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model uncertainty meets design limits∗
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Abstract

We offer a contribution to the analysis of optimal monetary policy. The canonical approach to de-

termine what policy rule a central bank should follow is to take a single structural model and minimize

the unconditional volatilities of inflation and real activity. In this paper, we design monetary policy

rules that robustly perform well across a wide set of structural models and that minimize the volatil-

ities at those frequencies policymakers are most interested in stabilizing. We find that rules robust

to model uncertainty call for much less aggressive responses by policymakers. Frequency-specific

stabilization preferences further dampen their optimal policy responses.
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1 Introduction

We propose a new way to design optimal monetary policy rules. The canonical approach to find the

interest rate rule a central bank should follow is to take a structural macroeconomic model and find

the interest-rate (Taylor) rule coefficients that minimize the central bank’s objective function, which is

usually a weighted average of the unconditional variances of inflation and real activity. In this paper, we

question this approach for two reasons.

First, policymakers have a large number of structural models at their disposal to make their decisions,

but none of them is the true model of the economy and none may be ideal for answering a specific

policy question. Furthermore, as shown by e.g. Levin, Wieland and Williams (2003), a policy rule

that is optimal in one model may lead to poor or even disastrous outcomes in other models, hence the

choice of model(s) matters. The lack of robustness of model-specific rules is a recurrent finding in the

literature. Relying on a single structural model is thus likely to imply an excessively narrow perspective

and model uncertainty should be taken seriously when designing optimal policy rules. To address this

issue, the literature on model-robust monetary policy has proposed and identified monetary policy rules

whose stabilization properties remain relatively good regardless of the model of the economy used. A

common finding in this literature is that simple model averaging offers an effective strategy for improving

the robustness of monetary policy rules.1

Second, monetary policy, through interest-rate setting, should be used to smooth cyclical fluctuations and

not as an instrument to fine-tune high-frequency fluctuations of inflation and real activity or to promote

long-term economic growth. Policymakers should thus aim at stabilizing specific frequencies of inflation

and real activity, and not their unconditional volatilities, as is commonly done in the literature. By fo-

cusing on the weighted average of the unconditional variances of inflation and real activity, policymakers

1 Levin and Williams (2003), Levin et al. (2003), Taylor and Wieland (2012), Schmidt and Wieland (2013), and Wieland,
Afanasyeva, Kuete and Yoo (2016) compute model-robust monetary policy rules using structural models of the United States
(US) economy, Côte, Kuszczak, Lam, Liu and St-Amant (2004) analyze the performance and robustness of simple monetary
policy rules in models of the Canadian economy, and Adalid, Coenen, McAdam and Siviero (2005), Kuester and Wieland
(2010), and Orphanides and Wieland (2013) run the analysis using structural models for the Euro Area (EA) economy.
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(and researchers) ignore the different high-, business cycle- and low-frequency (HF, BCF, and LF, respec-

tively) effects of monetary policy on those variables. These frequency-specific effects of monetary policy

choices have been emphasized by e.g. Onatski and Williams (2003), Brock, Durlauf, Nason and Rondina

(2007), and Brock, Durlauf and Rondina (2008, 2013). These studies, which are based on the design

limits theory, show that the choice of a policy rule yields a frequency-by-frequency variance trade-off,

whereby reducing the variance of targeted variables at certain frequencies may increase the variances at

other frequencies.

Table 1 provides an example of the frequency-by-frequency variance trade-off. The first row reports the

volatility of inflation (first column) and the volatility of three of its frequency components (HF, BCF, and

LF in the subsequent columns) when the central bank follows a Taylor rule that minimizes the volatility

of inflation. The second and third rows report the percentage differences in the volatility of inflation

and of its frequency components compared to the first row when the central bank follows a Taylor rule

that minimizes the volatility of the BCF or LF components of inflation only, respectively. A Taylor rule

that minimizes the variance of inflation at BCF (LF) does so at the expense of increasing the variance

of inflation at LF (HF and BCF). Policymakers have to be aware and informed of this trade-off when

evaluating and deciding on policies, as they should act to reduce the volatility at frequencies they are

most interested in stabilizing.

Against this background, in this paper we depart from the canonical approach and analyze the perfor-

mance of monetary policy rules in the face of model uncertainty and with respect to the frequency-

specific behavior of inflation and output growth in a unified framework. Our contribution is twofold.

First, we contribute to the literature on model-robust monetary policy rules by designing frequency-

based model-robust (and model-specific) policy rules using a wide set of Dynamic Stochastic General

Equilibrium (DSGE) models for the US economy, which includes the latest vintage of DSGE models.

We also compute optimal policy rules by splitting the models in many different ways according to their

key features, and not simply between backward- and forward-looking models as done in most of the liter-
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ature.2 Second, we contribute to the literature on design limits in monetary policy by designing optimal

frequency-specific monetary policy responses across a large number of DSGE models. Previously, this

literature mainly relied on a single simple two-equation New Keynesian (NK) class of inflation and output

models. Furthermore, it focused on analyzing the sensitivity of rules to frequency-specific preferences

instead of addressing the design of optimal monetary policy responses, as we do in this paper.

In terms of substantive conclusions, we emphasize the following results. Compared to the status quo of

using a single structural model and minimizing the unconditional variances of inflation and real activity,

we find that both model uncertainty and frequency-specific preferences call for less aggressive responses

by monetary policymakers. From a quantitative point of view, model uncertainty however plays a much

bigger role in the design of optimal monetary policy rules, as it more than halves the optimal policy

responses. Frequency-specific preferences have a smaller dampening impact on the optimal policy re-

sponses.

The rest of the paper is organized as follows. In Section 2, we introduce the DSGE models used, the

central bank objective functions, the monetary policy rule, and the frequency decomposition. In Section

3, we analyze the optimized model-specific and model-robust monetary policy rules, and we conduct

various experiments and robustness checks. Section 4 concludes.

