 
7 1.517 0.89251 

TABLE II 1 

Ranking oder of principal components 

Equation Order of principal components 

CQ 2 3 4 5 6 
XQ 1 2 3 4 5 
MTQ 1 2 3 4 5 
LHW 2 3 5 4 6 
PC 1 2 4 3 5 
PW 1 4 7 2 8 
PI 1 2 3 4 5 
PG 1 4 2 5 3 
IVP 1 3 2 4 5 
IQC1 2 3 1 4 5 
S6230 4 3 2 5 6 
T123H 2 3 4 6 5 
LPH 2 4 3 5 7 
KF 1 2 3 4 5 
VV1Q 2 5 6 4 7 
DLUFS 1 3 5 6 7 
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In the empirical estimation the principal components were chosen in 
three different ways. 

(i) First, the characteristic roots from the correlation 
matrix of all the predetermined variables were 
calculated. Then the principal components corresponding 
to the largest latent roots were formed. Table II shows 
the characteristic roots and the ·cumulative fraction of 
variance explained by the seven principal components of 
the correlation matrix of the set of variables of the 
whole model. When the variables are highly correlated 
and form a homogenous group, the first principal 
component explains more than 90 per cent of the total 
variation. The results shown in table II indicate that 
the variables are highly heterogenous, and the total 
variance cannot be concentrated into a few auxiliary 
variables. The fraction af explained variance starts 
from 50 per cent for the first principal component and 
then grows by approximately 5 - 10 per cent for every 
additional component. The model was estimated using the 
first 4 and 5 components, 4 being the minimum 
requirement for identification (model PKE). 

(ii) The method of calculating the principal components from 
the correlation matrix of the whole set of predetermined 
variables has the disadvantage that high correlation may 
occur between one or more principal components and the 
exogenous variables in the particular equations. To 
reduce multicollinearity, we started from the principal 
components as in (i), but instead of selecting the 
principal components with the largest characteristic 
roots, we selected the components with the highest 
values of the statistic Qh. 2 The result ofthis ranking 

2See page 26. 
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procedure is given in table 111. In the method in (1) 
the order of the component was 1,2,3,4 and 5, the 
numbers referring to the order of the corresponding 
largest characteristic roots. Table 111 shows that the 
ranking of the components according to the statistic Qh 
does not change the order in all equations because the 
values of the roots dominate the multiple regression 
coefficientvalue. The parameters were estimated using 4 
principal components chosen by this ranking criterion 
(model PKR). 

(iii) In the two previous principal component methods one 
single set of principal components was calculated. In 
the third version we calculated the principal components 
separately for every equation. For each equation, the 
correlation matrix, from which the characteristic roots 
were calculated, consisted of all the predetermined 
variables in the model less the variables that occurred 
as predetermined variables in the equation to be 
estimated. In the estimation 4,5 and 6 components, 
calculated separately for each equation, were used as 
first stage regressors (models YP4, YP5 and YP6). 

IV.6 Iterative instrumental methods 

The iterative estimation method was applied in two different ways: 

(i) In the first iterative estimation the Gauss-Seidel 
solution for the joint endogenous variables of the 

OLS-parameter model was used as first stage regressors 
(model MY). The iterative method with OLS start was 
shown above to give consistent estimates unless lagged 
endogenous variables and autocorrelated residuals 
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coexist. 3 There is one equation, DLUFS, with a 
significant autocorrelation parameter. In the other 
single equation methods, error in one equation does not 
affect the estimation of the other equations. The 
iterative method, however, uses the information in the 
whole model when-the model solution is used as 
instruments. The method is more a full information 
method than the other methods used here. Thus, we might 
expect that the bias in the whole model caused by serial 
correlation in one equation is more significant in this 
method than in the other methods. 

(ii) We did one more iterative estimation, this time having a 
theoreticallY consistent estimation in the first round. 
The Gauss-Seidel solution of the 4 principal component 
parameter model was used as initial stage regressors in 
the second variant of the iterative method (NY). 

There were not enough observations nor any computer program 
available to perform a third round of iteration so as to obtain a 
full information iterative estimator. To find out whether this 
third round would have been warranted in terms of aChieving maximal 
efficiency, the correlation matrix of the residuals of the 
estimation with OLS-start (MY) was printed. The matrix is presented 
in table IV. As before only the elements >0.3 are shown. If the 
correlation matrix turns out to be diagonal then there is no need 
for this third round giving system estimation results. When the 
correlation matrix is diagonal 2SLS and 3SLS coincide. As we can 
see only a quarter of the elements outside the diagonal are >0.3. 
This suggests that the impossibility of carrying out system 
estimation is not perhaps such a great loss after alle 

3See page 30. 



The correlation matrix of the structural residuals of the lIV model estimation 

XQ MTQ LHW PW PC PI PG IVP IQCl CQ 

XQ 1.0 0.7 -0.5 -0.5 0.4 
MTQ 1.0 -0.5 0.7 0.6 
LHW 1.0 -0.6 
PW -0.5 -0.5 1.0 0.5 -0.4 -0.4 
PC 1.0 0.3 
PI 0.7 1.0 0.5 0.4 0.3 
PG -0.5 0.5 0.3 1.0 -0.5 
IVP 0.4 0.6 -0.4 0.5 1.0 0.6 
IQCl 0.4 0.6 1.0 
CQ -0.6 0.4 0.3 -0.5 1.0 
56230 0.4 
VVIQ -0.3 
T123H 0.4 
LPH 0.3 0.5 0.3 -0.3 
KF 0.5 -0.4 
DLU -0.3 0.3 

-- -- ------- - ------

56230 VVIQ T123H 

0.4 

0.4 
1.0 0.4 
0.4 1.0 

1.0 

0.4 
0.3 

LPH 

0.3 

0.5 
0.3 

-0.3 

1.0 

1-' 
o 
.p. 

TABLE IV 

KF DLU 

0.5 

-0.4 

-0.3 

0.3 
0.3 

0.4 

1.0 
1.0 
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IV.7 Comparison of the various estimates 

When estimating a parameter from a very limited sample, we have to 
accept the fact that distribution of the true population parameter 
remains unknown and no comparison between true value and estimated 
value is possible. We know that most certainly every estimate has a 
small sample bias, but we do not know the magnitude of the bias. We 
also know that the small sample estimates ofthe standard deviation 
of the estimates may differ quite appreciably from the 
corresponding population parameters. 

Since the data used in the empirical estimation of the various 
estimates is the same, the estimates, the forecasts, forecast 
errors and resulting summary measures are not statistically 
independent. Hence a formal statistical test cannot be based on a 
direct comparison of the parameter estimates (Salmon & Wallis, 
Model validation and forecast comparisons, 1982). It is not 
therefore possible to find out if the differences between empirical 
estimates are significant. 

Small differences when comparing est~mation results parameter by 
parameter have led a number of investigators to advocate the 
application of conventional OLS estimation on the grounds that it 
hardly matters which method is used (Klein, 1960). This is not a 
correct point of view. Slight differences in the parameter values, 
even if not statistically significant, can cause noticeable 
differences in the dynamic simulation path. 

A summary statistic applicable to a whole system of equations 
should be used for the comparison of different methods. Klein 
suggests the standard error of forecast of endogenous variables. 
This means that the estimates of the reduced form parameters 
calculated from the estimated structural form parameters are the 
relevant subjects of comparison. This choice seems reasonable 
because the model forecasts are made using the reduced form. 
However, tiny biases in the estimates of individual structural 
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parameters can be magnified into sizable biases in the estimates of 
reduced form parameters (Klein, 1960). Klein also argues that the 
optimal efficiency properties of OLS structural estimates do not 
carry over to estimates of the reduced form parameters. 

Accordingto this the forecast ability of the estimation methods in 
simulation behaviour is heavily stressed when we compare the 
various empirical estimates in terms of 

the statistical measures of the moments of the estimates, 
the accuracy of the within-sample prediction ability, and 
the accuracy of the one-year-ahead outside sample 
prediction ability. 

IV.7.1 Statistical measures of precision 

Each ofthe estimation methods prescribes a formula for computing an 
estimate of the standard error of the estimated parameters. In 
table V the point estimates, are presented together with their 
t-values, for the 18 autoregressive equations. In Appendix II the 
point estimates for the parameters in corresponding structural 
equations are presented, together with their standard errors, for 
OLS, 2SLS (BL) and 2SLS with 4, (YP4) 5 (YP5) and 6 (YP6) principal 
components and the lIV estimates with OLS (MY) start.4 We know that 
the standard errors for OLS estimates are not - even theoretically 
- the correct ones, whereas the standard errors for the other 
estimates are at least asymptotically the theoretically, correct 
estimates. Here we once agafn face the question of whether there is 
any point in comparing asymptotic values when estimating from small 
samples. In relying on asymptotic properties there is implicit the 
assumption that all we can do is to try to find a method which will 
be the best possible in the sense that it will have high probability 
of being correct in the long run, and that requirement is not enough. 

4See Appendix 111 for definition. 



TABLE V 

Equation 

GDPQ 

PQ 

CQ 

XQ 

MTQ 

LHW 

PC 

PW 

PI 

PG 

IVP 

IQC1 

S6230 

T123H 

LPH 

KF 

VV1Q 

DLUFS 

107 

The autoregressive model with 4 lags 
The t-values are shown in parentheses below the 
parameter estimates 

1.LAG 2.LAG 3.LAG 4.LAG TREND INTERCEPT R2 

1.124 -1.030 0.669 -0.513 4146 7821 0.994 
(4.58) (2.77) (1.74) (2.03) (3.22) (2.21) 
1.570 -0.751 -0.015 0.187 0.46 - 6.55 0.998 

(5.67) (1.34) (0.03) (0.61) (1.91) (1.85) 
0.952 -0.636 0.635 -0.606 1941 6447 0.991 

(4.21) (2.07) (2.07) (2.78) (2.78) (2.45) 
0.973 -0.886 0.409 -0.489 1899 -14304 0.976 

(3.98) (2.56) (1.18) (1.83) (3.42) (2.85) 
0.784 -0.742 0.405 -0.237 1671 -4923 0.961 

(2.95) (2.14) (1.14) (0.84) (2.04) (0.94) 
1.084 -1.011 0.430 -0.322 12.31 2306 0.901 

(4.50) (2.84) (1.17) (1.35) (2.79) (3.36) 
1.905 -1.544 0.823 -0.192 0.346 -5.11 0.998 

(6.77) (2.63) (1.39) (0.64) (1.819 (1.74) 
1.871 -1.522 0.625 0.043 0.410 -6.095 0.999 

(6.80) (2.63) (1.07) (0.14) (2.06) (1. 92) 
1.202 -0.538 0.541 -0.252 0.686 -9.892 0.997 

(4.54) (1.32) (1.22) (0.86) (2.07) ( 1.90) 
2.027 -1.811 0.793 -0.002 0.379 -5.532 0.999 

(7.38) (3.03) (1.31) (0.01) (1.89) (1.81) 
1.255 -0.691 0.562 -0.141 0.672 -10.12 0.996 

(4.64) (1.65) (1.25) (0.45) (1.91) (1.82) 
0.871 -0.186 0.167 -0.386 230 146 0.994 

(3.31) (0.50) (0.44) (1.19) ( 1.89) (0.18) 
0.613 -0.393 -0.163 0.204 0.169 2.413 0.928 

(2.34) (1.26) (0.50) (0.80) (2.43) ( 1.89) 
1.500 -0.838 -0.376 0.994 -47.04 1155 1.000 

(5.90) (1.64) (0.70) (3.07) (0.92) (1.37) 
1.681 -1.077 0.728 -0.169 -17.00 -51.69 0.999 

(5.75) (2.01) (1.36) (0.49) ( 0.31) (0.05) 
1.936 -1.606 0.786 -0.300 2000 1299 1.000 

(7.20) (2.90) (1.45) (1.21) (2.25) (0.62) 
0.877 -0.768 0.273 -0.120 1233 17981 0.955 

(3.19) (2.13) (0.73) (0.45) (2.39) (2.24) 
-0.033 0.123 -1.336 0.548 -6.468 445 0.677 
(0.12) (0.31) (2.76) (0.99) (0.11) (0.31 ) 
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A look at' the estimates and their standard errors shows that they 
do not differ very much between ,methods. Surprisingly enough, there 
are only a few sign differences. They occur when the significance 
of the parameters is reduced so that the hypothesis of the 
parameter being zero cannot be rejectedö One exception to this rule 
can be found. The strong multicollinearity between real income and 
its one period lagged value in the consumption function strongly 
affected the simultaneous estimation. This led to the use of 
restrictions on these income elasticity parameters in all the 
simultaneous estimation methods. They were forced to take the same 
values that were established in the OLS-estimation, where the 
income variable and its one period lagged value were estimated 
without any restrictions. Here we found evidence for the analytical 
result stated above; OLS is less sensitive to multicollinearity 
than are the simultaneous methods. The correlation matrices of the 
explanatory variables in the separatc equations reveal, however, 
that multicollinearity is not a serious problem in this mOdel. 5 

It is not likely that a particular estimation method would behave 
better than the others when all parameter estimates are compared. 
An intransitive behaviour in the statistical measures was expected 
and is also clearly seen. Thus we cannot draw any unambiquous 
conclusions but instead have to restrict ourselves to talking about 
tendencies. The estimates of the parameters in the price equations 
given by the simultaneous methods are close to the OLS-estimates. 
In the real variable block and the monetary block the 2SLS method 
with 6 principal components (YP6) gives estimates that are closest 
to the OLS-estimates. The explanatfon is that the price block is 
the less simultaneous part of the model and there are only a few 
jointly endogenous variables to be replaced in the first stage. 

