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Forecast combination in the frequency domain*
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Abstract

We propose a new forecasting method – forecast combination in the frequency domain –

that takes into account the fact that predictability is time and frequency dependent. We use

this method to forecast the equity premium and real GDP growth rate. Combining forecasts

in the frequency domain produces markedly more accurate predictions relative to the standard

forecast combination in the time domain, both in terms of statistical and economic measures of

out-of-sample predictability. In a real-time forecasting exercise, the flexibility of this method

allows to capture remarkably well the sudden and abrupt drops associated with recessions and

further improve predictability.
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1 Introduction

Multiple forecasts of the same variable are often available, and decision makers have to figure out

how to exploit best the information of each individual forecast. This is challenging as predictability

is time dependent: no individual variable is clearly superior to other variables consistently through-

out time (see e.g. Stock and Watson, 2004 and Henkel et al., 2011).

The fact that the best forecasting variable changes over time renders individual variables unreliable

predictors. A method proposed to overcome this problem is forecast combination. Since Bates

and Granger’s (1969) seminal paper, it has been know that combining forecasts across models

often produces a forecast that performs better than the best individual model. Forecast combination

achieves a compromise between smoothing out the excessive noise in the individual forecasts and

the need to retain some of the volatility that allows to capture the time-varying behavior of the

variable of interest. Recent contributions include Rapach et al. (2010), Pettenuzzo and Ravazzolo

(2016), and Pirschel and Wolters (2018).1

More recent empirical literature has shown that predictability is also frequency dependent. Some

frequencies of a variable might be good predictors for the variable of interest, others might not.

For instance, Faria and Verona (2020) show that the low frequency of the term spread has good

predictive power (for equity returns), while the remaining frequencies don’t. Likewise, some fre-

quencies of the targeted variable need to be forecasted well. Faria and Verona (2021) and Martins

and Verona (2021) show that it is crucial to predict well the low frequencies of the equity premium

and inflation, respectively, while the other frequencies mainly bring noise to the forecast exercise.

In this paper we propose a method that improves upon existing methods by reducing the forecast

noise simultaneously in the time and in the frequency domain. It is a forecast combination method

1 Time-varying parameter models (e.g. Dangl and Halling, 2012) also allow to overcome the problem of instability
over time of the predictor. Other methods that incorporate information from a large set of potential predictors in a
predictive regression framework include Bayesian model averaging (Cremers, 2002) and factor models (Stock and
Watson, 2002 and Caggiano et al., 2011).
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that takes the frequency dependence between target variables and predictors into account. We apply

it to forecast a financial variable – the equity premium – and a macroeconomic variable – real

GDP growth rate. In a nutshell, the method goes as follows. We decompose our target variables

and a given set of n (n=15) predictor variables into f (f =4) time series frequency components,

each of them capturing the oscillations of the original variable within a specific frequency band.

We then forecast, separately, each of the f frequency component of the target variables using the

corresponding frequency component f of one predictor at a time. We obtain n forecasts for each

frequency f of the target variables. Subsequently, the forecast of each frequency component f of

the target variables is computed as the (mean) combination of the n forecasts of that frequency

component from the n predictors. Finally, the overall forecast of each target variable is computed

as the sum of the f forecasts of its f frequency components.

We find that combining forecasts in the frequency domain produces markedly more accurate pre-

dictions relative to existing alternatives, both in terms of statistical and economic measures of

out-of-sample predictability. An advantage of this approach is its flexibility, as it allows to exclude

some of the frequencies of the target variables when computing the forecasts. In particular, we

show that, in recessions, it is crucial to ignore the forecast of the low-frequency components of the

target variables in order to have more accurate forecasts. When used in a real-time exercise (which

mimics the real-life situation of a forecaster), the possibility of ignoring these low-frequency com-

ponents in recessions allows to improve the forecasting results even further, as the forecasts capture

noticeably well the sudden and abrupt drops of the equity market and of the real economy associ-

ated with recessions. Besides providing more accurate forecasts, this method is easy to implement,

has very broad applicability, and can be used in combination with machine learning methods to

take advantage of the large datasets currently easily available to forecasters and researchers.2