2 The setup

2.1 DSGE models

DSGE models are widely used for monetary policy analyses in academia and policy institutions. We take

several DSGE models from the Macroeconomic Model Data Base.3 These models share antecedents
2 Binder, Lieberknecht, Quintana and Wieland (2019) represents an exception, but they only differentiate between models

with and without financial frictions.
3 www.macromodelbase.com/. Wieland, Cwik, Müller, Schmidt and Wolters (2012) and Wieland et al. (2016) explain

database developments over the years and provide several applications.
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and the same methodological core, but each emphasizes different transmission channels, frictions, and

shocks. We started from a larger set of models and eliminated the ones that were not well behaved in terms

of volatilities (i.e. they generate too large and implausible volatilities of the key macro variables), the

unstable models, as well as different versions of the same models (which were too similar to other models

already included). Ultimately, we use 29 US economy models. Some of these models are currently

used in policy institutions for forecasting and policy simulations (e.g. the del Negro, Giannoni and

Schorfheide, 2015 model is in use at the New York Fed).4

About half of the models are either small-scale NK models (e.g. three-equation models) or medium-

sized DSGE models (e.g. Smets and Wouters, 2007). We include the small-scale NK models to render

policy recommendations more robust to model uncertainty. Furthermore, as del Negro, Hasegawa and

Schorfheide (2016) show, these models are more useful than larger models in certain situations and simu-

lations, namely their forecasting performances in tranquil periods are usually better compared to those of

larger models with financial frictions. The remaining half are larger models and feature financial frictions

in the form of the Bernanke, Gertler and Gilchrist (1999) financial accelerator or financial intermediation

along the lines of Gertler and Karadi (2011).

All models feature nominal price rigidity à la Calvo (1983) or Rotemberg (1982), and more than half of

them also include nominal wage rigidities following Calvo (1983). One model features an accelerationist

Phillips curve that is purely backward-looking with respect to inflation. Every third model incorporates

a forward-looking New Keynesian Phillips curve, while the remaining two-thirds contain backward- and

forward-looking elements that result in a hybrid Phillips curve. Most models include real rigidities such

as habit formation in consumption, and either investment or capital adjustment costs.

Finally, some models provide more detailed modelling of certain sectors of the economy such as the labor

market (using search and matching frictions à la Mortensen and Pissarides, 1994) or the housing market

(usually by introducing heterogeneity in the households sector following the Iacoviello, 2005 setup with

4 In a previous version of the paper, we also run the analysis separately for the Euro area using nine DSGE models, which
are calibrated or estimated on Euro area data. The results are similar and are available in Dück and Verona (2023).
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patient savers and impatient borrowers).

Estimated models differ in the estimation method and the data sample used for estimation. We take the

results of the estimation or the calibrated values as provided by the authors. The list of model acronyms

and a summary of the key features of each model are provided in Table 8 in Appendix A.

2.2 Central bank preferences and objective functions

Inflation and output (or unemployment) are the key variables central banks usually look at when making

their policy decisions. However, stabilizing certain frequencies of these variables seems to be more

important for policymakers than stabilizing others.5

For instance, Lagarde (2021) and Powell (2021) argue that monetary policymakers should not attempt

to offset what are likely to be temporary (i.e. high-frequency) fluctuations in inflation, as these fluctua-

tions may disappear before monetary policy can have any effect on the economy. Likewise, as long-term

inflation is ultimately a monetary phenomenon under the control of the central bank, policymakers may

be reluctant to make interest-rate decisions that may potentially destabilize low-frequency fluctuations

in inflation.6 Regarding real activity, conventional monetary policy cannot directly affect the long-term

growth rate of the economy (Mester, 2023) and should not be used to fine-tune high-frequency fluctua-

tions in the real economy. Overall, as argued by Kažimír (2024), acting based on short-term surprises

without having clarity about the medium term would be risky.

Given these clear frequency-specific preferences, in this paper we consider several objective functions for

the central bank (reported in Table 2) so that monetary policymakers can act according to their preferences

with respect to fluctuations at different cycles.

5 This is explicitly stated in the mandate of some central banks. For instance, the European Central Bank (ECB) states that
“price stability is best maintained by aiming for 2% inflation over the medium term”, while the Sveriges Riksbank aims at
maintaining “low and stable inflation over the long term”, according to the Sveriges Riksbank Act (italics added).

6 As reported in Verona, Martins and Drumond (2013, Table 1), the Fed has been using forward guidance (on nominal
interest rate) at least since June 2003 to shape inflation expectations and, ultimately, inflation in the long run.
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As a starting point, we choose the traditional objective function (OF) that considers the unconditional

variances (var) of inflation (π) and output growth (∆y). The literature often refers to the output gap

(defined as the deviation of output from potential output) rather than output growth in the central bank’s

objective function (and in the Taylor rule). As pointed out by Plosser (2010), the use of output gap,

however, is problematic for at least two reasons. First, its estimations from the data depend on the

empirical method used to compute potential output. Second, different models of the economy can employ

different theoretical concepts for the output gap. In contrast, output growth is easy to compute from the

data and is consistently defined across models.

We then consider several objective functions that include only some frequencies of the relevant variables.

In particular, given the discussion above, we ignore altogether the HF fluctuations of inflation and output

growth, as well as the LF fluctuations of output growth. Instead, we consider different combinations of

BCF and LF volatilities of inflation and the BCF volatility of output growth.

We follow the norm in the business-cycle literature (e.g. Brock et al., 2013) and define BCF fluctuations

as those with a period of two to eight years. Hence, we consider all frequencies below two years and above

eight years as HF and LF fluctuations, respectively. In the robustness section, we consider different ways

of computing BCF fluctuations.

We attach a relative weight λy to output growth and consider different values for this parameter. Notably,

λy > 0 seems to be more in line with the Fed’s dual mandate of price stability and maximum employment,

while λy = 0 more closely characterizes the ECB’s strict inflation target regime. Furthermore, in all

objective functions, following common practice in the literature (see e.g. Smets, 2003 and Kuester and

Wieland, 2010), we introduce a preference for restraining the variability of changes to nominal interest

rates (∆r) with a weight of 0.5. This term is intended to capture the tendency of central banks to smooth

interest rates and avoid extreme values of optimized response coefficients that would be very far from

empirical observation and may (frequently) violate the zero lower bound constraint on nominal interest

rates.
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2.3 Taylor rules

We assume that policymakers try to achieve their targets by setting the nominal interest rate according to

the following Taylor rule:

rt = ρrt−1 +αππt +αy∆yt ,

where rt is the quarterly annualized nominal interest rate, πt is the quarterly annualized inflation rate, ∆yt

is the quarter-on-quarter output growth, απ and αy are the interest rate responses to current inflation and

output growth, respectively, and ρ captures the degree of interest rate smoothing.