5The effects of multicollinearity were tested using ridge 
estimators in the least square estimation (Hoerl and Kennard, 
1970). Different values of the ridge constant were compared but 
the estimates seemed to be highly stable and insensitive to the 
constant. 
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Thus the simultaneity bias of t.he OLS estimates is small. In the 
other blocks the simultaneity is greater as, too, so isthe bias 
which simultaneous estimation is supposed to remove. In extending 
the number of principal components we can see that the improvement 
in the first stage fit leads to a reduction in the standard error 
of the estimates. The confidence intervals are highest for the 4 
principal component case and they systematically decrease as the 
number of included components increases. 

Here we have to remember that the t-values, the standard errors and 
the confidence intervals are valid only asymptotically and their 
computations require the assumption of errors being normally 
distributed. 

It is not possible on the basis of the point estimates and their 
standard errors to make any rigorous conclusions about the priority 
of the estimators. 

IV.7.2 Deterministic prediction: ex post simulation 

The next step is to compare the simulation behaviour of the models 
obtained with the different estimation methods. The model is solved 
for the estimation period to obtain the dynamic behaviour of the ex 
post simulation. The model is solved deterministically, which means 
that stochastic disturbances in the system are set at their 
expected values of zero. The dynamic deterministic simulation 
reveals the contradiction in the treatment of lagged endogenous 
variable in, estimation and simulation. In standard estimation 
techniques the lagged endogenous variables are taken as given data. 
In simulation the lagged endogenous variables are determined by the 
system, thus introducing a forecast error that grows with the 
simulation period. 

In addition to this dynamic simulation, we also wish to examine the 
static behaviour. The model is solved deterministically for the 
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first year outside the sample period to obtain a one year ex post 
forecast showing the static prediction performance. This forecast 
is static because the lagged endogenous variables are given their 
historical values. 

In comparing the within-sample prediction accuracy, the aim is to 

find the estimates which lead to the most accurate multiperiod 
prediction. Since this model has many dimensions and the accuracy 
of explanation may vary among variables, we have chosen to examine 
all the endogenous variables in some cases and to focus attention 
on real GDP and its price deflator PQ in other cases. It seems 
justified to stress these two variables because the model is by 
nature Keynesian. Accordingly, its main objective is the 
explanation of aggregate demand. Since GDP and the price deflator 
are determined in the model as weighted averages of the estimated 
endogenous demand components, all errors from the demand side are 
aggregated and accumulated in the multiperiod prediction of the 
aggregates GDP and PQ. 

There are different ways of comparing the outcomes of simulations. 
We can use graphical interpretations or some statistical measure 
for the deviations between simulated values and the historical 
data • 

. Let us first concentrate on different methods using 4 principal 
components. In the PKE method we used the same 4 principal 
components for every equation, corresponding to the 4 largest 
characteristic roots of the matrix of all the predetermined 
variables in the whole model. In the PKR method we used the 4 
principal components that were selected according to the criterion 
reported on page 26. In the YP4 method we calculated the principal 
components separately for each equation and then selected those 
connected with the largest roots. 

Figure 1 on page 113 shows the ex post simulation of GDP for the 
different estimation methods using 4 principal components. The 
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simu1ation va1ues are divided by the historica1 va1ues of GOP. The 
c10ser to 1 the ratios are, the c10ser is the fit to the data. As 
can be seen, there is no such great advantage in the behaviour of 
the different simu1ation paths as to make it worthwhi1e to carry 
out 1aborious ca1cu1ation of different sets of principa1 components 
for each equation. Nor does the ranking procedure, which considers 
the mu1ticollinearity between components and the exp1anatory 
variab1es, noticeab1y increase the ex post simu1ation accuracy. It 
was, however, observed that in the PKE method more iterations were 
needed to find the Gauss-Seide1 solution than in the other methods 
using 4 principa1 components. 

To measure the dispersion between the estimatesof the 4 principa1 
components methods, the trace of the parameter variance matrix for 
each equation and each method was ca1cu1ated. The statistics are 
shown in tab1e VI. The intercept is not reported for the reason 
that it is not norma11y important for making inferences about the 
structura1 parameter estimates. This comparison a1so shows that the 
method which is easiest to compute, PKE, competes we11 with the 
more comp1icated ones. 

In figure II on page 113 the ex post behaviour of themethods in 
which individua1 sets of principa1 components were ca1cu1ated for 
each equation are compared. Sets of 4,5 and 6 components were used 
in the estimation~ As can c1ear1y be seen, the estimation with nn1y 
4 components is superior to the others. The increase in efficiency 
in the first stage does not compensate for the effects of the 10ss 
i n the degrees of freedom (see page 26 ). 

Figure 111 shows the ex post simu1ation paths of OLS, BL and PKE. 
In the comparison between these simu1ations the PKE estimation is 

c1ear1y inferior to the others. There is major overshooting in the 
years 1968 and 1977 and major underestimation in the year 1966. 
These fai1ures are not compensated for by the II goodll behaviour in 
the midd1e and at the end of the ex post simu1ation period. 
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Figure IV shows the simulation accuracy of OLS, lIV with OLS as the 
starting point (NY) and PKE and IIV with PKE as the starting point 
(NY). The iterative process leads to a clear improvement in the ex 
post predictive accuracy in both cases. 

After this graphical analysis we next look at a statistical summary 
of the discrepancy between the simulation values and the historical 
data. The measure that is most often used is the root mean square 
error (RMSE). Others include the mean simulation error (MSE), the 
mean per cent error (MAPE) etc. 6 There is no obvious reason for 
preferring one measure to the others. In this study we choose to 
use the MAPE statistics. There could be some doubt about the 
existence of the first and second moments of the sample statistics, 
so we want to use a measure that is nonparametric and that is not 
based on the moments. MAPE is simply the mean absolute difference 
between the simulated and the historical values in per cent of the 
historical values. We can then look at the MAPE values for the 
different estimated models to compare their simulation accuracy. 

The model is a simultaneous system which implies that the model as 
a whole has a dynamic structure which is much richer than that of 
any one of the individual equations. Thus, even if all the 
individual equations fit the data well and are statistically 
significant, there is no quarantee that the model as a whole, when 
simulated, will reproduce those same data series closely. 

6See Appendix 111 for definition. 
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FIGURE 1 GDP ex post simulation values divided by the 
actual estimation period values. 

4 principal components (PKE) 
4 principal components (PKR) 
4 principal components (YP4) 
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FIGURE II GDP ex post simulation values divided by the 
actual estimation period values. 
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TABLE VI 

Comparison of the efficiency of the parameter estimates 
of the three methods using four principal components 

Method 

Equation YP4 YPR YPE 
TRACE TRACE TRACE 

CQ 0.111 5.6801 0.108 

XQ 0.332 0.291 0.291 

MTQ 3.380 3.380 3.380 

LHW 0.296 0.425 0.335 

PC 0.054 0.061 0.061 

PW 0.383 0.310 0.295 

PI 0.005 0.005 0.005 

PG 0.084 0.116 0.084 

IVP 0.041 0.041 0.041 

IQC1 1.434 1.062 1.062 

S6230 0.051 0.050 0.050 

T123H 0.195 0.242 0.209 

LPH 2.352 1.839 2.265 

KF 0.033 0.035 0.035 

VV1Q 0.780 0.778 0.780 

DLUFS 1870.130 345.210 602.970 

1 The high value is due to the fact that the 
ranking criterion ruled out the first principal 
component from the set of first stage regressors. 
The exclusion of this largest component, which is 
the main explanatory variable, resulted in a poor 
fit of the first stage regression. 
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FIGURE III GOP ex post simulation values divided by the 
actual estimation period values. 

OLS estimation (MA) 
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4 principal components estimation (PKE) 
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FIGURE IV GOP ex pnst simulation values divided by the 
actual estimation period values. 

OLS estimation (MA) 
lIV iteration with OLS start (MY) 
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In table VII on page 118 we present three kinds of MAPE values. In 

the first column are the MAPE values for the individual equations 
for the model MY for the estimation period 1963-82. In that case, 

the MAPE is only due to the structural error term of the equation 
deriving from the fact that stochastic equations do not fit the 

data perfectly. There is no error from the explanatory variables 

because they are set to their historical values. The second column 
shows the same measure for the naive model for the estimation 
period 1964-82. As can be seen, the individual naive equation 
errors are greater than those of the individual structural 
equations. In the third column are the MAPE values of the 

endogenous variables for the ex post simulation of the whole 
structural model. These values include both the effect of the 
individual equation residuals and their simultaneity effect through 
the right-hand endogenous variables in the model. It can also be 
seen that the errors attributable to the whole dynamic model 

solution are far greater than those of the individual structural 

equations. Since there is no simultaneity in the naive model the 
MAPE values for the individual equations are also the MAPE values 
for the whole naive model solution. Thus, a comparison of the 
second and third columns gives the differences between the MAPE 
values of the two model solutions. This kind of measure clearly 

favours the naive model. 

Next, we look at the MAPE values obtained from the dynamic ex post 

simulation of the different estimates. The calculated MAPE values 
are presented in table VIII. If we examine the aggregate variables 
GOP and PQ, we can conclude that the OLS estimator and the MY 
estimators perform best because they have the lowest MAPE values. 
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TABLE VII 

Comparison of MAPE statistics 
The MAP~ values for the structural equations and 
the stuctural model MY are for the estimation period 1963-82. 
The valuesfor the naive model are for the estimation period 1964-82. 