The remaining of this paper is organized as follows. In section 2 we briefly review how filters have

2 A non-exhaustive list of papers using machine learning in economics and finance applications are Risse (2019),
Gu et al. (2020), Bianchi et al. (2021), Medeiros et al. (2021), Kynigakis and Panopoulou (2022), and Leippold et al.
(2022).
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been used in the macro-finance forecasting literature. In section 3 we present the data and the band-

pass filter used to extract the frequency components from the original variables. Section 4 outlines

the econometric methodology. The out-of-sample forecasting results are reported in section 5. We

analyze the predictability over the business cycle in section 6. Robustness tests are briefly described

in section 7, and section 8 concludes.

2 The use of filters in forecasting: a brief tour of the macro-

finance literature

Filters have been used in forecasting applications in the macro-finance field in two main ways:

either to filter the variable(s) on the right-hand-side (i.e. the predictor(s)), or to filter the variable

on the left-hand-side (i.e. the variable to forecast).3

In the literature on forecasting with gaps, the right-hand-side variable is typically detrended or

filtered to isolate the business-cycle component which is then used in the forecasting exercise. For

instance, in the literature on forecasting inflation with Phillips curves, output or unemployment gap

are commonly used variables as proxies for slack. These gaps are usually computed by linearly

or quadratic detrending output or unemployment, or by filtering them with e.g. the Christiano and

Fitzgerald (2003) band-pass filter (see e.g. Banbura and Bobeica, 2023). Similarly, Cooper and

Priestley (2009) show that the output gap is a strong predictor of stock and bond market returns.

Whether these gap measures predict well or not depends, however, on the specific application and

econometric model used (see e.g. Rossi and Sekhposyan, 2010).

Likewise, differencing is a filter that eliminates low-frequency fluctuations. When working with

large macroeconomic databases such as the “Stock-Watson dataset” (developed since Stock and

3 We refer the reader to Petropoulos et al. (2022, sections 3.3.2 and 3.3.13) for exhaustive reviews on forecasting
GDP and stock returns, respectively, and Timmermann (2006), Petropoulos et al. (2022, Section 2.6.1), and Wang et
al. (2023) for extensive reviews on forecast combination methods.
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Watson, 1996) or the more recent FRED-MD database (McCracken and Ng, 2016), it is common

to consider several transformations of the original data such as differences and second differences

(as well as gaps computed with the Hodrick and Prescott, 1997 filter), and then use those predictors

to forecast the variable of interest.

Then, there is a literature where filters are applied to the left-hand-side variable. Clark and Doh

(2014), for instance, compare the forecast accuracies of a wide array of models of trend inflation,

which captures the low-frequency variations of inflation. Similarly, researchers (e.g. Berge, 2018)

are quite often interested in forecasting core inflation, which is a very specific filtered version of

inflation, obtained not through a statistical tool but rather by eliminating / filtering the most volatile

components of inflation (energy and food prices).

In this paper we filter both the predictors and the variables to forecast. By filtering the right-hand

side variables, we can better exploit the information embedded in each individual predictors. By

filtering the left-hand side variables, we can better forecast all the individual frequency components

of the variables of interest so as to have more accurate forecast for those variables. Our method

builds on Faria and Verona (2018) but is conceptually and methodologically very different. In

particular, there are three main differences. First, Faria and Verona (2018) consider univariate

regression models that take into account the information from one (frequency of one) predictor only,

while in this paper we use information from multiple frequencies of multiple predictors in a forecast

combination setup. Second, Faria and Verona (2018) sum the forecasts of three components of

stock returns, while our proposed method in this paper sums the weighted forecasts of the equity

premium and GDP growth. Third, the forecasting method in Faria and Verona (2018) has a more

limited applicability (as it can only be used to forecast stock returns), while our proposed method

can be used to forecast any variable.
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3 Data