This rule belongs to the class of simple and implementable Taylor rules (Schmitt-Grohe and Uribe, 2007

and Faia and Monacelli, 2007) and is widely used in the literature (see e.g. Gilchrist and Zakrajsek, 2011

and Carrillo and Poilly, 2013). We focus on interest-rate feedback rules belonging to this class because

they are defined in terms of readily available macroeconomic indicators, i.e. the central bank sets the

short-run nominal interest rate by responding only to observable variables.

2.4 Frequency decomposition

To extract the different frequency components from the time series of inflation and output growth, we use

the Maximal Overlap Discrete Wavelet Transform (MODWT). This approach permits the decomposition

of any variable, regardless of its time series properties, into a trend and several cycles in a manner similar

to the traditional Beveridge and Nelson (1981) time series trend-cycle decomposition approach.

By using the MODWT with the Haar filter, any variable Xt can be decomposed as:

Xt =
J

∑
j=1

XD j
t +XSJ

t , (1)

where XD j
t are the wavelet coefficients at scale j, and XSJ

t is the scaling coefficient. These coefficients
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are given by

XD j
t =

1
2 j

[
2( j−1)−1

∑
i=0

Xt−i−
2 j−1

∑
i=2( j−1)

Xt−i

]
(2)

and

XSJ
t =

1
2J

2J−1

∑
i=0

Xt−i . (3)

Equations (1)-(3) show that the original series Xt can be decomposed (by means of an appropriate se-

quence of band-pass filters) in different time series components, each defined in the time domain and

representing the fluctuation of the original time series in a specific frequency band. The coefficients XD j
t

can then be viewed as components with different levels of persistence operating at different frequencies,

whereas the scaling coefficient XSJ
t corresponds to the LF trend of the series. We note that the Haar filter

is a one-sided filter, so it can be used in real time by policymakers to disentangle the frequency of the

fluctuations of the variables of interest.7

In this paper we compute a J=4 level decomposition of our time series. The time period in the models

is usually a quarter, hence the first component (XD1
t ) captures fluctuations with a period between 2 and

4 quarters, while the components XD2
t , XD3

t , and XD4
t capture fluctuations with periods of 1-2, 2-4, and

4-8 years, respectively. Finally, the scale component XSJ
t captures fluctuations with a period longer than

8 years.8 Subsequently, we define the HF component of inflation and output growth (e.g. inflation, πt)

as πHF
t = π

D1
t + π

D2
t , the BCF component (πBCF

t ) as πBCF
t = π

D3
t + π

D4
t , whereas its LF components

correspond to π
S4
t . That is, cycles with periodicity below (above) two (eight) years are considered as HF

(LF) fluctuations, whereas BCF fluctuations as those with a period of two to eight years.

Even though our analysis is purely theoretical, for illustrative purposes we show the frequency decom-

position using US data from 1990Q1 to 2017Q4 for two variables: year-on-year Personal Consumption

7 The Haar filter is widely used in macro and finance applications (see e.g. Faria and Verona, 2018, 2020, 2021, Bandi,
Perron, Tamoni and Tebaldi, 2019, Kilponen and Verona, 2022, Martins and Verona, 2023, and Stein, 2024). It has some
intuitive advantages over band-pass filters, as it operates in the time domain and the number of moving average terms is finite.

8 In the MODWT, each wavelet component at frequency j approximates an ideal high-pass filter with passband f ∈[
1/2 j+1 , 1/2 j

]
. Hence, they are associated with periodicity fluctuations

[
2 j , 2 j+1

]
(quarters, in our case). We provide the

analytical expressions for these components in Appendix B, .
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Expenditures (PCE) inflation rate and quarter-on-quarter real output growth. The first row in Figure 1

reports the time series of the variables, along with business-cycle recessions (depicted as gray-shaded ar-

eas). The US economy experienced three recessions over the sample period, with negative GDP growth

around those recessions. Inflation mostly fluctuates around 2 %, with some larger swings around the

global financial crisis (GFC) of 2007-2008.

The second to fourth rows in Figure 1 report the time series of the frequency components for both vari-

ables. Most of the volatility of GDP growth during the GFC is due to its HF and BCF fluctuations,

whereas its LF component seems to have shifted to a somehow lower level after the GFC (from 2.5 %

to 1.5 %). Similarly, the large swings of inflation during and after the GFC are mainly due to its HF

and BCF components, while the LF component of inflation (often interpreted as the inflation target or

the perception thereof) has been remarkably anchored to the 2 % inflation target of the Fed since the

late-1990s.

3 Optimized monetary policy rules

In this section, we first analyze the optimized monetary policy rule for each DSGE model separately

(Sub-section 3.1), and then we evaluate the implications of model uncertainty for the design of monetary

policy rules (Sub-section 3.2). In Sub-section 3.3, we quantify the costs of model uncertainty and of

ignoring frequency-specific preferences in terms of increase in the OF of the central bank. In Sub-section

3.4, we split the models according to their key features and compute model-robust rules for each group

of models separately. Finally, in Sub-section 3.5, we report the results of some robustness tests.
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3.1 Model-specific rules

For each model m ∈M, we solve the following optimization problem:

min
{ρ,απ ,αy}

Varm

(
π

f req
)
+λyVarm

(
∆y f req

)
f req = BCF,LF,all

s.t. rt = ρrt−1 +αππt +αy∆yt

Et
[

fm
(
xm

t ,x
m
t+1,x

m
t−1,zt ,Θ

m)]= 0

and there exists a unique and stable equilibrium for that model (that is, the Taylor principle is verified),

where fm is the set of all model-specific equations besides the policy rule. xm and Θ
m are model-specific

endogenous variables and parameters, while z are common endogenous variables in all models. When

computing the optimized model-specific (and model-robust) rules, we set the limits for each policy rule

coefficient (ρ ∈ [0,0.9], απ ∈ [0.1,5], and αy ∈ [0,2]) and run a grid search (with steps of size 0.1 (0.2)

below (above) 1 for all grids) to minimize the objective function.

We run the analysis considering the unconditional volatilities of the variables of interest (denoted all, be-

cause all frequencies are implicitly included in this case), as well as for different frequency combinations

in the objective function (as reported in Table 2). In the baseline case, we consider λy = 0 and λy = 1.