MAPE 

VARIABLE INDIVIDUAL INDIVIDUAL MODEL SIMULATION 
EQUATION NAIVE MODEL STRUCTURAL MODEL 
STRUCTURAL 
MODEL 

CQ 0.87 1.49 2.73 

XQ 4.99 4.16 7.21 

MTQ 1.01 4.76 4.22 

LHW 0.65 0.72 3.02 

PC 0.86 2.00 3.12 

PW 0.99 2.04 5.53 

PI 0.13 2.60 3.68 

PG 1.06 1.99 5.49 

IVP 1.12 3.20 5.33 

IQC1 2.56 4.25 2.58 

S6230 2.42 3.50 3.11 

T123H 0.99 1.41 4.67 

LPH 1.43 1.87 6.92 

KF 0.39 0.35 0.79 

VV10 1.29 2.27 1.45 

DLUFS 193.02 244.07 284.00 
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TABLE VIII 

MAPE for ex post simulations for the estimation period 1963-82 
A 

MAPE = (1/N)*100*)IYi -Yi / Y. 
1 

Method 

Equation OLS BL YPE YPR 

GDPQ 1.16 0.97 1.58 1.50 
PQ 3.12 2.73 4.03 3.15 

CQ 2.17 2.39 2.42 2.51 
XQ 7.39 7.12 8.89 8.46 
MTQ 3.48 4.02 5.16 5.23 
LHW 2.21 1.34 2.67 1.22 
PC 3.16 3.21 3.86 3.38 
PW 4.67 3.60 5.58 3.27 
PI 3.60 3.60 3.82 2.40 
PG 4.63 3.77 5.50 3.90 
IVP 5.06 3.96 4.93 3.27 
IOC1 2.56 2.59 2.67 2.48 
S6230 2.82 2.94 3.41 3.19 
T123H 2.64 3.57 4.49 3.90 
LPH 6.19 8.87 7.50 8.16 
KF 0.82 0.86 1.03 0.99 
VV1Q 2.06 1.63 2.06 2.06 

YP4 YP5 

1.49 1.92 
3.49 3.81 

2.36 3.27 
8.07 8.28 
5.07 5.52 
2.12 2.22 
3.46 3.91 
4.42 4.65 
3.18 3.33 
3.49 4.68 
4.13 4.43 
2.56 3.02 
3.55 3.15 
3.66 2.35 
6.99 5.64 
0.93 0.90 
1.78 2.24 

DLU 133.80 120.19 263.58 167.08 284.02 222.21 

MEAN 3.40 3.32 4.09 3.48 3.58 3.72 

YP6 MY 

2.12 1.08 
4.00 3.32 

3.63 2.73 
8.50 7.21 
5.85 4.22 
2.42 3.02 
4.13 3.12 
4.91 5.53 
3.47 3.68 
4.89 5.49 
4.89 5.33 
3.08 2.58 
3.09 3.11 
3.16 4.67 
6.81 6.92 
0.98 0.79 
2.47 1.45 

75.78 165.88 

4.02 3.78 
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The mean of the MAPE values of the 17 variables7 over the estimation 
period for each estimation method indicätes the reliability of OLS. 
As regards the principal component estimates, it can be observed 
that the ability to generate the historical data decreases when the 
number of the principal components is increased from 4 to 6. 

In all comparisons of the estimates so far we have only presented 
the 2SLS estimate based on the second blockdivision of the model, 
i.e. the BL model. In the BL estimation the matrix of the 
parameters of the endogenous variables was as close as possible to 
the blockdiagonal interpretation. The reasons for choosing this 
method instead of the 2TS method, based on division into a real 
block, a price block and a monetary block, are to be found in table IX. 

In the first two columns the standard error of the individual 
equations are listed. As can be seen, the estimation of the two 
equations, MTQ and DLUF, which have the greatest standard error are 
clearly improved in the BL model as compared with the 2TS model. 
The differences for the other equations are small. 

To measure the efficiency of the parameter estimates the traces of 
the variance rnatrix of the estimates were calculated. The results 
are shown in the third and fourth columns. The differences between 
the two methods are negligible. The explanation lies perhaps in the 
fact that the figures are only approximate and do not measure small 
sample behaviour, in which greater differences in efficiency would 
perhaps occur. The last two columns show the MAPE values for ex 
post simulation over the estimation period. Here we find clear 
evidence for the superiority of the BL model over the 2TS model. 
The figure V shows the ex post simulation fit of both models. As 
before, the criterion is the closer to the value one the figures 

7DLUFS was excluded on the basis of its huge values which would 
otherwise dominate the mean. The high values of DLUFS are due to 
division by its historical values, which fluctuate around zero. 
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TABLE IX 

Comparison of the efficiency of the parameter estimates in the 2TS 
and BL models . 

Stand.error 
of equation Trace MAPE 1962-83 

Egua-
tion 2TS BL 2TS BL 2TS BL 

GDPQ 1.33 0.97 

PQ 3.98 2.73 

CQ 0.008 0.009 0.028 0.050 3.01 2.39 

XQ 0.069 0.070 0.142 0.148 7.83 7.12 

MTQ 754.156 653.053 0.049 0.034 5.64 4.02 

LHW 0.009 0.009 0.135 0.131 2.88 1.34 

PC 0.012 0.012 0.038 0.040 3.55 3.21 

PH 0.015 0.015 0.247 0.206 6.09 3.60 

PI 0.013 0.013 0.004 0.004 4.49 3.60 

PG 0.012 0.012 0.058 0.060 5.98 3.77 

IVP 0.016 0.016 0.029 0.030 5.67 3.96 

IQC1 0.045 0.042 1.459 0.751 2.46 2.59 

S6230 0.003 0.003 0.037 0.027 3.67 2.94 

T123H 0.016 0.015 0.112 0.077 12.53 3.57 

LPH 0.022 0.024 0.059 0.740 18.99 8.87 

KF 0.006 0.006 0.011 0.009 0.83 0.86 

VV1Q 0.021 0.020 0.813 0.781 1.87 1.63 

DLUFS 14.017 12.326 352.980 07.855 37.71 120.19 
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FIGURE V GOP ex post simulation values of the block­
division estimation models divided by the 
actual estimation period values. 
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are, the better is the fit. The simulation of the BL model is 
superior to that of the 2TS model mainly because of the obviously 
"better" behaviour towards the end of the simulation period. In 2TS 
simulation, the departure from the value one seems to grow and no 
return to the historical path can be hoped for. 

As in the comparison of the other empirical estimation results, the 
ex post simulation behaviour, both in terms of MAPE values and 
graphical analysis, provides the clearest base for comparison. In 
this case, these two criteria put the BL model before the 2TS model. 

In a comparison based on the MAPE values of the ex post simulation, 
the OLS, BL and MY models perform best. In concession to Klein, we 
also calculated the means and the standard errors of the forecast 
errors of the stochastic equations of these three models to obtain 
one more measure of forecasting ability. The calculated figures are 
reported in table X. According to this measure the BL model' is the 
best one having the lowest mean for 10 variables and the lowest 
standard error for 9 variables out of 18. The comparison is not 
quite valid because the magnitudes of the differences between 
methods are not taken into account. Only the ordinal ordering is 
considered. 

IV.7.3 Deterministic prediction: ex post forecast 

The estimation period is 1963-1982. There is only one year of 
actual data, the year 1983, which is reserved for use in ex post 
forecasting. 

In table XI, the MAPE values (in fact, only absolute per cent 
error) for one year outside sample forecasts are presented for the 
various estimates. In this comparison the MY simulation performs 
best when we focus on the aggregate variables GDP and PQ. OLS does 
not behave badly either. 



124 

IV.8 Structural versus naive models 

I n' the fo 11 owi ng we make use of some i deas presented by Nelson 
(1972) to compare the predictive ability in one period forecasts of 
the structural models as against the naive model. The structural 
models, which were chosen according to the findings of the 
comparisons so far, were the OLS, MY and BL models. 

First, the predictive ability was examined in terms of bias. The 
actual values of the dependent variables in the 16 behavioural 
equations and in the essential identities GDP and PQ, 18 variables 
all in all, were regressed on their predicted values from the ex 
post simulations of the OLS, BL, MY models and the naive model AR. 
In table XII the estimated slopes and intercepts are presented. 
The differences between the estimated slopes are small. According 
to the t-test statistics in the last column of table XII, none of 
the slope parameters are significantly different from unity. While 
the 'deviations from the theoretical values, that is 1, are of 
rather small magnitude we can conclude that the prediction bias is 
fairly small for all rnethods. A ranking order could, however, be 
established which coincides with the ranking oder given by the MAPE 
statistics for the structural models. The naive model seems to 
fulfil the a priori expectation of being the winner when one-period 
predicitive ability is compared in this way. 

The correlation coefficient between structural model errors and 
naive model errors provide a measure of similarity between the two 
sets. In table XIII we present the correlation coefficient between 
the separate structural models and the naive model. 

The higher the correlation coefficient, the more of the forecast 
behaviour is left unexplained by both the structural model and the 
naive model. The lowest correlation is found between the OLS model 
and the naive rnodel AR. 
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TABLE X 

Means and standard errors of structural model forecast errors for 
the estimation period 1963-1982 

OLS model ~1Y model BY model 

mean stan- mean stan- mean stan-
dard dard dard 
error error error 

GDPQ 1478.20 1652.20 975.53 1586.96 336.62 1722.88 

PQ -1.39 1.05 -1.59 1.37 -1.02 1.07 

CQ -279.00 2323.50 -31.57 2833.69 -653.97 2487.85 

XQ 1906.16 2808.44 1753.56 2894.12 1897.72 2753.40 

MTQ 698.26 1736.28 1139.65 1925.77 1250.93 1712.09 

LHW 56.91 55.10 85.33 65.98 18.39 48.00 

PC 0.86 1.53 -0.94 1.51 -0.64 1.55 

PW 2.24 1.58 -3.04 2.68 -1.65 1.25 

PI 2.14 1.83 -2.28 2.14 -1.69 1.62 

PG 1.89 1.04 -2.57 1.48 -1.30 1.04 

IVP -2.59 1.84 -2.93 2.46 -1.96 1.48 

OQC1 178.99 402.29 182.78 389.62 160.91 400.80 

S6230 0.01 0.35 0.01 0.36 0.01 0.36 

T1234 366.93 1776.21 1574.66 1755.05 922.20 2716.88 

LPH -1056.26 2337.27 1115.93 1320.42 -1778.48 3526.68 

KF 231.59 2813.51 -508.47 2719.31 -996.58 3095.29 

VVTQ -25.63 1736.40 -317.3 1267.46 -422.73 1256.87 

DLUFS 102.80 1782.55 242.21 1950.01 85.15 1738.13 
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TABLE XI 

MAPE for ex post forecasts for the year 1983 

Method 

Equa-
tion OLS BL YPE YPR YP4 YP5 YP6 MY 

GDPQ 0.85 1.17 0.85 1.74 1.50 1.46 1.34 0.17 
PQ 0.67 0.58 0.39 0.33 0.67 0.64 0.67 0.79 

CQ 3.38 4.52 2.55 4.35 4.61 5.37 4.96 2.32 
XQ 1.10 0.38 1.70 2.73 0.12 0.18 0.32 1.67 
MTQ 6.00 6.82 3.60 3.40 3.84 5.66 5.86 5.84 
LHW 0.95 0.84 1.14 0.70 1.31 1.12 1.05 1.07 
PC 0.78 0.95 0.65 0.92 0.77 0.87 0.85 0.51 
PW 0.41 0.44 0.45 0.71 0.45 0.47 0.48 0.30 
PI 0.48 0.52 0.56 0.73 0.57 0.58 0.59 0.53 
PG 0.00 0.03 0.03 0.33 0.02 0.02 0.03 0.18 
IVP 1.16 1.04 0.95 0.70 0.91 0.94 1.02 1.16 
IQC1 2.92 3.09 0.48 0.46 0.07 3.08 3.10 2.89 
S6230 3.16 2.82 2.88 3.19 1.08 1.84 1.98 3.62 
T123H 3.27 3.62 4.44 3.53 4.34 3.58 3.22 3.12 
LPH 4.20 6.69 3.81 0.87 7.91 7.49 7.43 2.76 
KF 0.20 0.10 0.33 0.55 0.43 0.22 0.12 0.21 
VV1Q 2.76 2.71 1.96 1.96 2.72 2.73 2.76 2.71 
DLU 158.64 145.61 38.47 141.78 57.54 95.61 105.21 225.53 

~1EAN 1.90 2.14 1.57 1.60 1.84 2.13 2.10 1.76 
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TABLE XII 

Estimated slopes and inter cepts 

Model slope intercept t-
statistic 

AR 0.99551 -385.475 0.736 
(0.006) (687.260) 

MY 0.994791 -379.585 1.340 
(0.004) (430.252) 

OLS 0.99285 -428.275 1.833 
(0.004) (437.750) 

BL 0.99173 -581.970 1. 7229 
(0.005) (544.481) 

The standard errors are shown in parentheses below 
the point estimates. 
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TABLE XI II 

Correlation between the structural mode-l and the naive model: 
one year forecast errors over all endogenous variables 

AR model 

OLS model 0.0907 
MY model -0.1092 
BL model -0.1615 

TABLE XIV 

Composite prediction 

structural model naive model 
forecast coefficient forecast coefficient 

a1 a2 

OLS model 0.69819 0.24483 
(6.19) (2.60) 

MY model 0.67834 0.31638 
(7.20) (3.35) 

BL model 0.60608 0.38646 
(4.66) (2.95) 

Student t-values are shown in parentheses below the point 
estimates. 