We follow Rapach et al. (2010) and use quarterly data. The sample period span from 1947:Q1

until 2022:Q4. The target variables are the U.S. equity premium and the U.S. quarter-over-quarter

real GDP growth rate. The equity premium in quarter t is measured by the difference between the

log (total) return of the S&P500 index in quarter t and the log return on a three-month Treasury

bill at the beginning of quarter t. Data for the S&P500 index and the U.S. real GDP growth rate

are obtained from the Goyal and Welch (2008) updated dataset and the U.S. Bureau of Economic

Analysis, respectively.

As predictors, we use fifteen variables from Goyal and Welch (2008) updated dataset. Specifically,

we use the log dividend-price ratio (DP), the log dividend yield (DY), the log earnings-price ratio

(EP), the log dividend-payout ratio (DE), the stock variance (SVAR), the book-to-market ratio

(BM), the net equity expansion (NTIS), the Treasury bill rate (TBL), the long-term bond yield

(LTY), the long-term bond return (LTR), the term spread (TMS), the default yield spread (DFY),

the default return spread (DFR), the lagged inflation rate (INFL), and the lagged investment rate

(IK). While these predictors have been extensively used to forecast equity returns, several of them

have predictive ability with respect to real GDP growth as well (see e.g. Stock and Watson, 2003).

A classical example is the slope of the yield curve (proxied by the term spread), which has widely

been used as a predictor for recessions (see e.g. Estrella and Hardouvelis, 1991).

We explain these predictors in appendix 1. The time series of the target variables and of the pre-

dictors are plotted in figure 1 and 2, respectively. Table 1 reports summary statistics for all the

variables. We note here that both target variables are negatively skewed, suggesting that both the

real economy and the equity market have more crashes than what would happen if they were nor-

mally distributed.

To decompose the variables into their time series frequency components, we band-pass the data

with the Haar filter. Besides its simplicity and wide use (see e.g. Bandi et al., 2019, Kilponen and
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Verona, 2022, Martins and Verona, 2023, and Stein, 2024), the Haar filter makes a clean connection

to temporal aggregation as the filter coefficients are simply differences of moving averages. We

consider four frequency components: the first one (D1) captures fluctuations of the original variable

with a period between 2 and 4 quarters, while components D2 and D3 capture fluctuations with a

period of 1-2 and 2-4 years, respectively. Finally, component D4 captures fluctuations with a period

longer than 4 years. We note that the sum of these four time series frequency components gives

exactly the time series of the original variable. We refer the reader to appendix 2 for further details

on the Haar filter.

As an example, figure 3 shows the time series of investment rate (upper plot) and of its time series

frequency components (remaining plots). Component D1 captures the high-frequency movements

of investment rate (the noisy component) and frequency component D4 its trend, while the remain-

ing frequencies (D2 - D3) broadly capture the short end of business cycle frequency fluctuations.

4 Econometric methodology

The one-step ahead out-of-sample (OOS) forecasts are generated using a sequence of expanding

windows. We use an initial in-sample period (1947:Q1 to 1964:Q4) to make the first one-step ahead

OOS forecast. The in-sample period is then increased by one observation and a new one-step ahead

OOS forecast is produced. We proceed in this way until the end of the sample.