The first three columns in Table 3 show the averages of the optimized model-specific coefficients. We

emphasize four main results. First, the average smoothing coefficient on the nominal interest rate is 0.9

regardless of the objective function. Second, if the central bank cares about stabilizing only one frequency

fluctuation of inflation (either the BCF or the LF), then the optimized model-specific rules imply smaller

or similar average response coefficients to inflation. However, stabilizing both frequencies of inflation

leads to an average inflation response higher or similar to that of stabilizing aggregate inflation. Third,

if the central bank is concerned about output growth stabilization, the average response to output growth

is larger (as one would expect), while the response to inflation is smaller. Fourth, when the central bank

aims at stabilizing the BCF of GDP growth, then its average response to GDP growth is lower than in the
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case when it aims at stabilizing the volatility of aggregate GDP growth.

In Figure 2, we plot the distribution of optimized model-specific coefficients. It is clear that not only

the average model-robust coefficients (red crosses) are lower when the policymaker aims at stabiliz-

ing only some frequencies of inflation and output growth, but the entire distributions of the optimized

model-specific coefficients shift downwards. Frequency-specific preferences thus call for somehow more

restrained responses by policymakers.

Next, we analyze the extent to which optimized model-specific rules are robust to model uncertainty or,

in other words, the cost of ignoring model uncertainty. We do so by evaluating the performance of rules

optimized for one model in the other models. Table 4 reports the percentage increase in objective function

1 (% L) when using a rule optimized for model X in model Y relative to using the rule that is optimized

for model Y.9 To interpret the economic significance of this metric, Levin and Williams (2003) looked

at historical variations in the value of % L and conclude that a rule generating % L up to 50 % might be

viewed as yielding satisfactory performance, whereas a rule yielding % L greater than 100 percent would

suggest that insurance against model-uncertainty is prohibitively costly.

This exercise reveals that rules optimized for a specific model generate substantial losses (but never

explosiveness / indeterminacy or multiple equilibrium) in several other models. This finding comports

with earlier results in the literature. In more detail, we find that the majority of optimized model-specific

rules (displayed in the rows of Table 4) trigger steep increases in many other models, and are hence

considered to be unsuitable in the presence of model uncertainty. However, two model-specific rules

(M_1 and M_2) are robust to model uncertainty as they do not cause loss increases above 65 %, while four

other rules (M_3, M_13, M_22, and M_24) perform fairly well across all models. Similarly, as displayed

in the columns of Table 4, only few models (especially M_12) are not too sensitive to other optimized

model-specific rules, whereas most models generate high % L increases for various rules optimized for

other models.
9 The results hold for all the other objective functions of the central bank.
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3.2 Model-robust rules

Given the lack of robustness of the optimized model-specific rules discussed in the previous sub-section,

we now search for the rules that perform well across all models. We do so by following Levin et al.

(2003), Taylor and Wieland (2012), and Orphanides and Wieland (2013), among others, and apply simple

model averaging.10

Formally, the model-robust rules are obtained by choosing the coefficients of the monetary policy rule

that solve the following optimization problem:

min
{ρ,απ ,αy}

M

∑
m=1

ωm

[
Varm

(
π

f req
)
+λyVarm

(
∆y f req

)]
f req = BCF,LF,all

s.t. rt = ρrt−1 +αππt +αy∆yt

Et
[

fm
(
xm

t ,x
m
t+1,x

m
t−1,zt ,Θ

m)]= 0 ∀m ∈M

where there exists a unique and stable equilibrium ∀m∈M (that is, the Taylor principle is always verified)

and ωm = 1/M.

Columns 4 to 6 in Table 3 report the optimized model-robust coefficients for each objective function.

We emphasize the following results. First, all model-robust rules feature the same degree of interest

rate smoothing, which also coincides with the optimized average model-specific coefficient. Second,

compared to the average model-specific coefficients and regardless of the objective function, model-

robust rules prescribe much smaller responses to inflation and smaller reactions to output growth. That

is, rules robust to model uncertainty generally imply much less aggressive responses of central banks.

Third, similar to the model-specific rules, if the policymaker cares about stabilizing a subset of inflation

and output growth frequencies, then the robust responses to inflation and output growth are reduced even

further.
10 Alternative approaches to robust policy making include Bayesian model averaging (e.g. Kuester and Wieland, 2010),

robust Bayesian rule (e.g. Levine, McAdam and Pearlman, 2012), and non-Bayesian approaches based on minimax and
minimax regret criteria (e.g. Brock et al., 2007 and Levine and Pearlman, 2010).
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Looking at Figure 2, the model-robust coefficients (black crosses) are on the lower side of the boxes, thus

implying much smaller than average (and smaller than median) responses by the central bank in the face

of model uncertainty.

Overall, policymakers uncertain about which model(s) to use have to be much more cautious in their

policy responses than what the status quo of using one single model would, on average, prescribe. Addi-

tional caution is needed for those policymakers who have preferences for stabilizing specific frequencies

of inflation and output growth.

3.3 Quantifying the costs of insurance against model uncertainty and of ignoring

frequency-specific fluctuations

3.3.1 The cost of insurance against model uncertainty

The model-robust rule is designed in such a way that it performs well across all models, but it is rarely

the best rule for any model. To provide a measure of the relative performance of the model-robust policy

rule in a particular model, we compute the % increase of each objective function (% L) when using

the optimized model-robust rule relative to the first-best outcome obtainable in that model (that is, the

optimized model-specific rule for that model).

Results are reported in Table 5. Even though some of the individual % L are above the 50 % threshold

considered to be acceptable (as mentioned in Sub-section 3.1), the average losses are well below that

threshold. Furthermore, when the policymaker is concerned about stabilizing specific frequencies of

inflation and output growth (OFs 2-4 and 6-8), then the cost of insuring against model uncertainty is

significantly lower, both on average and for nearly all models separately. For instance, comparing the

cost implied by objective function 5 with those of objective functions 6 to 8, the average cost of insurance

against model uncertainty is halved.

This analysis shows that policymakers can insure against model uncertainty at reasonable cost in each
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model of the economy.

3.3.2 The cost of ignoring frequency-specific fluctuations

What if policymakers ignore (or are not informed about) the frequency-specific trade-offs we mentioned

in the introduction and set their policies looking at the aggregate volatilities of the variables of interest

instead?

We report the cost of doing this in Table 6. Each value is the table displays the increase of each objective

function (in %) when using the optimized model-specific (m-s) or model robust (m-r) rule of objective

function 1 (5) in objective function 2 to 4 (6 to 8), relative to its own optimized rule. On average, as

reported in the last row of the table, the % increases of objective functions are not remarkably higher (at

most 10 %). Only two models (M_8 and M_14) are more sensitive when stabilization of real activity is a

concern (objective functions 5 to 8).