---
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Next, we consider the concept of composite prediction. If the 
structural model utilizes the information available, then the naive 
model, which draws only on a subset of information, should not be 
able to contribute to the accuracy of a composite prediction which 
combines both. 

A linear composite prediction is of the form 

where 

EF is the actual value to be predicted 
ESTR is the prediction obtained from the structural model 
EAR is the prediction obtained from the naive model. 

If the structural model contains all the information in the naive 
model, then the OLS estimates al and a2 of model (1) should be 
unity and zero, respectively. Since the individual predictions are 
essentially unbiased, we would expect that in a composite 
prediction their coefficients would add to approximately unity. In 
this case we found that the unrestrictedly estimated coefficients 
were close enough to one so that there was no need to emphasize the 
constraint a2 = 1 - al. 

The figures in table XIV on page 128 show that the OLS model 
contains most of the information in the naive model. The BL model 
leaves unused part of the information in thenaive model. Thus the 
intersection between the two information sets is greatest for the 
OLS model and smallest for the BL model. 

From this comparison we can conclude that the utilization of 
information is not complete in the structural models. In 
forecasting, a composite prediction could lead to an increase in 
the predictive ability. 

5 463110F 
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In addition to this single period static prediction, the 
multiperiod dynamic predicition should also be calculated, 
especially when comparison with a naive model is concerned. The 
longer peri od forecasts remove the advantage that the 
autoregressive scheme has in the short runo The autoregressive . 
models are known to generate rapidly increasing prediction errors 
as the time horizon of the extrapolation lengthens. For an 
evaluation of the predictive accuracy of a structural model 
vis-a-vis a naive model, a multiperiod comparison should be used. 
For a one period forecast, the naive model is usually the best 
tool. There is, however, no data at this point for a deterministic 
multiperiod prediction error comparison but the problem will be 
tackled in connection with stochastic simulation in chapter V. 

According to the ranking order obtained from the comparison of one 
year prediction between structural and naive models, the MY and OLS 
are superior to the BL model. 

IV.9 MAPE versus RMSE 

The comparison of the forecast errors both in ex post simulation 
and ex post forecasts shows that the MAPE values do not differ very 
much between methods and the differences are sometimes so vague 
that the ranking order is not completely clear. There is al~o a 
possibility that the outcome of the comparison depends on the 
choice of the measure of the forecast error. To detect this 
possibility of the dependence of the outcome on the measure used 
and to see at the same time if greater differences between methods 
are to be found~ we also calculated another measure for the 
forecast error both in ex post simulation and in one-period ahead 
forecasting. The second measure is the squared error (Christ, 
1960), which, in fact, is the squared RMSE. This measure was 
selected as a cancessian ta prapriety, RMSE being the most used 
measure. 
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In tables XV(a) and XV(b) we present the results of the calculation 
of the mean squared errors. A comparison of the figures in table 
XV(a) with the corresponding values of the MAP~ statistic in table 
VIII reveals that the ranking order is exactly the same and has the 
same degree of vagueness for both measures of simulation errors. It 

is reassuring to know that at least in this study the ranking is 
found to be independent of the measure used. 

The various methods of comparison above show once more that OLS 
estimation competes well empirically with simultaneous methods. If 
we look at the behaviour in ex post simulations and forecasts, OLS 
and the MY model do equally well. The other empirical comparison 
measures are too vague to be used as a basis for decision. If we 
also examine the analytical asymptotic results, then the ~1Y model 
performs best. 

In the following sections, we continue with the valuation of the 

model using stochastic simulation as a method of achieving a 
measure of the uncertainty associated with the ex ante forecast 
error. For the empirical part of the stochastic simulation, we 
have, on the basis of the estimation results presented above, 
chosen the OLS and MY models. 
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TABLE XV(a) 

Relative mean squared error of ex post simulations for the 
period 1963-82 

Method 
Equa-
tion 

OLS BL YPE YPR YP4 YP5 YP6 MY 

GDPQ 32.6 21.1 69.0 56.9 57.1 86.7 111.4 24.7 
PQ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

CQ 59.0 70.6 75.7 66.2 72.3 127.1 154.8 89.5 
XQ 345.1 327.9 453.6 415.5 399.1 411.8 430.8 344.5 
MTQ 78.9 104.1 179.0 176.3 157.8 199.3 219.0 117.7 
LHW 1.9 0.8 3.0 0.9 1.8 2.0 2.3 3.5 
PC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
PW 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0_.2 
PI 0.1 0.7 0.1 0.0 0.1 0.1 0.1 0.1 
PG 0.1 0.1 0.2 0.1 0.1 0.1 0.1 0.2 
IVP 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.2 
IQC1 15.6 15.1 13.3 12.1 12.1 16.6 17.2 15.0 
S6230 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
T123H 50.1 117.0 188.0 113.8 156.2 33.8 36.7 125.0 
LPH 154.0 353.3 271.0 261.5 224.0 80.1 137.7 126.0 
KF 25.7 32.5 33.6 31.1 27.8 26.1 32.2 24.6 
VV1Q 43.9 25.7 43.9 43.9 32.0 49.5 55.0 25.3 
DLU 2403 3140 4531 3212 3756 2737 1213 5013 
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TABLE XV{b) 

Relative mean squared error of ex post forecast for 1983 

Method 
Equa-
tion 

OLS BL YPE YPR YP4 YP5 YP6 MY 

GDPQ 14.1 28.3 14.8 62.8 46.6 44.5 37.5 0.6 
PQ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CQ 127.7 229.4 73.0 211.6 238.2 322.6 275.8 60.5 
XQ 6.7 0.8 16.0 41.2 0.1 0.2 0.6 15.4 
MTQ 239.5 308.9 85.9 77.0 97.8 213.0 227.8 226.3 
LHW 0.3 0.2 0.4 0.2 0.6 0.4 0.4 0.4 
PC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 
PW 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PI 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
PG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
IVP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
IQe1 12.5 13.9 0.3 0.3 0.0 13.9 14.0 12.3 
S6230 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
T123H 96.3 118.2 178.1 112.5 169.5 115.8 93.6 87.8 
LPH 131.6 334.1 108.3 5.7 467.1 418.0 411.9 56.6 
KF 1.5 0.4 4.2 11.6 6.9 1.8 0.5 1.7 
VVIQ 61.2 59.2 30.9 30.9 59.6 60.1 61.5 59.3 
DLU 4177 3519 246 3336 549 1517 1837 8441 



V EMPIRICAL RESULTS OF THE VARIANCE MATRIX OF THE FORECAST ERROR 

The usual way of forecasting with a simultaneous model is to solve 
the model over the forecasting period deterministically, that is, 
replacing the structural disturbances by their expected values. An 
alternative method which takes into account both the nonlinear and 
stochastic nature of the model is stochastic simulation, in which 
the structural disturbances are replaced by stochastic proxies. The 
stochastic simulations are replicated and the mean of the values 
from the various replications is taken as the predictor. The 
difference between the mean and the deterministic solution is a 
measure of the simulation bias in the model. The variance of the 
various outcomes of the stochastic replications is a measure of the 
variance matrix of the forecast error originating from the 
disturbance term in the stochastic equations. This component has in 
pervious sections been labelled as the second component of the 
forecast error. If proxies for the structural parameter estimates 
are also used in the stochastic simulations, then the variance of 
the various outcomes of the simulation is a measure of both the 
first and the second component of the forecast error. 

There are four methods of simulation for calculation of the 
variance of the forecast error. In table A, the applicability and 
necessary assumptions of the various methods are sUl1111arised. 

The Schink method does not allow separate calculation of the first 
and second component of the forecast error; only the total effect 
of both components can be calculated. The methods of Fair and 
Bianchi-Calzolari allow calculation of both components separately 
while the method of Mariano-Brown can only be used to calculate the 
effect of the second component. Table A also shows that the 
application of the Mariano-Brown method requires less assumptions 
about unknown distributions and a very limited number of 
simulations compared to the others. The accuracy of the 
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calculations in the methods of Schink and Fair grows with the 
number of simulations performed. In practice 100 is considered to 
be a suitable number of simulations. The method of Schink requires 
most computational work, especially since no ready-made computer 
program is available. 

In the following, we report empirical simulation results both for 
the consistently estimated MY model and the OLS model obtained 
using the method of Fair, Bianchi-Calzolari and Mariano-Brown in 
simulation of the variance matrix of the forecast period 1983-86 in 
the following way: 

(i) The stochastic simulation method of Fair was used both 
in static one-period simulations and in dynamic 
multiperiod simulations to calculate the variance matrix 
of the second error component. A computer program 
developed by Fair also made it possible to compute the 
variance matrix of the first error component for the 
static one-period case. In the calculations of the first 
error component we used a blockdiagonal form of the 
variance matrix of the parameter estimates. The number 
of stochastic simulations used was 100. 

(ii) The analytic simulation method of Bianchi and Calzolari, 

the B-C method, was used to calculate the variance 
matrix of the second error component. The number of 
required simulations was the number of the stochastic 
equations, 16, plus one deterministic simulation. The 
calculation of the matrix of the partial derivates (see 
page 73) was labourious and the application of this 
method to a bigger madel is questionable. 



TABLE A 

The applicability of the simulation methods 

Schi nkl) Fair2) B-C3) M-B4) 

1 error component: parameter 
randomness 1 and II yes yes no - can be calculated together 

assumption of normality 
of parameter estimates needed no yes yes 
number of simulations needed ..... 100 ..... 100 Gxs* 

II error component: residual 
randomness 1 and II 

can be calculated 
assumption of normality 

together yes yes yes 

of the residuals no yes yes no number of simulations needed ..... 100 ..... 100 G T* 

*) G = number of stochastic equations, s = number of parameters, T = number of estimation period 
observations. 

1) The method of stochastic simulation and re-estimation (Schink) 
2) The method of Monte Carlo on residuals and coefficients (Fair) 
3) The method of analytic simulation (Bianchi and Calzolari) 
4) The residual-based procedure (Brown and Mariano) 

1-' 
W 
C'I 
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(iii) The residual-based method of Brown and Mariano, the B-M 
method, was the easiest to apply. The variance matrix of 
the second component of the forecast error was computed 
both for the static one-period case and for the dynamic 
multi-period case. The number of simulations was 20, 
which is the number nf the estimation period residuals 
for each stochastic equation. These residuals were used 
in the first simulation year 1983. For the following 
years of the forecast period, the order of the residuals 
was determined through resampling of these.residuals. 
For each of the 16 stochastic equations, 3 resamplings 
of the residuals were performed. This procedure is 
similar to bootstrapping but using all the residuals. 

In other words: the residuals for the four prediction 
years are the same but the order between the residuals 
in the calculations for separate years has been 
determined through resampling. The resampling is perhaps 
not necessary because the autocorrelation in residuals 
is only a problem in estimation, not in model solution. 
On the other hand, there is very little likelihood of 
getting exactly the same residuals for four consecutive 
periods in a random sampling. 

We also tested the use of antithetic variates in this 
method. 

V.1 The simulation bias 

First, we examine the simulation bias, which is the difference 
between the mean of the results of the stochastic solutions and the 
deterministic solution. In table B, the empirical measures of the 
simulation bias for models MY and OLS are presented for the 
aggregate variables GDP and PQ. In these calculations, the method 
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of Mariano and Brown was used1• Column a gives the deterministic 
solution point predictors. The following columns, b and c, show the 
mean of the 20 stochastic residual-based simulations and the 
absolute values of the difference between the mean of the 
stochastic simulations and the deterministic simulation, that is, 
the simulation bias, in per cent values of the deterministic 
solution. The last columns, d and e, present the corresponding 
results for 40 stochastic replications; a further 20 have been 
constructed in the form of antithetic variates. 

As can be seen the simulation error does not seem noticeable. This 
result coincides with findings from stochastic simulation with 
other models (Fair, 1980) but, according to the previously 
reported findings of Brown and Mariano, we should be careful in 
drawing too rigorous conclusions. 