4.1 Predictive regression model

Let r be the target variable (the equity premium or real GDP growth rate). For each predictor

xi, i = 1, . . . ,n (n = 15), the predictive regression is

rxi,t = αxi +βxixi,t−1 + εt , (1)
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and the corresponding forecasts are given by

r̂xi,t+1 = α̂xi + β̂xixi,t , (2)

where α̂xi and β̂xi are the Ordinary Least Squares (OLS) estimates of αxi and βxi in equation (1),

respectively, using data from the beginning of the sample until quarter t.4

4.2 Forecast combination in the time domain

The forecast combination of r in the time domain (FC-TD) made at time t for t+1, denoted r̂FC−T D
t+1 ,

is the mean of the n (n=15) individual forecasts based on equation (2):

r̂FC−T D
t+1 =

1
n

n

∑
i=1

r̂xi,t+1 . (3)

We have also considered other combination methods (median, trimmed mean, as well as discounted

mean square prediction error). As in previous literature (e.g. Rapach et al., 2010), results were

usually not better than the mean average.

4.3 Forecast combination in the frequency domain

The first step of our method consists in decomposing all variables into their time series frequency

components (D1 - D4). We then estimate, for each predictor xi, a model like (1) for each frequency

f. That is, we estimate – separately – each frequency component Df of r using the corresponding

frequency component of the predictor xi:

r
D f ,xi
t = α

xi
t, f +β

xi
t, f x

D f
i,t−1 + εt . (4)

4 We do not report the results of a multiple regression forecasting model that includes all potential predictors – the
so-called “kitchen sink” model – as it performs much worse than the historical average forecast.
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This setup is akin to the band spectrum regression proposed by Engle (1974) and have been used

by e.g. Gallegati et al. (2011), Gallegati and Ramsey (2013), Ortu et al. (2013), Faria and Verona

(2018, 2021), and Martins and Verona (2023). As we use a two-sided filter in the OOS exercise,

we use real-time filtering and recompute the time series frequency components of the variables

recursively at each iteration of the OOS forecasting process using data from the start of the sample

through the quarter at which the forecasts are made. This step ensures that our method does not have

a look-ahead bias, as the forecasts are made with current and past information only. When using

a two-sided filter some assumptions regarding how to deal with the observations at the beginning

and at the end of the sample have to be made. The literature suggests several types of boundary

treatment rules to deal with boundary effects (e.g. periodic rule, reflection rule, zero padding rule,

and polynomial extension). Here, we use a reflection rule, whereby the original time series are

reflected symmetrically at the boundaries before filtering them.

We use the estimation results in (4) to produce the one-step ahead OOS forecast of the correspond-

ing frequency component of r:

r̂
D f ,xi
t+1 = α̂

xi
t, f + β̂

xi
t, f x

D f
i,t ,

where α̂
xi
t, f and β̂

xi
t, f are the OLS estimates of α

xi
t, f and β

xi
t, f , respectively, using data from the begin-

ning of the sample until quarter t.

We then compute the forecasts of each frequency components Df of r as the mean forecast combi-

nation for that frequency f :

r̂
D f
c,t+1 =

1
n

n

∑
i=1

r̂
D f ,xi
t+1 .

Finally, the overall forecast of r made at time t for t+1 in the frequency domain (FC-FD), denoted

r̂FC−FD
t+1 , is obtained by summing the forecasts of the f individual frequencies of r:

r̂FC−FD
t+1 =

4

∑
f=1

r̂
D f
c,t+1 =

4

∑
f=1

(
1
n

n

∑
i=1

r̂
D f ,xi
t+1

)
. (5)
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4.4 Forecast evaluation

4.4.1 Statistical performance

The forecasting performances of the forecast combination models are evaluated using the Camp-

bell and Thompson (2008) R2
OS statistic. The R2

OS statistic measures the proportional reduction

in the mean squared forecast error (MSFE) for the predictive model (MSFEPRED) relative to the

benchmark model (MSFEBENCHMARK) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEBENCHMARK

)
= 100

[
1−

∑
T−1
t=t0 (rt+1 − r̂t+1)

2

∑
T−1
t=t0

(
rt+1 − r̂BENCHMARK

t+1
)2

]
,

where r̂t+1 is the forecast for t+1 from the FC-TD or the FC-FD model (equation (3) and (5),

respectively) and rt+1 is the realized equity premium / GDP growth from t to t+1. A positive (neg-

ative) R2
OS indicates that the predictive model outperforms (underperforms) the benchmark model

in terms of MSFE. The benchmark model to forecast the equity premium is the average equity pre-

mium up to time t, and to forecast the GDP growth is an AR(p) model, where p is chosen recursively

according to the Akaike information criterion.