Hence, ignoring these frequency-specific trade-offs does not significantly worsen the outcome for poli-

cymakers.

3.4 Model-robust monetary policy rules and models’ features

The DSGE models used in this paper feature different frictions and transmission mechanisms. In this

sub-section, we investigate if and how specific features of the models affect the size of the model-robust

policy responses.

In Table 7, we report the model-robust coefficients separately for i) calibrated and estimated models (8

and 21 models, respectively), ii) models with and without financial frictions (15 and 14 models, respec-

tively), iii) models with and without wage rigidities (15 and 14 models, respectively), and iv) models with

a hybrid / backward-looking Phillips curve and with a forward-looking Phillips curve (20 and 9 models,

respectively).
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Regardless of how the models are divided, the results are qualitatively in line with the main findings of

the paper. That is, robust inflation and output growth responses are smaller or similar when the central

bank is concerned about stabilizing specific frequencies of inflation and output growth, and robust output

growth responses are also larger when policymakers are concerned about stabilizing real activity.

Quantitatively, calibrated models prescribe a stronger reaction (both to inflation and output growth) by

policymakers, while the response coefficients of estimated models are similar to the baseline ones. On

the one hand, wage frictions play an important role as models without such frictions prescribe stronger

responses (to both inflation and output growth), while models including wage frictions lead to weaker

responses by policymakers. On the other hand, financial frictions do not seem to matter too much for

the design of robust monetary policy rules as the response coefficients are similar whether or not these

frictions are included in the model. Finally, the specification of the Phillips curve significantly shapes

the results: models with a forward-looking Phillips curve prescribe much more aggressive responses than

those of models with a hybrid Phillips curve, which are similar to the baseline results.

We track these quantitative differences across sub-samples of models by observing that the optimized

model-robust coefficients usually increase as the variance of the variable of interest decreases. For in-

stance, estimated models, models with wage frictions, and models with a hybrid Phillips curve generate

higher volatilities of inflation and output growth than calibrated models, models without wage frictions,

and models with a forward-looking Phillips curve, respectively. In the former set of models, the mon-

etary policy response thus need not be as pronounced as in the latter set of models, as monetary policy

becomes, on average, more effective in such volatile economies. Hence, the former set of models would

call for a less aggressive response by the central bank to stabilize the economy and, ultimately, to avoid

excessive macro fluctuations. Interestingly, models with or without financial frictions generate about the

same volatility of inflation and output growth. If anything, we find that models with financial frictions

generate slightly less volatility, which is at odds with the conventional “financial accelerator” view of

business cycle fluctuations (Bernanke et al., 1999). This can be due to the fact that the models included

in our exercise were estimated using data pre-GFC, and financial frictions might have played a negligible

16



role during that sample period (see e.g. Drautzburg and Uhlig, 2015).

3.5 Robustness tests

In the first robustness check, we relax the assumption that the central bank equally values the variances

of inflation and output growth by assigning different values for the relative weight of the latter variable.

Results for λy = 0.5 are displayed in Table 9 (columns 4 to 6) in Appendix C. The benchmark results are

reported in the first three columns in that table. A reduction of the relative weight of output growth does

not influence the reaction to inflation, while, as one would expect, it usually moderately decreases the

reaction to output growth (when compared to the λy = 1 case).

Next, following Levin et al. (2003) and Orphanides and Wieland (2013), we consider forecast-based

monetary policy rules of the type:

rt = ρrt−1 +απEtπt+4 +αy∆yt , (4)

where Etπt+4 corresponds to inflation expectation 4-quarter ahead. Results are reported in Table 9

(columns 7 to 9). The responses to inflation and output growth are larger if the central bank reacts to

one-year ahead expected inflation instead of current inflation. However, the main findings still hold, i.e.

considering one frequency in the objective function decreases the reaction to inflation, and including

output growth typically increases the response to it.

We then consider fluctuations between 1 and 4 years and between 1 and 8 years as BCF fluctuations.

Model-robust coefficients, reported in columns 10 to 15 of Table 9, are not too sensitive to the definition

of BCF fluctuations.

Finally, we find that results are quantitatively robust for preference parameter for restraining the variabil-

ity of changes to nominal interest rates (in the objective function) ranging from 0.1 to 1, which is the

typical range used in the literature (e.g. Brock, Durlauf and West, 2003 and Levin and Williams, 2003).
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4 Policy conclusions

What policy rule should a central bank follow? In this paper, we address this classic question by de-

parting from the canonical approach in two ways. First, instead of relying on one single structural

macroeconomic model, we run the analysis using a large number of DSGE models to identify mone-

tary policy rules that are robust to model uncertainty. Second, instead of choosing the rules that minimize

a weighted average of the unconditional variances of inflation and output, we search for the rules that

minimize fluctuations at specific frequencies, which are arguably more relevant for policymakers.

The policy recommendations of this paper are clear. Model uncertainty calls for much less aggressive

responses by monetary policymakers. Frequency-specific stabilization preferences further dampen their

optimal policy responses.
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Figure 1: Frequency decomposition of inflation and output growth
Notes. Sample period: 1990Q1–2017Q4. Shaded horizontal bars are NBER recessions. HF stands for fluctuations shorter
than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years. Quarterly GDP growth is
computed from Real GDP per capita, and year-over-year PCE inflation rate is computed from the PCE price index. Source:
FRED2 data base.

26



Figure 2: Boxplot of optimized Taylor-rule coefficients
Notes. In the box, the red line displays the median across models. The boundaries of the box depict the 25 % and 75 %
percentiles. The whiskers outside of the box mark the entire range of the distribution. The black cross depicts the coefficients
of the model-robust rule, and the red cross is the average of model-specific rules. OF 1 to OF 8 refer to the central bank
objective functions as reported in Table 2.
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TR that min σ (π) var(π) var
(
πHF

)
var
(
πBCF

)
var
(
πLF

)
Taylor rule that minvar(π) 0.12 0.03 0.06 0.03
Taylor rule that minvar

(
πBCF

)
11 -10 -2 60

Taylor rule that minvar
(
πLF

)
10 40 7 -19

Table 1: Frequency-specific effects and trade-offs of monetary policy choices
Notes. The first row reports the unconditional variances (var) of inflation and its frequency components, while the remaining
rows report the percentage differences with respect to the values in the first row. Model used: Blanchard and Gali (2010). HF
stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years.