V.2 The variance matrix in the static case 

Let us then look at the results for the variance matrix calculated 
from the various replications of stochastic simulation. 

In table C the results for three different methods applied to the 
OLS model are compared. The values in the columns are Pearsonls 
coefficient of variation, that is, the ratio between the standard 
error of the stochastic simulations and the mean of the same 
simulations. For example, the first row says that the standard 
error of the forecast deriving from the stochastic residuals for 
the aggregate variable GDP is 1.3 per cent of the mean value 
according to the Mariano-Brown method, 1.2 per cent according to 
the stochastic simulation method with 100 replications and also 1.2 
per cent according to the analytic simulation method. The results 
for the different methods are remarkably similar. According to the 

lSimilar results for the magnitude of the simulation bias were 
found using the stochastic simulation method of Fair. For space 
reasons they are not presented here but are available on request. 



TABLE B 

S1mulatlon errors ln MY and OLS models 
S1mulation with sample size 20 Simulation with antithetic sample 

size of 40 
Deterministic Stochastic Error in per cent Stochastic Error in per cent 
simulation simulation of deterministic simulation of deterministic 

simulation simulation 
a* b* c* d* e* 

MY model 
GDPQ 1983 207882 207480 0.19 208337 0.21 

1984 211032 211954 0.43 212498 0.68 
1985 215156 216564 0.65 217143 0.91 
1986 218670 220328 0.75 221066 1.09 

.PQ 1983 133.53 133.67 0.10 133.53 0 
1984 145.48 145.63 0.10 145.67 0.13 
1985 154.48 . 155.02 0.54 155.18 0.45 
1986 165.52 163.37 0.52 163.54 0.62 

OLS model 
GDPQ 1983 209245 209404 0.08 209287 0.02 

1984 212443 212826 0.18 212742 0.14 
1985 216266 216773 0.23 216711 0.21 
1986 219188 219608 0.19 219746 0.25 

PQ 1983 133.37 133.48 0.08 133.41 0.03 
1984 146.42 146.76 0.23 146.46 0.03 
1985 156.42 157.10 0.43 156.56 0.09 
1986 165.43 166.59 0.70 165.71 0.17 

a) Deterministic simulation: error terms set equal to zero 
b) The mean of 20 stochastic simulations with error terms set to the estimation period values 
c) The difference between b and a values in per cent of a 
d) The mean of 40 stochastic simulations 
e) The difference between d and a values and a values in per cent of a. 

i 

I 

I 
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TABLE C 

Comparison of the static case, 1983, the MA model: 
Pearsonls coefficient of dispersion 

GDPQ 
PQ 

CQ 
XQ 
MTQ 
LHW 
PC 
PW 
PI 
PG 
IUP 
IQC1 
S6230 
T123H 
LPH 
KF 
W1Q 
DLU 

M-B 

0.013 
0.017 

0.017 
0.074 
0.042 
0.010 
0.018 
0.017 
0.014 
0.021 
0.016 
0.036 
0.024 
0.014 
0.029 
0.005 
0.026 
0.805 

Stochastic 
Simulation 

0.012 
0.015 

0.018 
0.077 
0.037 
0.010 
0.018 
0.016 
0.015 
0.019 
0.015 
0.034 
0.024 
0.015 
0.032 
0.005 
0.017 
0.903 

Analytic 
Simulation 

0.012 
0.016 

0.017 
0.071 
0.035 
0.009 
0.018 
0.016 
0.014 
0.020 
0.016 
0.036 
0.028 
0.014 
0.027 
0.005 
0.018 
0.772 

Pearsonls coefficient of dispersion is the ratio between the 
standard error of the stochastic simulations and the mean of the 
some simulations. 
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findings of previous studies (Bianchi and Ca1zo1ari, 1982), the 
Schink method, the ana1ytic simu1ation method and the stochastic 
simu1ation methods give simi1ar estimates of the variance matrix. 
The empirica1 resu1ts reported in tab1e C now indicate that the new 
method of Mariano and Brown gives resu1ts simi1ar to the others. 
Thus, it is possib1e to get accurate resu1ts with a method that 
requires much 1ess computationa1 work and is therefore a1so 
app1icab1e to bigger mode1s. 

V.3 The variance matrix in the dynamic case 

In tab1e 0 are reported the resu1ts of the stochastic 
residua1-based simu1ations of 20 observations of a11 the endogenous 
variab1es in the MY mode1 for the period 1983-86. The figures in 
the co1umns are: the mean of the 20 pseudo-forecasts and Pearsonls 
coefficient of variation. Tab1e E gives the corresponding figures 
for the antithetic case. 

Tab1es F and G show the same figures for the OLS mode1 as are shown 
in tab1es 0 and E for the MY mode1. 

In the OLS mode1 the use of antithetic variates seems to make 
estimates of the moments of the forecasts converge, which does not 
happen in the case of the MY mode1. The tendency towards 
convergency i s very sl i gh_t and cou1 d thus be i nterpreted i n two 
ways: 

either it indicates empirica1 evidence for the 
ana1ytica1 resu1ts of the existence of finite moments 

v 

for the OLS estimators and the absence of moments for 
the MY estimators, 

or cou1d, according to Hendry and Harrison (1974), 

indicate that no substantia1 reduction in variance is 
gained from antithetic simu1ation when the mode1 
inc1udes a 1agged endogenous variab1e. 
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TABLE D 

Mean values and Pearsanls caefficients af dispersian 
far residual based simulatians with 20 trials far the MY madel 

MY 1983 1984 1985 1986 

Madel 
- ... - - ... - - ... - - ... -y cr/y y crly y cr/y y cr/y 

GDPQ 207 480 0.013 211 954 0.020 216 564 0.024 220 328 0.041 

PQ 134 0.016 146 0.030 155 0.042 164 0.048 

CQ 114 912 0.023 118 696 0.055 119 523 0.043 120 406 0.051 

XQ 53 699 0.065 58 533 0.104 62 247 0.145 64 737 0.174 

MTQ 70 255 0.034 72 991 0.060 74 405 0.043 75 658 0.075 

LHW 3 363 0.010 3 388 0.017 3 391 0.018 3 393 0.028 

PC 133 0.010 144 0.031 154 0.039 163 0.055 

PW 138 0.017 153 0.032 166 0.047 178 0.062 

PI 128 0.014 138 0.028 147 0.039 154 0.050 

PG 136 0.020 148 0.034 160 0.043 170 0.047 

IVP 131 0.016 141 0.024 151 0.038 159 0.049 

IQC1 14 225 0.036 13 721 0.041 13 036 0.052 12 589 0.056 

S6230 11 0.025 12 0.026 12 0.035 12 0.036 

T1234 93 012 0.014 107 667 0.042 125 034 0.038 144 886 0.061 

LPH 76 997 0.030 93 032 0.091 110 042 0.131 128 190 0.162 

KF 378 442 0.005 388 887 0.008 398555 0.010 408 305 0.013 

VVIQ 82 741 0.018 84 971 0.025 85 828 0.035 86 560 0.035 

DLU(FS) 5 899 0.688 2 933 0.240 -667 8.078 -271 23.618 
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TABLE E 

Mean values and Pearsonls coefffcients of dispersion 
for residual-based simulations with 40 trials with antithetie variates 
for the MY model 

MY 1983 1984 1985 1986 

Model 
- A - - A - - A - - A -
Y a/y y a/y y a/y y a/y 

GDPQ 208 337 0.013 212 498 0.025 217 143 0.028 221 066 0.041 

PQ 134 0.016 146 0.030 155 0.041 164' 0.048 

CQ 114 644 0.022 118 598 0.054 119 791 0.044 121 005 0.058 

XQ 55 098 0.071 59 283 0.117 62 643 0.144 65 136 0.168 

MTQ 70 447 0.032 73 182 0.063 74 783 0.056 76 066 0.080 

LHW 3 367 0.010 3 392 0.017 3 396 0.020 3 399 0.029 

PC 132 0.017 143 0.030 154 0.038 163 0.053 

P~I 138 0.017 153 0.032 165 0.047 178 0.062 

PI 128 0.014 138 0.027 147 0.039 154 0.050 

PG 136 0.020 149 0.034 160 0.044 171 0.048 

IVP 131 0.016 141 0.024 151 0.039 158 0.051 

IQC1 14 222 0.036 13 718 0.041 13 034 0.052 12 589 0.056 

S6230 11 '0.025 12 0.025 12 0.035 12 0.035 

T1234 93 064 0.014 107 697 0.024 124 989 0.037 144 769 0.059 

LPH 76 636 0.030 92 592 0.086 109 511 0.124 128 119 0.173 

KF 378 354 0.005 38B 857 0.008 39B 651 0.010 408 485 0.012 

VV1Q 82 753 0.018 85 067 0.025 86 091 0.042 86 889 0.051 

DLU 5 052 0.863 2 719 2.392 -243 21.327 -138 45.429 
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TABLE F 

Mean values and Pearsonls coefficients of dispersion 
for residual-based simulations with 20 trials for the OLS model 

OLS 1983 1984 1985 1986 

Model 
- A - - A - - A - - A -y cr/y y crly y cr/y y cr/y 

GOPQ 209 404 0.013 212 826 0.018 216 773 0.024 219 608 0.032 

PQ 133 0.017 147 0.032 157 0.050 167 0.060 

CQ 115 820 0.017 119 529 0.031 121 417 0.042 122 544 0.048 

XQ 55 052 0.074 57 734 0.099 60 854 0.127 62 669 0.131 

MTQ 70 620 0.042 73 443 0.057 75 453 0.054 76 539 0.071 

LHW 3 362 0.010 3 375 0.017 3 363 0.020 3 352 0.022 

PC 132 0.018 144 0.036 156 0.054 166 0.071 

PW 138 0.017 154 0.029 168 0.046 182 0.063 

PI 128 0.014 138 0.020 148 0.030 156 0.039 

PG 136 0.021 150 0.034 163 0.052 175 0.068 

IVP 131 0.016 142 0.024 153 0.035 161 0.046 

IQC1 14 224 0.036 13 720 0.038 13 026 0.039 12 555 0.046 

S6230 11 0.024 12 0.026 12 0.035 12 0.033 

T1234 93 170 0.014 108 177 0.017 126 772 0.025 148 714 0.036 

LPH 77 866 0.029 96 753 0.057 117 655 0.079 140 599 0.104 

KF 378 406 0.005 389 480 0.007 399 771 0.008 409 707 0.009 

VV1Q 82 810 0.026 85 776 0.041 86 897 0.040 87 587 0.041 

OLUFS 4 282 0.805 3 639 1.029 725 6.029 526 9.388 
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TABLE G 

Mean values and Pearsonls coefficients of dispersion 
for residual-based simulations with 40 trials with antithetie variates 
for the OLS model 

OLS 1983 1984 1985 1986 

Model . - . - . - . - - - - -
y a/y y alY y a/y y a/y 

GDPQ 209 287 0.013 212 742 0.018 216 711 0.026 219 746 0.032 

PQ 133 0.017 146 0.032 157 0.049 166 0.060 

CQ 115 840 0.016 119571 0.030 121 556 0.041 119 304 0.046 

XQ 54 768 0.068 57 468 0.099 60 334 0.129 62 212 0.127 

MTQ 70 439 0.043 73 122 0.057 75 019 0.056 76 099 0.068 

LHW 3 361 0.010 3 374 0.017 3 362 0.020 3 352 0.022 

PC 132 0.018 144 0.036 155 0.054 165 0.072 

PW 138 0.017 153 0.029 168 0.044 181 0.062 

PI 128 0.014 138 0.020 148 0.029 155 0.038 

PG 136 0.020 150 0.034 163 0.051 175 0.067 

IVP 130 0.016 142 0.024 152 0.035 159 0.046 

IQC1 14 218 0.036 13 711 0.038 13 019 0.039 12 550 0.045 

S6230 11 0.024 12 0.025 12 0.035 12 0.032 

T1234 93 176 0.014 108 191 0.017 126 764 0.024 148 690 0.034 

LPH 77 480 0.026 96 551 0.051 117 326 0.071 140 087 0.097 

KF 378 388 0.005 389 368 0.007 399 565 0.008 409 388 0.009 

VV1Q 82 798 0.025 85 676 0.041 86 720 0.040 87 333 0.039 

DLUFS 7 333 0.735 3 538 1.061 783 5.696 519 9.560 
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TABLE H 