The statistical significance of the R2
OS is evaluated using the Clark and West (2007) MSFE-adjusted

statistic. This statistic tests the null hypothesis that the MSFE of the benchmark model is less

than or equal to the MSFE of the FC-TD or FC-FD model against the alternative hypothesis that

the MSFE of the benchmark model is greater than the MSFE of the FC-TD or FC-FD model

(H0 : R2
OS ≤ 0 against HA : R2

OS > 0).

Additionally, we compute the R2
OS and its statistical significance of our proposed method (FC-FD)

against the forecast combination in the time domain (FC-TD) as the benchmark.
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4.4.2 Economic performance

We also analyze stock return forecasts with utility-based metrics, which provide a more direct mea-

sure of the value of forecasts to decision makers. In these exercises, stock return forecasts are used

as inputs for asset allocation decisions derived from expected utility maximization problems. A

leading utility-based metric is the average utility gain for a mean-variance investor, who allocates

the portfolio between equities and risk-free bills. At the end of quarter t, the investor optimally

allocates a share wt = R̂t+1/
(
γσ̂2

t+1
)

of the portfolio to equity for period t+1, where γ is the in-

vestor’s relative risk aversion coefficient, R̂t+1 is the time t (FC-TD or FC-FD) model forecast of

the equity premium, and σ̂2
t+1 is the forecast of the variance of the equity premium. We assume a

relative risk aversion coefficient of three, use a five-year moving window of past equity premium

to estimate the variance forecast and constrain the weights wt to lie between -0.5 and 1.5. These

constraints limit the possibilities of short selling and leveraging the portfolio to realistic levels.

The realized portfolio return at time t+1, RPt+1, is given by RPt+1 = wtRt+1+RFt+1, where Rt+1 is

the equity market return from time t to t+1 and RFt+1 denotes the risk-free return from time t to t+1

(i.e. the market rate, which is known at time t). The average utility (or certainty equivalent return,

CER) is computed as CER = RP−0.5γσ2
RP, where RP and σ2

RP are the sample mean and variance

of the portfolio return, respectively. We report the annualized utility gain, which is computed as

the difference between the CER for an investor that uses the FC-TD or FC-FD model to forecast

the equity premium and the CER for an investor who uses the historical mean benchmark for

forecasting. The difference is multiplied by 4 to annualize quarterly performance, which allows

to interpret it as the annual portfolio management fee that an investor would accept to pay to

have access to the alternative forecasting model versus the benchmark model forecast. Following

Gargano et al. (2019) and Bianchi et al. (2021), we use a Diebold and Mariano (1995) test to assess

if the annualized CER gains are statistically greater than zero.

We also compute the CER gains (and its statistical significance) of the FC-FD method against the
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FC-TD method as the benchmark.

5 Results

For equity premium predictability, the OOS period spans from 1965:Q1 to 2022:Q4 (that is, 232

quarterly forecasts). We include the COVID-19 recession in the evaluation period as the drop

and recover of the equity market during that recession were comparable with (or even less abrupt

than) those in previous recessions (see the upper graph in figure 1). Furthermore, as we are using

quarterly data, all high frequency stock market fluctuations are, by construction, smoothed.

On the other hand, as one can see from the lower graph in figure 1, quarter-to-quarter real GDP

growth experienced fluctuations ranging from -8.9 % in 2020:Q2 to 7.6 % in 2020:Q3. In compar-

ison, in the global financial crises, it fluctuated between -2.2 % in 2008:Q4 and 1.1 % in 2009:Q4.