Objective Function 1 var(π)
Objective Function 2 var

(
πBCF

)
Objective Function 3 var

(
πLF

)
Objective Function 4 var

(
πBCF

)
+ var

(
πLF

)
Objective Function 5 var(π)+λy var(∆y)
Objective Function 6 var

(
πBCF

)
+λy var

(
∆yBCF

)
Objective Function 7 var

(
πLF

)
+λy var

(
∆yBCF

)
Objective Function 8 var

(
πBCF

)
+ var

(
πLF

)
+λy var

(
∆yBCF

)
Table 2: Central bank objective functions

Notes. HF stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer
than 8 years. All objective functions include a term for restraining the variability of changes to nominal interest rates (∆r)
with a weight of 0.5.

Objective functions Individual models Robust rule
functions ρ απ αy ρ απ αy

var(π) 0.9 2.2 0.5 0.9 0.9 0.2
var
(
πBCF) 0.9 1.8 0.5 0.9 0.7 0.2

var
(
πLF) 0.9 1.8 0.5 0.9 0.7 0.2

var
(
πBCF)+ var

(
πLF) 0.9 2.1 0.5 0.9 0.9 0.2

var(π)+ var(∆y) 0.9 1.6 1.2 0.9 1 0.9
var
(
πBCF)+ var

(
∆yBCF) 0.9 1.5 0.8 0.9 0.7 0.6

var
(
πLF)+ var

(
∆yBCF) 0.9 1.5 0.9 0.9 0.7 0.5

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 1.9 0.8 0.9 0.9 0.5

Table 3: Model-specific and model-robust monetary policy rules
Notes. HF stands for fluctuations shorter than 2 years, BCF for fluctuations between 2 and 8 years, and LF for cycles longer
than 8 years. All objective functions include a term for restraining the variability of changes to nominal interest rates (∆r)
with a weight of 0.5.
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OF Optimized model-robust rule for
OF OF 1 OF 2 OF 3 OF 4 OF 5 OF 6 OF 7 OF 8

M1 5 4 5 5 11 9 9 8
M2 5 4 4 5 11 8 8 8
M3 12 14 11 12 14 11 12 12
M4 16 12 5 12 20 15 7 14
M5 23 18 21 26 39 21 20 26
M6 55 6 82 55 55 9 93 61
M7 12 11 5 13 11 6 3 10
M8 15 14 12 15 132 81 50 55
M9 5 1 3 3 27 12 6 6
M10 6 5 5 6 21 12 16 17
M11 16 6 7 10 27 12 8 15
M12 4 4 4 4 54 2 4 3
M13 25 20 19 22 26 16 16 20
M14 30 26 14 27 72 17 20 34
M15 30 25 16 23 26 26 15 24
M16 6 4 7 8 7 1 4 5
M17 25 12 10 21 155 37 52 26
M18 22 17 11 18 68 35 35 33
M19 38 29 22 39 31 19 14 30
M20 21 17 10 17 15 15 11 16
M21 38 35 21 32 44 45 22 38
M22 24 21 19 21 25 16 17 19
M23 19 15 9 15 16 20 12 18
M24 19 14 11 16 91 38 45 41
M25 108 93 25 99 56 49 22 72
M26 14 9 6 14 28 9 7 14
M27 1 0 0 1 5 2 0 1
M28 20 15 21 21 22 17 23 23
M29 1 1 0 1 10 3 1 2
Average 21 16 13 19 39 19 19 23

Table 5: The cost of insurance against model uncertainty
Notes. The values display the increase of each objective function (in %) when using the optimized model-robust rule relative
to the first-best simple rule for each model.
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OF Optimized rule for
OF OF 1→ OF 2 OF 1→ OF 3 OF 1→ OF 4 OF 5→ OF 6 OF 5→ OF 7 OF 5→ OF 8
OF m-s m-r m-s m-r m-s m-r m-s m-r m-s m-r m-s m-r
M1 0 -2 0 -2 0 0 0 -1 0 -1 0 2
M2 0 -2 0 -2 0 0 0 -1 0 -1 0 2
M3 2 2 0 2 0 0 3 -4 2 -8 2 -9
M4 0 -6 1 -3 0 0 14 -3 15 1 14 2
M5 8 24 11 27 1 0 5 45 7 50 0 27
M6 18 2 0 -32 0 0 11 -5 0 -53 0 -18
M7 5 13 0 11 0 0 10 15 7 11 7 2
M8 4 7 3 7 0 0 13 132 11 161 11 157
M9 8 0 6 -3 0 0 6 37 3 36 10 31
M10 2 4 1 3 0 0 4 -4 2 -11 3 -14
M11 10 -5 17 -5 1 0 10 -4 17 -5 1 10
M12 2 1 5 4 0 0 15 0 11 0 15 -3
M13 0 -5 0 -5 0 0 5 -8 3 -9 8 -3
M14 9 5 1 2 0 0 5 32 4 65 18 125
M15 0 -9 0 -5 0 0 1 -11 1 -7 1 -2
M16 4 11 6 14 0 0 8 11 7 11 8 1
M17 0 -4 0 -4 0 0 2 2 0 -12 10 -18
M18 0 -6 0 -4 0 0 1 -18 0 -22 7 -2
M19 3 20 0 20 0 0 6 25 3 23 2 5
M20 0 -8 1 -5 0 0 1 -8 1 -8 2 -2
M21 0 -12 0 -6 0 0 0 -15 0 -6 0 7
M22 0 -4 0 -3 0 0 0 -8 0 -10 0 -7
M23 0 -7 1 -4 0 0 4 3 4 7 4 11
M24 0 -3 0 -2 0 0 0 -23 1 -30 2 -22
M25 8 15 13 24 1 0 9 22 9 33 0 -21
M26 8 20 9 21 0 0 9 37 9 41 0 14
M27 3 4 4 5 0 0 2 11 2 12 2 13
M28 2 5 1 3 0 0 2 -3 1 -11 2 -16
M29 3 6 1 5 0 0 3 16 1 15 0 11
Average 3 2 3 2 0 0 5 9 4 9 5 10