The dynamic case. Comparison of the Pearsonls coefficients for the 
MY model for residual-based simulation (20 replications) and 
stochastic simulation (100 replications) 

MY Resldual-based s1mulatlon 5tochastlc s1mulatlon 
model 

1983 1984 1985 1986 1983 1984 1985 1986 

GDPQ 0.013 0.020 0.024 0.041 0.014 0.022 0.030 0.040 
PQ 0.016 0.030 0.042 0.048 0.015 0.031 0.043 0.052 

CQ 0.023 0.055 0.043 0.051 0.023 0.033 0.041 0.046 
XQ 0.065 0.104 0.145 0.174 0.077 0.105 0.133 0.156 
MTQ 0.034 0.060 0.043 0.067 0.038 0.057 0.064 0.086 
LHW 0.010 0.017 0.018 0.028 0.011 0.018 0.024 0.027 
PC 0.017 0.031 0.039 0.055 0.018 0.034 0.048 0.059 
PW 0.017 0.032 0.047 0.062 0.017 0.031 0.046 0.055 
PI 0.014 0.028 0.039 0~050 0.015 0.026 0.035 0.044 
PG 0.020 0.034 0.043 0.047 0.020 0.036 0.050 0.062 
IUP 0.016 0.024 0.038 0.049 0.016 0.028 0.036 0.045 
IQC1 0.036 0.041 0.052 0.056 0.037 0.044 0.041 0.042 
56230 0.025 0.026 0.035 0.036 0.025 0.029 0.034 0.033 
T123H 0.014 0.024 0.038 0.061 0.015 0.021 0.028 0.037 
LPH 0.030 0.091 0.131 0.162 0.027 0.054 0.082 0.095 
KF 0.005 0.008 0.010 0.013 0.005 0.008 0.011 0.012 
VV1Q 0.018 0.025 0.035 0.035 0.017 0.028 0.038 0.054 
DLU 0.688 2.240 8.078 3.618 0.963 2.132 9.064 8.048 
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Table H shows a comparison between the dynamic simulation results 
of the residual-based method and the stochastic method. In previous 
section we saw that the results were very similar between methods 
in the static case. The findings of the "figures in table H are that 
the results for dynamic simulations are also very close to one 
another. The new Mariano-Brown method also competes well with the 
more complicated methods in the dynamic case. 

V.4 The variance matrix of the first and second component of the 
forecast error 

The availability of the Fair computer program made it possible to also 
calculate the effects of the first error component in static 
one-period simulations. The OLS and MY models were solved 100 
times, each time using proxies for both the random disturbance and 
the parameter estimates. The variances were calculated from the 100 
replications and the Pearsonls coefficients for the trjals are 
presented in table I. The first thing to observe is that the 
results between the two models are again very similar. The figures 
in colurnns b show that the standard error grows when the randomness 
of the parameter estimates is also included in the calculations. 
The table also shows that the effects of the second component, in 
column a, are markedly greater than the effects of the first 
component. This results coincides with previous empirical 
comparisons (Bianchi and Calzolari, 1982). Thus the measurement of 
uncertainty in macromodels could be based on only the second 
component without any great loss of accuracy. 
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V.5 Stochastic simulation of the naive model 

The naive model, unlike the structural model, is linear both in 
parameters and variables. Consequently there is no simulation bias; 
for this model the deterministic forecasts coincide with the means 
of the stochastic simulations. To obtain the variances for the 
forecasts over the prediction period we used the residual-based 
method, which according to the findings so far in this study is the 
easiest to apply although the results are similar to those of the 
more complicated stochastic simulation methods. The calculated 
values of Pearsonls coefficients are presented in table J. When the 
figures in table J are compared with the corresponding figures in 
table 0 for the MY model, we can conclude that the forecasts from 
the simultaneous model have greater variances than the forecasts 
from the naive model. Nor does the variance grow with the time 
horizon in the naive model as obviously as in the structural model. 
The non-simultaneous forecasts from the naive model have a smaller 
dispersion around their mean than the forecasts from the 
simultaneous structural model. 

V.6 The density fuction of the forecasts 

In the previous sections we have empirically calculated the mean 
and the variance of the forecasts of the endogenous variables in 
the structural and naive models. These two first moments give some 
information about the distribution of the forecasts but they,are 
not enough to sufficiently characterize the joint distribution. 
When the distribution remains unknown the prediction regions are 
impossible to constrtlct. 

To get an idea of what the marginal distributions are like we 
plotted the values of the endogenous variables from the 20 
stochastic residual-based simulations for the OLS and MY models as 
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The effects of the first and second sources of forecast error; 
static case, stochastic simulation 100 trials 

Mode' OLS Mode' MY 

a b a b 

GOPQ 0.012 0.014 0.014 0.018 

PQ 0.015 0.018 0.015 0.020 

CQ 0.017 0.022 0.023 0.048 

XQ 0.071 0.085 0.077 0.077 

MTR 0.035 0.038 0.038 0.048 

LHH 0.009 0.022 0.011 0.022 

PC 0.018 0.022 0.018 0.021 

PW 0.016 0.020 0.017 0.020 

PT 0.014 0.015 0.015 0.019 

PG 0.020 0.024 0.020 0.024 

IUP 0.016 0.019 0.016 0.020 

IQC1 0.036 0.042 0.037 0.043 

S6230 0.028 0.035 0.025 0.033 

TI23H 0.014 0.021 0.015 0.022 

LPH 0.027 0.036 0.027 0.052 

KF 0.005 0.005 0.005 0.006 

VVIQ 0.018 0.021 0.017 0.023 

OLUFS 0.772 0.968 0.963 0.986 

a) Stochastic simulation with respect to error terms only 

b) Stochastic simulation with respect to error terms and 

coefficient estimates 
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TABLE J 

Pearsonls coeff;c;ent for the dynam;c na;ve model s;mulat;ons; 
res;dual-based procedure 

1983 1984 1985 1986 

GDPQ 0.012 0.019 0.017 0.017 
PQ 0.Dl1 0.015 0.017 0.018 

CQ 0.014 0.020 0.017 0.018 
XQ 0.037 0.050 0.042 0.043 
MTQ 0.036 0.044 0.037 0.049 
LHH 0.009 0.013 0.010 0.014 
PC 0.009 0.022 0.027 0.026 
PW 0.008 0.016 0.021 0.017 
PI 0.014 0.018 0.017 0.020 
PG 0.008 0.017 0.022 0.027 
IUP 0.016 0.023 0.022 0.023 
IQC1 0.038 0.042 0.056 0.067 
56230 0.037 0.037 0.043 0.025 
T123H 0.004 0.005 0.005 0.005 
LPH 0.005 0.010 0.012 0.015 
KF 0.003 0.007 0.008 0.011 
VV1Q 0.026 0.033 0.035 0.025 
DLU 0.149 0.401 10.378 0.210 
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graphical interpretations of t~e empirical results of an unknown 
distribution of the aggregate variable GDP. Figure I shows the 
graphs of the density functions of the 20 observations of GDP for 
the forecast period 1983-1986 for both models. The graphs are drawn 
as frequency functions using suitable intervals around the 
indicated mean. 

As can be seen, the functions are really too complicated to be 
sufficiently characterized by the first two moments. Most of them 
have several local optimum points. 

When the true distributions are not known, the normal distribution 
could perhaps be used to give an approximation of the tolerance 
intervals of the forecasts. 

V.7 How the forecasts should be reported 

The core of this study is the fact that a forecast from a 
stochastic model is itself a stochastic variable. In that case, it 
is not enough only to report the point forecast. The dispersion 
around this point should also be indicated. 

Results from several studies, including this one, have shown that 
the simulation bias in non-linear models is negligible. This means 
that the common practice of using deterministic simulations to 
compute the point forecasts is, with some caution, justified. For 
every model, however, stochastic simulation should be used at 
least once to provide the dynamic variances of the forecasts. These 
variances should then be reported along with the deterministic 
forecast to measure the uncertainty in the point predictions. The 
finding of this study is that the results of the residual-based 
simulation method are as accurate as the results of the more 
complicated ones. The easiness of the use of this new method 
enables the calculation of the variance for most models. 

Here we propose two ways of reporting the forecasts. They are 

illustrated in tables K and L. 
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FIGURE 1 Density functions of pseudo-random forecasts of- GDP 
from the residual-based procedure 
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TABLE K 

Composite prediction for the year 1983; the MY model and the naive 
AR4 model, per cent values, standard errors below 

e structura Composlte 
model MY prediction 

GDPQ 3.1 3.4 3.2 
S.E 1.3 1.2 

PQ 9.8 8.5 9.3 
S.E 1.6 1.1 

CQ 4.3 3.8 4.1 
S.E 2.3 1.4 

XQ 3.2 -3.1 1.2 
S.E 6.5 3.7 

MTQ 9.8 7.5 9.0 
S.E 3.4 3.6 

LHW 1.2 0.5 1.0 
S.E 1.0 0.9 

PC 8.5 7.9 8.3 
S.E 1.7 0.9 

PW 10.5 8.9 9.9 
S.E 1.-7 0.8 

PI 8.7 9.1 8.8 
S.E 1.4 1.4 

PG 9.6 8.2 9.1 
S.E 2.0 0.8 

IUP 9.5 9.0 9.3 
S.E 1.6 1.6 

IQC1 -2.2 7.5 0.9 
S.E 3.6 3.8 

S6230 5.4 -1.5 2.7 
S.E 2.5 3.7 

T123H 16.8 12.3 15.3 
S.E 1.4 0.4 

LPH 19.2 18.3 18.8 
S.E 3.0 0.5 

KF 2.9 2.6 2.8 
S.E 0.5 0.3 

W1Q 3.0 2.1 2.7 
S.E 1.8 2.6 
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TABLE L 

Forecasts and forecast standard errors for the MY model, 
per cent values. 

I ~del 1983 1984 1985 1986 

GDPQ Forecast 3.1 2.1 2.2 1.7 
S.E. 1.3 2.0 2.4 4.1 

PQ Forecast 9.8 9.1 6.5 5.5 
S.E. 1.6 3.0 4.2 4.8 

CQ Forecast 4.3 3.2 0.7 0.7 
S.E. 2.3 5.5 4.3 5.1 

XQ Forecast 3.2 9.0 6.3 4.0 
S.E. 6.5 10.4 14.5 17.4 

MTQ Forecast 9.8 3.9 1.9 1.7 
S.E. 3.4 6.0 4.3 7.5 

LHW Forecast 1.2 0.7 0.1 0.0 
S.E. 1.0 1.7 1.8 2.8 

PC Forecast 8.5 8.4 7.4 5.8 
S.E. 1.7 3.1 3.9 5.5 

PW Forecast 10.5 10.7 8.5 7.7 
S.E. 1.7 3.2 4.7 6.2 

PI Forecast 8.7 7.9 6.9 4.9 
S.E. 1.4 2.8 3.9 5.0 

PG Forecast 9.6 9.1 7.7 6.5 
S.E. 2.0 3.4 4.3 4.7 

IVP Forecast 9.5 8.2 7.1 4.8 
S.E. 1.6 2.4 3.8 4.9 

IQC1 Forecast -2.2 -3.4 -5.0 -3.4 
S.E. 3.6 4.1 5.2 5.6 

S6230 Forecast 5.4 6.4 1.6 0.7 
S.E. 2.5 2.6 3.5 3.6 

T123H' Forecast 16.8 15.8 16.1 15.9 
S.E. 1.4 2.4 3.8 6.1 

LPH Forecast 19.2 20.8 18.3 16.5 
S.E. 3.0 9.1 13.1 16.2 

KF Forecast 2.9 2.8 2.5 3.4 
S.E. 0.5 0.8 1.0 1.3 

VV1Q Forecast 3.0' 2.7 1.0 0.8 
S.E. 1.8 2.5 3.5 3.5 



First we use the concept of composite prediction to utilize the 
summed information in the structural and naive models. 
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The first column in table K shows the predicted growth values in 

per cent for the endogenous variables in the structural model MY. 