These huge fluctuations in 2020 render forecast (evaluation) extremely difficult, especially when

using the MSFE as evaluation criteria. Hence, for real GDP growth rate, we end the evaluation

period in 2019:Q4 (so that we produce 220 quarterly forecasts).

5.1 Equity premium

The second through seventh columns of table 2 reports the results for equity premium predictions

for the full OOS forecast evaluation period (second and third columns), and separately for expan-

sions (fourth and fifth columns) and recessions (sixth and seventh columns). Panel A shows the

results for individual predictive regression, and panel B and C for different forecast combination

models compared to the benchmark model and the FC-TD model, respectively. We do not report the

results of the so-called kitchen sink model, which corresponds to a multiple predictive regression

model that includes all 15 predictors, as it performs poorly.

Results in panel A are in line with those in previous literature (Rapach et al., 2010). The R2
OS
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statistics in the second column clearly show that individual predictive regression forecasts of the

equity premium frequently fail to beat the benchmark model in terms of MSFE. Indeed, 12 of

the 15 R2
OS statistics are negative, and only one (IK) of the three predictors with a positive R2

OS

is statistically significant. That is, only one of these 15 variables displays statistically significant

OOS predictive ability at conventional levels. The third column reports the average utility gains.

Relative to the R2
OS statistics, the individual predictive regression forecasts appear more valuable

from an economic point of view, as 9 of the 15 variables offer positive gains. However, only TMS

has statistically significant positive annualized gains (320 basis points).

When analyzing stock return predictability over the business cycle, the R2
OS statistics in the fourth

and sixth columns confirm the well-known fact that predictability is higher in recessions than in

expansions (see e.g. Cujean and Hasler, 2017). Only one variable (LTR) delivers a positive and

statistically significant R2
OS in expansions, while four variables (DP, DY, TMS, and IK) are good

predictors of equity returns in recessions. Similar differences in predictability over business cycle

phases are visible when looking at the utility gains (in the fifth and seventh columns).

Overall, the results in panel A show that no single variable is clearly and constantly better (from a

statistical or economic point of view) in all sub-samples than the others as equity premium predic-

tor.

In panel B (between columns two to seven) are reported the R2
OS statistics and average utility gains

for the combining methods for equity premium predictions. The first row in panel B demonstrates

the usefulness of the forecast combination in the time domain. The FC-TD model delivers positive

and statistically significant R2
OS and positive (but not statistically significant) CER gains for the full

forecast evaluation period, as well as in both expansion and recession periods.

The second row in panel B shows the results of the forecast combination in the frequency domain

(FC-FD). From a statistical point of view, the FC-FD model performs slightly better than the FC-

TD model over the full OOS period and in each subsamples. From an economic point of view, the
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FC-FD model delivers larger utility gains regardless of the sample period considered. Over the full

OOS period, the CER gains generated by the FC-FD model are sizable, statistically significant (at

conventional levels), and twice as large as than those of the FC-TD model (261 versus 126 basis

points). However, when looking at the results in the first row in panel C, both the R2
OS statistic and

the CER gains of the FC-FD model are not statistically better than those of the FC-TD model.

Figure 4 provides information on the behavior of the portfolios based on the forecasts from the

benchmark model and from the forecast combination models. Panel A and B depicts equity weights

and the log cumulative wealth, respectively, over the forecast evaluation period.

The equity weight for the portfolio based on the benchmark model (black line) is relatively stable

throughout the OOS period, which reflects the fact that the historical mean benchmark forecast is

very smooth. The equity weight for the portfolio based on the FC-TD model (red line) exhibits

substantial fluctuations around the weight of the benchmark portfolio, especially until 1990. After

that, the weight closely tracks the one of the benchmark portfolio.

The equity weight for the portfolio based on the FC-FD model (blue line) exhibits even more fluc-

tuations, especially around recessions. The enhanced portfolio performance of the FC-FD model,

quite evident from the log cumulative wealth in panel B, is due to its better market timing, as it

allows to quickly reduce the exposure to the equity market around recessions.