Table 6: The cost of ignoring frequency-specific fluctuations
Notes. The values display the increase of each objective function (in %) when using the optimized rule of objective function
X in objective function Y, relative to its own optimized rule (OF X → OF Y). The terms m-s / m-r refer to the model-
specific / model-robust rule, respectively.
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Objective functions Calibrated Estimated Financial No financial
functions functions functions frictions frictions
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 1.2 0.2 0.9 0.9 0.2 0.9 1 0.3 0.9 0.9 0.2
var
(
πBCF) 0.9 1 0.3 0.9 0.7 0.2 0.9 0.8 0.3 0.9 0.7 0.2

var
(
πLF) 0.9 0.9 0.3 0.9 0.7 0.2 0.9 0.7 0.3 0.9 0.8 0.2

var
(
πBCF)+ var

(
πLF) 0.9 1.2 0.2 0.9 0.9 0.2 0.9 0.9 0.3 0.9 0.9 0.2

var(π)+ var(∆y) 0.9 1.4 1.8 0.9 0.9 0.7 0.9 1 1 0.9 0.9 0.9
var
(
πBCF)+ var

(
∆yBCF) 0.9 1 1 0.9 0.7 0.5 0.9 0.8 0.6 0.9 0.7 0.6

var
(
πLF)+ var

(
∆yBCF) 0.9 0.9 1 0.9 0.7 0.5 0.9 0.8 0.6 0.9 0.7 0.5

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 1.2 0.9 0.9 0.9 0.5 0.9 0.9 0.5 0.9 0.9 0.5

Objective functions Wage No wage Hybrid Forward-looking
functions frictions frictions Phillips curve Phillips curve
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 0.8 0.1 0.9 1.2 0.5 0.9 0.9 0.2 0.9 1.6 0.3
var
(
πBCF) 0.9 0.6 0.1 0.9 0.9 0.5 0.9 0.7 0.2 0.9 1.4 0.3

var
(
πLF) 0.9 0.6 0.2 0.9 0.9 0.4 0.9 0.7 0.2 0.9 1.2 0.4

var
(
πBCF)+ var

(
πLF) 0.9 0.7 0.1 0.9 1 0.5 0.9 0.9 0.2 0.9 1.6 0.3

var(π)+ var(∆y) 0.9 0.8 0.7 0.9 1.2 1.4 0.9 0.9 0.7 0.9 1.6 2
var
(
πBCF)+ var

(
∆yBCF) 0.9 0.5 0.4 0.9 0.9 0.8 0.9 0.7 0.5 0.9 1.2 1.4

var
(
πLF)+ var

(
∆yBCF) 0.9 0.6 0.4 0.9 0.9 0.8 0.9 0.7 0.4 0.9 1.2 1.6

var
(
πBCF)+ var

(
πLF)+ var

(
∆yBCF) 0.9 0.7 0.4 0.9 1 0.7 0.9 0.8 0.4 0.9 1.4 1.2

Table 7: Model-robust monetary policy rules of models with different features
Notes. The features are: calibrated and estimated models, models with and without financial friction, models with and without
wage friction, and models with a hybrid and forward-looking Philips curve. HF stands for fluctuations shorter than 2 years,
BCF for fluctuations between 2 and 8 years, and LF for cycles longer than 8 years. All objective functions include a term for
restraining the variability of changes to nominal interest rates (∆r) with a weight of 0.5.
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Appendix A Models (acronyms) and their key features

Model M1 Paper Estimation Wage Financial Phillips
acronyms M1 M1 period frictions frictions curve
US_ACELm M1 Altig, Christiano, Eichenbaum and Linde (2011) 1959Q2-2001Q4 Yes Yes hybrid
US_ACELswm M2 Altig et al. (2011) 1959Q2-2001Q4 Yes Yes forward
US_BKM12 M3 Bils, Klenow and Malin (2012) 1990M1-2009M10 Yes No hybrid
US_CD08 M4 Christensen and Dib (2008) 1979Q3-2004Q3 No Yes forward
US_CFOP14 M5 Carlstrom, Fuerst, Ortiz and Paustian (2014) 1972Q1-2008Q4 Yes Yes hybrid
US_CPS10 M6 Cogley, Primiceri and Sargent (2010) 1982Q4-2006Q4 No No hybrid
US_DG08 M7 de Graeve (2008) 1954Q1-2004Q4 Yes Yes hybrid
US_DNGS15_SWpi M8 del Negro et al. (2015) 1964Q1-2008Q3 Yes No hybrid
US_FMS13 M9 Feve, Matheron and Sahuc (2013) 1960Q1-2007Q4 Yes No hybrid
US_FU19 M10 Fratto and Uhlig (2020) 1984Q1-2015Q4 Yes No hybrid
US_HL16 M11 Hollander and Liu (2016) 1982Q1-2015Q1 No Yes hybrid
US_IAC05 M12 Iacoviello (2005) 1974Q1-2003Q2 No Yes forward
US_IR04 M13 Ireland (2004) 1980Q1-2001Q3 No No forward
US_JPT11 M14 Justiniano, Primiceri and Tambalotti (2011) 1954Q3-2009Q1 Yes No hybrid
US_KS15 M15 Kriwoluzky and Stoltenberg (2015) 1964Q1-2008Q2 No No forward
US_LWY13 M16 Leeper, Walker and Yang (2013) 1984Q1-2007Q4 Yes No hybrid
NK_BGUS10 M17 Blanchard and Gali (2010) calibrated Yes No forward
NK_CFP10 M18 Carlstrom, Fuerst and Paustian (2010) calibrated No Yes forward
NK_CK08 M19 Christoffel and Kuester (2008) calibrated Yes No hybrid
NK_GK09lin M20 Gertler and Karadi (2011) calibrated No Yes backward
NK_KRS12 M21 Kannan, Rabanal and Scott (2012) calibrated No Yes hybrid
NK_PP17 M22 De Paoli and Paustian (2017) calibrated No Yes forward
NK_RA16 M23 Rannenberg (2016) calibrated No Yes hybrid
NK_RW97 M24 Rotemberg and Woodford (1997) calibrated No No forward
US_PM08 M25 Carabenciov, Ermolaev, Freedman, Juillard, Kamenik, Korshunov and Laxton (2008) 1994Q1-2008Q1 No No hybrid
US_PM08fl M26 Carabenciov et al. (2008) 1994Q1-2008Q1 No Yes hybrid
US_SW07 M27 Smets and Wouters (2007) 1966Q1-2004Q4 Yes No hybrid
US_VI16bgg M28 Villa (2016) 1983Q1-2008Q3 Yes Yes hybrid
US_YR13 M29 Rychalovska (2016) 1954Q1-2008Q3 Yes Yes hybrid