Below the predicted growth values are the standard errors in per 
cent of the mean. In the second column are given the corresponding 
figures for the naive model AR4. In the third column is the 

composite prediction, which is the weighted average of the 
structural forecast and the nai ve foreca·st. The estimatedwei ghts 
were presented in table XIV (page 128). 

The second way of reporting the forecasts isillustrated in table 

L. The dynamic forecasts of the endogenous variables (in per cent 

unity) and their standard errors for the MY model are listed. 

The ultimate objective of this study was to calculate the variance 

matrix of the forecasts, which enables a presentation of 
simultaneous stochastic model forecasts as in tables K and L. 



VI CONCLUSIONS 

The main finding of this study is to recommend the lIV iterative 
instrumental estimation method for·consistent estimation of 
structural parameters iri a simultaneous model and the 
residual-based stochastic simulation method for calculation of the 
mean and the variance of the forecasts. 

The lIV estimation method"produces consistent estimators unless 
lagged endogenous variables and autocorrelated residuals coexist. 
The estimators are efficient relative to other applicable 
estimation methods since the method takes into consideration full 
specification of the model. It solves in a very simple way both the 
problems associated with the undersized sample and the nonlinearity 
of the unknown reduced form. In the lIV estimation an initial OLS 
estimation of the system is used as starting point. The better the 
OLS-estimators are, in terms of the magnitudes of bias and 
variance, the better are the lIV estimators. The lIV estimation is 
also easy to apply and the additional round of estimation that has 
to be done after the inevitable OLS estimation is well compensated 
for by the improvement in the quality of the parameter estimates. 

Among the stochastic simulation methods we found the new 
residual-based procedure to be the easiest to apply. It has the 
drawback of allowing measurement only of the variance in the 
prediction that comes from the disturbance term. No measurement of 
the forecast uncertainty deriving from the use of parameter 
estimates is possible. Empirical comparisons have shown, however, 
that the major part of the forecast uncertainty is attributable to 
stochastic disturbances. The drawback may not be of major 
importance and it is compensated for by the simplicity in the 
computations and the avoidance of constraining assumptions of 
unknown distributions which, if incorrect, introduce bias in the 
calculations. When this method is not based on a Monte Carlo 
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procedure the risk of sampling error is.also avoided. The 

possibility of nonconvergence of the mean of the replicated 
stochastic simulations does not show up because the residuals 
calculated from the sample period are free from outliers. The 
empirical results of the stochastic simulation methods indicate 

that this new method of Mariano and Brown gives results similar to 
the others. Thus, it is possible to get accurate results with a 
method that requires much less computational work and is therefore 
also applicable to bigger models. 

The estimation and stochastic simulation were applied to the 
KT-model of the Bank of Finland. We found that the simulation bias 
was negligible and hence the usual practise of conducting forecasts 
via deterministic solution is acceptable. The magnitudes of the 
variance of the static one period forecasts coincide with the 
findings from stochastic simulation with other models (Fair, 1980). 
The variances of the dynamic forecasts over the whole forecast 

period 1983-86 are, however, greater than the dynamic variances for 
other models. The rapid growth of the variances with time is 

explained by the inclusion of a lagged endogenous variable in 
almost every equation. This implies that more attention should be 

attached to the dynamic behaviour and the long term properties of 

the model. 

In this paper stochastic simulation was used to evaluate the 

predictive accuracy of the KT-model. A natural extension of this 
analysis would be to use stochastic simulation to calculate the 
mean and the variances of the multipliers measuring the effects of 
policy simulations in the model. In the stochastic simulation of 
the variance of the forecasts we have to consider both the variance 
of the parameter estimates and of the stochastic disturbance term. 
In a stochastic simulation of the variance of the multipliers only 
the variance of the parameter estimates needs to be considered. 
According to the findings of this study, and also of other papers, 
the variance of the parameters is much less than the variance of 

the stochastic disturbances. This implies that although the 
forecast level, having a great variance, could be wrong the 
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multipliers, having small variances, can be assumed to be correct. 
This means that we can have much greater confidence in the policy 
simulation properties of the model than in its ability to produce 
base forecasts. Against this conclusion based on the results of 
stochastic simulation we can set the Lucas critique. Lucas (1976) 
argued that model simulations are not reliable for evaluating the 
effects of policy rules because the constant parameters estimated 
from historical data change with the policy. Simulations provide no 
useful information about the effects of alternative economic 
policies and consequently models should be used only for 
forecasting. The choice between using modelsolutions in forecasting 
or in policy evaluations has to be made in another forum. 
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APPENOIX 1 

Variables in the KT-model 

CQ 
CR 
06368 
078 
OLUFS 
GBH 

GOP 
GQ 
GRO\HH 

IF 

IQ 
IQC 
IVP 
IVQ 
KF 
LHW 
LN 
LPF 
LPH 
LTF 
LU 
MC 
MSVT 
MTQ 
MTV 
PC 
PG 
PI 
PM 

private consumption expenditure 
cash reserve deposit ratio 
dummy for years 1963 - 1968 
dummy for years 1978 - 1982 
short-term foreign debt of firms and banks 
central government bonds held by public 
gross domestic product 
central government consumption expenditure 
growth of production, lagged five-year-moving average 
investment, firms 
fixed investment, firms 
residential investment 
residential investment prices 
inventory investment and statistical discrepancy 
stock of inventories 
paid labour input 
employment, 1000 persons 
bank loans to firms 
bank loans to households 
loans of firms 
unemployment rate 
call money rate 
imports of Finlandls major export countries 
imports of goods and services 
imports of goods and services 
private consumption prices 
central government consumption prices 
fixed investment prices 
import prices 
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PMR 
POV 
PQ 
PW 
PX 
R 

RO 
RU 
SVTUL 

TFF 
TH 

THR 

TREND 
VVQ 
XQ 
XTQ 
XTV 

YF 
YH 

import prices of oil 
bank deposits of the public 
GDP-deflator 
wage rate 
export prices 
bank lending rate 
interest rate on central governmentbonds 
interest rate on 3 month eurodollar deposits 
unit labor costs of Finland's major export countries 
long-term foreign debt, net 
time deposits of households 
household tax rate 
linear trend 
stock of inventories 
exports of multilateral goods and all exports of services 
exports of goods and services 
exports of goods and services 
disposable income of firms 
disposable income of households 



APPENDIX II 

Parameter estimates OLS, BLS, YP4, YP5, YP6 and MY. 

OLOGXQ= 1.234 OLOG MSVT -0.513 DLOG{PWX/SVTUL) 
(O.232) (O.261) 

1.246 -0.661 
(O.234) (O.295) 

1.265 -0.904 
(O.248) (O.519) 

1.258 -0.820 
(O.242) (O.402) 

1.255 -0.782 
(O.240) (O.388) 

1.219 -0.319 
(O.236) (O.289) 

DMTQ=0.6380IQ+0.668DIVQ+0.2880CQ+0.420DXTQ+6245{PQ/PM) 
(O.095) (O.048) (O.062) (O.054) (2537) 

0.626 0.635 0.367 0.354 5638 
(O.125) (O.058) (O.090) (O.080) (3068) 

0.738 0.642 0.182 0.554 8966 
(O.821) (O.123) (O.650) (O.704) (17869) 

0.673 0.661 0.258 0.474 9553 
(O.694) (O.093) (O.526) (O.574) (15516) 

0.673 0.661 0.258 0.474 9553 
(O.694) (O.093) (O.526) (O.574) (15516) 

0.650 0.660 0.422 0.263 3875 
(O.168) (O.114) (O.141) ·(O.152) (4527) 
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LOG{LHW/GDPQ!0.5!)= -0.304 +0.923LOG(LHW/GDPQ!0.5! )1!! 
(0.266) (0.071) 

-0.157 0.962 
(0.293) (0.079) 

-0.367 0.906 
(0.459) (0.124) 

-0.271 0.931 
(0.444) (0.120) 

-0.255 0.936 
(0.328) (0.088) 

-0.534 0.860 
(0.306) (0.082) 

-0.098LOG(PWS/PQ) -0.205DLOG(GDPQ)!0.5! -0.232DLOG(GDPQ)!1.5! 
(0.098) (0.112) (0.111 ) 

-0.043 -0.232 -0.220 
(0.109) (0.120) (0.114) 

-0.121 -0.212 -0.227 
(0.172) (0.159) (0.125) 

-0.086 -0.252 -0.209 
(0.167) (0.152) (0.123) 

-0.081 -0.248 -0.211 
(0.122) (0.130) (0.116) 

-0.186 -0.256 -0.190 
(0.114) (0.126) (0.119) 

DLOGPW= 0.772DLOG(PC!0.5!)+0.055DLOGPX 
(0.074) (0.042) 

0.755 0.054 
(0.076) (0.042) 

0.727 0.052 
(0.153) (0.043) 

0.740 0.053 
(0.078) (0.042) 

0.755 0.054 
(o.on) (0.042) 

0.752 0.054 
(0.08!) (0.042) 
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o .532D(YF /GDPV) !1 1 +1.241GROWTH +1.524DTHR 
(0.204) (0.203) . (0.395) 

0.520 1.282 1.531 
(0.204) (0.207) (0.395) 

0.501 1.345 1.515 
(0.226) (0.375) (0.408) 

0.509 1.316 1.522 
(0.206) (0.211 ) (0.397) 

0.520 1.280 1.531 
(0.204) (0.209) (0.396) 

0.518 1.287 1.530 
(0.205) (0.216) (0.396) 

DLOGPC= 0.3370LOG(PCl11) -0.468DLOG(GDPQ/LHW) 
(0.076) (0.135) 

0.349 -0.438 
(0.080) (0.157) 

0.418 -0.276 
(0.094) (0.199) 

0.403 -0.349 
(0.089) (0.183) 

0.404 -0.350 
(0.089) (0.182) 

0.378 -0.332 
(0.087) (0.179) 

0.503DLOGPWS +0.187DLOGPM -0.036(MC-R)121 
(0.076) (0.039) (0.030) 

0.483 0.191 -0.037 
(0.086) (0.040) (0.031) 

0.367 0.215 -0.037 
(0.1130) (0.045) (0.030) 

0.400 0.210 -0.035 
(0.105) (0.0433) (0.033) { 

0.399 0.210 -0.035 
(0.105) (0.043) (0.030) 

0.426 0.202 -0.038 
(0.101) (0.042) (0.030) 
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DLOGPI= 0.607DLOGPWS+ 0.391DLOGPM -0.172(MC-R)!1.5! 
(0.052) (0.042) (0.045) 

0.613 0.388 -0.002 
(0.052) (0.043) (0.045) 

0.621 0.383 -0.179 
(0.057) (0.045) (0.050) 

0.621 0.383 -0.179 
(0.054) (0.044) (0.046) 

0.622 0.382 -0.180 
(0.054) (0.044) (0.050) 

0.632 0.377 -0.185 
(0.053) (0.043) (0.050) 

DLOGPG= 0.088DLOG(PG!1!) + 0.864DLOGPW +'O.110DLOGPM -O.281DLOG(GQ) 
(0.084) (0.113 ) (0.040) (0.162) 

0.078 0.884 0.107 -0.297 
(0.094) (0.138) (0.043) (0.175) 

0.100 0.842 0.115 -0.262 
(0.109) (0.176) (0.048) (0.198) 

0.112 0.818 0.119 -0.241 
(0.109) (0.175) (0.048) (0.198) 

0.112 0.818 0.119 -0.241 
(0.108) (0.174) (0.048) (0.197) 

0.220 0.611 0.160 -0.067 
(0.122) (0.194) (0.054) (0.222) 
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DLOGIVP=-0.259DLOG{IVP)-1 + 0.450DLOG ~0.850DLOGPWS 
(0.103) (0.050) (0.107) 

-0.291 0.446 0.892 
(0.113) (0.050) (0.122) 

-0.331 0.442 0.942 
(0.129) (O.052) (0.144) 

-0.315 0.444 0.921 
(0.123) (0.O51) (0.135) 

-0.288 0.447 0.888 
(0.118) (0.050) (0.129) 

-0.290 0.446 0.891 
(0.114) (0.050) (0.122) 