Table 8: Key features of models used
Notes. All models feature nominal price stickiness.
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Appendix B Maximal Overlap Discrete Wavelet Transform with the

Haar filter when J=4

By using the Maximal Overlap Discrete Wavelet Transform (MODWT) with the Haar filter, a variable

Xt can be decomposed as in equations (1)-(3) in the paper. In our analysis we compute a J=4 level

decomposition. The corresponding time series components are thus given by:

XD1
t =

Xt−Xt−1

2

XD2
t =

Xt +Xt−1− (Xt−2 +Xt−3)

4

XD3
t =

Xt +Xt−1 +Xt−2 +Xt−3− (Xt−4 +Xt−5 +Xt−6 +Xt−7)

8

XD4
t =

Xt + ...+Xt−7− (Xt−8 + ...+Xt−15)

16

XS4
t =

Xt + ...+Xt−15

16
.

The sum of XD1
t and XD2

t gives the HF component of the series (which captures fluctuations with a period

less than 2 year), the sum of XD3
t and XD4

t gives the BCF component (which captures fluctuations between

2 and 8 years), whereas the LF component corresponds to XS4
t .
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Appendix C Robustness tests

Objective functions λy = 1 λy = 0.5 λy = 1;h = 4 λy = 1; BCF: 1-4y λy = 1; BCF: 1-8y
functions ρ απ αy ρ απ αy ρ απ αy ρ απ αy ρ απ αy

var(π) 0.9 0.9 0.2 0.9 0.9 0.2 0.9 1 1.2 0.9 0.9 0.2 0.9 0.9 0.2
var
(
πBCF) 0.9 0.7 0.2 0.9 0.7 0.2 0.9 0.8 0.7 0.9 0.6 0.2 0.9 0.8 0.2

var
(
πLF) 0.9 0.7 0.2 0.9 0.7 0.2 0.9 0.8 0.7 0.9 0.8 0.2 0.9 0.7 0.2

var
(
πBCF)+ var

(
πLF) 0.9 0.9 0.2 0.9 0.9 0.2 0.9 1 1.2 0.9 0.9 0.2 0.9 0.9 0.2

var(π)+λy var(∆y) 0.9 1 0.9 0.9 1 0.7 0.9 1.2 1.6 0.9 1 0.9 0.9 1 0.9
var
(
πBCF)+λy var

(
∆yBCF) 0.9 0.7 0.6 0.9 0.7 0.4 0.9 1 1.2 0.9 0.6 0.7 0.9 0.8 0.7

var
(
πLF)+λy var

(
∆yBCF) 0.9 0.7 0.5 0.9 0.7 0.4 0.9 0.9 1 0.9 0.9 0.6 0.9 0.8 0.7

var
(
πBCF)+ var

(
πLF)+λy var

(
∆yBCF) 0.9 0.9 0.5 0.9 0.9 0.4 0.9 1 1.2 0.9 1 0.6 0.9 0.9 0.7

Table 9: Model-robust monetary policy rules - robustness tests
Notes. Importance of output growth in objective function (λy) is set to 0.5. h=4 depicts the forward horizon of inflation in
the monetary policy rule (equation 4). The rightmost columns with the term “BCF” depict the time horizon of BCF definition
in the objective function. All objective functions include a term for restraining the variability of changes to nominal interest
rates (∆r) with a weight of 0.5.

35



Bank of Finland Research Discussion Papers 2023 

ISSN 1456-6184, online 

1/2023 Gonçalo Faria – Fabio Verona 
Forecast combination in the frequency domain 
ISBN 978-952-323-430-7, online 

2/2023 Saara Tuuli 
Who funds zombie firms: banks or non-banks? 
ISBN 978-952-323-431-4, online 

3/2023 Olli-Matti Laine – Matias Pihlajamaa 
Asymmetric effects of conventional and unconventional monetary policy when rates are low 
ISBN 978-952-323-432-1, online 

4/2023 Mingze Gao – Iftekhar Hasan – Buhui Qiu – Eliza Wu 
Lone (Loan) Wolf Pack Risk 
ISBN 978-952-323-433-8, online 

5/2023 Mathias Drehmann – Mikael Juselius – Anton Korinek 
Long-term debt propagation and real reversals 
ISBN 978-952-323-434-5, online 

6/2023 Simon Kwan – Mauricio Ulate – Ville Voutilainen 
The transmission of negative nominal interest rates in Finland 
ISBN 978-952-323-435-2, online 

7/2023 Iftekhar Hasan – Haekwon Lee – Buhui Qiu – Anthony Saunders 
Climate-related disclosure commitment of the lenders, credit rationing, 
and borrower environmental performance 
ISBN 978-952-323-436-9, online 

8/2023        Sangyyup Choi – Jaehun Jeong – Dohyeon Park – Donghoon Yoo 
News or animal spirits? Consumer confidence and economic activity: Redux 
ISBN 978-952-323-437-6, online 

9/2023 Francesco D’Acunto – Daniel Hoang – Maritta Paloviita – Michael Weber 
Cognitive Constraints and Economic Incentives 
ISBN 978-952-323-438-3, online 

10/2023 Szilard Benk – Max Gillman  
Identifying money and inflation expectation shocks on real oil prices 
ISBN 978-952-323-442-0, online 

11/2023 Zuzana Fungáčová – Eeva Kerola – Olli-Matti Laine 
Monetary policy transmission below zero 
ISBN 978-952-323-443-7, online 

12/2023 Alexander Dück – Fabio Verona 
Monetary policy rules: model uncertainty meets design limits 
ISBN 978-952-323-445-1, online 


	Bank of Finland Research Discussion Papers 12/2023
	Introduction
	The setup
	DSGE models
	Central bank preferences and objective functions
	Taylor rules
	Frequency decomposition

	Optimized monetary policy rules
	Model-specific rules
	Model-robust rules
	Quantifying the costs of insurance against model uncertainty and of ignoring frequency-specific fluctuations
	The cost of insurance against model uncertainty
	The cost of ignoring frequency-specific fluctuations

	Model-robust monetary policy rules and models' features
	Robustness tests

	Policy conclusions
	Models (acronyms) and their key features
	Maximal Overlap Discrete Wavelet Transform with the Haar filter when J=4
	Robustness tests
	Recent Bank of Finland Research Discussion Papers