-0.109 (MC-R) ! 11 -0.142{MC-R)!2! 
(0.042) (0.039) 

-0.116 -0.148 
(0.042) (0.039) 

-0.124 -0.153 
(0.040) (0.040) 

-0.121 -0.151 
(0.040) (0.040) 

-0.115 -0.147 
(0.040) (0.040) 

-0.115 -0.147 
(0.040) (0.040) 

LOGIQC1= 3.038 + 0.656LOG{IQC1)!1! + 0.086LOG{GLH/IVP) 
(0.764) (0.091) (0.034) 

3.131 0.665 0.095 
(0.816) (0.097) (0.038) 

2.264 0.751 0.059 
(1.139) (0.137) (0.055) 

3.200 0.636 0.105 
(0.905) (0.108) (0.044) 

3.204 0.636 0.105 
(0.889) (0.106) (0.043) 

3.054 0.654 0.090 
(0.769) (0.091) (0.035) 
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0.312DLOGIVP -0.277{MC-R)!1! -0.379{MC-R) !2! . 
( 0.231) (0.100) (0.100) 

0.240 -0.271 -0.387 
(0.273) (0.115) (0.1l9) 

-0.062 -0.284 -0.412 
(0.340) (0.130) (0.130) 

0.083 -0.262 -0.404 
(0.310) (0.120) (0.120) 

0.086 -0.262 -0.403 
(0.283) (0.120) (0.120) 

0.258 -0.275 -0.385 
(0.244) (0.1l0) (0.120) 

LOGCQ= 0.884 + 0.667LOG{YH/PC) + 0.245LOG{YH/PC)!1! 
(0.155) (0.149) (0.141) 

0.948 0.600 0.300 
(0.214) (0.022) (0.022) 

1.109 0.594 0.297 
(0.218) (0.020) (0.020) 

1.139 0.592 0.296 
(0.229) (0.021) (O.021) 

1.149 0.592 0.296 
(0.227) (0.021) (0.021) 

1.194 0.589 0.294 
(0.273) (0.025) (0.025) 

0.350DLOG{LPH/PC) -0.202{R-DLOGPC) 
(0.141) (0.100) 

0.270 -0.558 
(0.100) (0.506) 

0.479 -0.445 
(0.250) (0.250) 

0.611 -0.513 
(0.191) (0.250) 

0.580 -0.523 
(0.179) (0.250) 

0.706 -0.624 
(0.262) (0.330) 



173 

RO= 0.646RO!1! +0.059DLOGPC +0.573R +0.007LOG(GBH/YH) 
(0.078) (0.023) (0.129) (0.002) 

0.655 0.064 0~550 0.006 
(0.080) (0.025) (0.140) (0.002) 

0.693 0.075 0.429 0.005 
(0.097) (0.034) (0.201) (0.003) 

0.670 0.065 0.492 0.005 
(0.093) (0.032) (0.191) (0.003) 

0.666 0.063 0.502 0.005 
(0.086) (0.027-) (0.167) (0.003) 

0.651 0.068 0.576 0.007 
( 0.081) (0.031) (0.131) (0.002) 

LOG(TH/PC)= 0.805LOG(TH/PC)!1! +0.398DLOG(YH/PC) 
(0.092) (0.159) 

0.804 0.478 
(0.100) (0.186) 

0.761 0.623 
(0.133) (0.337) 

0.811 0.477 
(0.121) (0.301) 

0.829 0.422 
(0.107) (0.249) 

0.790 0.376 
(0.108) (0.199) 

-0.808DLOGPC +0.211LOG(LPH/PC)!1! -0.921(RO-R) 
(0.129) (0.095) (0.640) 

-0.794 0.212 -0.722 
(0.146) (0.104) (0.711) 

-0.774 0.256 -1.004 
(0.211) (0.139) (0.960) 

-0.769 0.205 -0.768 
(0.198) (0.126) (0.885) 

-0.753 0.186 -0.754 
(0.192) (0.111) (0.880) 

-0.826 0.227 -1.134 
(0.154) (0.112) (0.760) 
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LOG{LPH/PC)= -0.479 +0.607LOG{LPH/PC) 111 -0.257(MC-R) 11.51 
(0.303) (0.123) (0.100) 

-0.281 0.743 -0.373 
(0.391) (0.158) (0.176) 

-1.639 0.155 0.163 
(0.942) (O.373) (0.370) 

-1.434 0.243 0.083 
(0.803) (0.315) (0.320) 

-1.408 0.256 0.071 
(0.793) (0.310) (0.310) 

-0.377 0.617 -0.272 
(0.350) (0.138) (0.160) 

+0.614LOG{POV/PC) -0.203LOG{LPF/PC) -0.997DCRI11 
(0.173) (0.059) (0.628) 

0.509 -0.260 -1.203 
(0.231) (0.090) (0.708) 

1.345 -0.373 -1.301 
(0.580) (0.150) (0.982) 

1.218 -0.353 -1.279 
(0.494) (0.134) (0.893) 

1.203 -0.355 -1.289 
(0.488) (0.133) (0.885) 

0.540 -0.144 -0.841 
(0.205) (0.075) (0.659) 
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LOG{KF/GDPQ)= 0.120 +0.857LOG{KF/GDPQ)!1! -1.065DLOGGDPQ 
(0.025) (0.041) (0.063) 

0.116 0.864 -1.108 
( 0.027) (0.043) (0.070) 

0.088 0.918 -1.270 
(0.038 (0.065) (0.154) 

0.099 0.900 -1.235 
(0.034) (0.058) (0.138) 

0.103 0.893 -1.209 
(0.032) (0.054) (0.128) 

0.115 0.868 -1.117 
(0.026) (0.043) (0.078) 

-0.013LOG{PMR/PI) -0.118 (R-DLOGP 1) -0.053{MC-R)!1.5! 
(O .004) (0.034) (0.026) 

-0.014 -0.132 -0.055 
(0.004) (0.037) (0.028) 

-0.021 -0.168 -0.100 
(O.006) , (0.055) (0.050) 

-0.019 -0.139 -0.093 
(0.006) (0.047) (0.040) 

-0.018 -0.128 -0.088 
(0.005) (0.043) (0.040) 

-0.015 -0.124 -0.065 
(0.004) (0.038) (0.030) 

LOGVV1Q= -0.408 +0. 251LOGVV1 Q! 1! +0.763LOGGDPQ!1! 
(0.852) (0.126) (0.087) 

-0.410 0.253 0.764 
(0.855) (0.126) (O.089) 

-0.410 0.253 0.764 
(0.855) (0.126) (0.087) 

-0.410 0.253 0.764 
(0.854) (0.126) (0.087) 

-0.408 0.254 0.763 
(0.853) (0.126) (0.087) 

-0.410 0.253 0.764 
(0.855) (0.126) (0.087) 
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-0.223(RU-DLOGPI) -0.738(LFT/GDPV)-1 
(0.090) (0.165) 

-0.248 -0.739 
(0.095) (0·.166) 

-0.249 -0.739 
(0.115) (0.166) 

-0.244 . -0.739 
(0.110) (0.166) 

-0.231 -0.738 
(0.100) (0.087) 

-0.248 -0.739 
(0.090) (0.166) 

DLUFS/PI= -20.429 + 0.270(DLUFS/PI)-1 -0.402D(XTV/PI) 
(9.978) (0.171) (0.127) 

-22.695 0.305 -0.379 
(11.680) (0.178) (0.160) 

-18.931 -0.046 -0.822 
(38.127) (0.0583) (0.812) 

-28.052 0.014 -0.610 
(19.353) (0.449) (0.344) 

-33.803 0.206 -0.439 
(14.445) (0.273) (0.169) 

-31.189 0.340 -0.456 
(15.200 ) (0.261) (0.590) 

+0.548D(MTV/PI) -0~264(TFF/PI)-1 +0.307(IF-YF)/PI +13.299D6368 
(0.118) (0.203) (0.105) (7.902) 

+0.580 -0.240 +0.309 +14.549 
(0.207) (0.209) (0.178) (8.444) 

+0.560 -0.271 +0.425 +14.431 
(0.304) (0.413) (0.324) 

+0.557 -0.299 0.474 18.468 
(0.248) (0.328) (0.228) (12.663) 

0.644 -0.228 0.437 21.147 
(0.173) (0.262) (0.188) (10.166) 

0.729 -0.135 0.355 20.069 
(0.340) (0.352) (0.183) (11.596) 



APPENDIX II 1 

GLOSSARY OFTERMS AND DEFINITIONS 

1. List of estimation methods mentioned in the text 

OLS 

2SLS 

2SLS1 

2SLS2 

3SLS 

3S/0LS 

FILM 

LIML 

IV 

!IV 

RRF2SLS 

RRFIV 

MLE 

Ordinary least squares 

Two stage least squares 

Two stage least squares using first and second order 
polynomials of the predetermined variables as first 
stage regressors 

Two stage least squares using second order polynomials 
of the predetermined variables as first stage regressors 

Three stage least squares 

Three stage least squares with OLS start 

Full information maximum likelihood 

Limited information maximum likelihood 

Instrumental variable estimation 

Iterative instrumental estimation 

Restricted reduced form two stage least squares 

Restricted reduced form instrumental variable estimation 

Maximum likelihood estimation 
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2. List of estimated models in this study 

The names of the madels refer to the estimation methods that have 
been used. The structure af the madels is the same, that is the 
KT-madel of the Bank of Finland. 

OLS model 

2TS model 

2BL model 

PKE model 

PKR madel 

\ 

YP4 madel 
YP5 madel 
YP6 model 

MY model 

NY model 

Ordinary least squares estimation 

2SLS estimation based on a first division of 
the madel into a real block, a price block and 
a monetary b 1 ock 

2SLS estimation based on a second division of 
the model in which the matrix of the 
parameters of the endogenous variables was as 
close as possible to the blockdiagonal 
interpretation 

2SLS estimation with 4 principal components 
corresponding to the largest characteristic 
roots, the same for each equation 

2SLS estimation with 4 principal camponents 
selected on the bases of size rif the 
correspanding characteristic raots and the 
correlation coefficients in regressing the 
principal components on the predetermined 
variables in each equation 

2 SLS estimatian with 4, 5 and 6 principal 
komponents calculated separately for each 
equation 

2SLS estimation using OLS start 

2SLS estimation using PKE start 
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3. The simulation time horizon 

Forecast and prediction are used to mean the same thing. They also 

mean the same thing as solution and prediction. 

The time horizon over which the simulation is performed is defined 

in this study as follows: 

an ex post simulation is a model solution over the 

estimation period. 

an ex post forecast is a model solution beyond the 
estimation period using actual existing values of the 

exogenous variables. 

an ex ante forecast is a model solution beyond the priod 

for which data exist. 

The diagram below illustrates the time horizon: 

estimation or forecast or 
within-sample period outside sample period 

I --------------------------~ -----------------~ -----------------~ 
today 

ex post simulation ex post forecast ex ante forecast 
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4. Statistical measures 

MAPE mean absolute per cent erro 

MAE mean absolute error 

RMSE root mean square error 

AMSPE 

where 

yS 
t 

- T 

asymptotic mean square prediction error 

plim 1fT J. (Y~ _ y~)2 
t+oo 

is the simulation (forecast, prediction) value. 

is the actual value. 

is the number of observations. 

RMSE and MAPE are the usual measures. When using RMSE we have, 
contrary to the MAPE statistics, to assume the existence of the 
first and second moments of the model forecasts. 

Let the simulated value for method k be denoted by Yk and the 

historical value by Y. The bias of the simulation value for method 
k is then EYk - Y and the corresponding variance E(Y-EYk)2. Taken 
alone as a measure of goodness of the simulation both bias and the 
variance are poor measures. The expected squared error 
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takes account of both variance and biasbecause it can be shown to 
be the sum of the variance and the squared bias: 

This measure is used as the 10ss function in statistica1 decision 
theory. The MAPE measure gives equa1 weights to the errors but when 
using the expected squared error the 10ss associated with the 
errors is he1d propotiona1 to the square size of the error. Of 
course, it depends on the purpose of the comparison whether or not 
it is preferred to pena1ise 1arge errors more heavi1y. 
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