5.2 GDP growth

The eighth through tenth columns of table 2 reports the results for real GDP growth rate predictions

for the full OOS forecast evaluation period (eighth column), and separately for expansions (ninth

column) and recessions (tenth column). Panel A shows the results for individual predictive regres-

sion, and panel B and C for different forecast combination models compared to the benchmark

model and the FC-TD model, respectively.

Over the full OOS period, results are similar to the equity premium ones: only one of the individ-
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ual predictor (NTIS) displays statistically significant out-of-sample predictive ability. Differently

from the equity premium case, predictability of GDP growth rates is higher in expansions than in

recessions: seven variables are good predictors of GDP growth in expansions, while only two in

recessions.

Looking at the forecast combination methods in panel B, the FC-TD model performs well over the

full OOS period but the FC-FD model performs even better. The R2
OS for the FC-FD model is 7.4 %,

which is much larger than the 2.9 % R2
OS for the FC-TD model (both statistically significant at the

1 % level). Both forecast combination methods perform well in expansions (with the FC-FD model

being better than the FC-TD model) but poorly in recessions (negative R2
OS statistics). Moreover,

when looking at the results in the first row in panel C, both the R2
OS statistic and the CER gains

of the FC-FD model are statistically better than those of the FC-TD model over the entire sample

period as well as in expansions and recessions.

We report the actual forecasts in figure 5. The enhanced performance of the FC-FD model is due

to its ability to better capture both the trend of GDP growth and some of its higher frequency

fluctuations. It is also evident that none of the forecast combination methods is nevertheless able to

capture the sudden and abrupt drops associated with recessions.

5.3 Placebo test

To demonstrate that our procedure does not mechanically generate predictability, we run the fol-

lowing placebo test. We generate 1000 datasets, each of them containing 15 variables, and each

variable having the same persistence and standard deviation as the respective variable in the real

dataset. Innovations in the simulated datasets are produced by a random number generator so they

are independent from the true data. Then we run the forecast with our FC-FD model to each of

these simulated datasets, and record the R2
OS and CER gains.

Figure 6 shows the distribution of the R2
OS and CER gains for equity premium predictions (left and
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middle graph, respectively) and the R2
OS for GDP growth rate predictions (right graph). For all

measures and variables, the medians (red lines within each box) as well as the 90 % confidence

interval of the distributions (vertical dashed lines) are below the results with the FC-FD model with

the original data (black dots). This placebo analysis thus shows that the predictability power of the

FC-FD model is thus unlikely to be driven by a mechanical bias.

5.4 Why is it important to take into account the frequency domain (in fore-

cast combination)?

The benefits of using forecast combination methods are well known in the literature. As stressed

in the seminal paper by Goyal and Welch (2008), the inconsistent out-of-sample performance of

individual predictive regression models is due to structural instability. The graphs in the top row

in figure 7 give a visual impression of the changing nature of the relationships between the target

variables (equity premium on the left column and GDP growth on the right column) and three

individual predictors (DP, black lines; TMS, blue lines; IK, red lines). The figure depicts the OLS

estimates from expanding windows that start with the sample 1947:Q1-1964:Q4 and recursively

add one quarter through 2022:Q4. The regression coefficients, which are ultimately used to produce

the OOS forecasts with the FC-TD model, fluctuate substantially over the period, and there are even

instances where the relationship switches sign. Given this instability over time, averaging across

individual forecasts gives more stable and, ultimately, better forecasts.

The remaining rows in figure 7 report the OLS estimates in each frequency bands, which are used

to produce the OOS forecasts with the FC-FD model. We emphasize three features about time- and

frequency-varying changing relationships. First, as it happens with the original variables, there is a

clear time variation of each coefficient within a specific frequency, and switching sign is also quite

common. Second, there are cases where the sign of the relationship between aggregate variables

differs from the sign between the same variables at different frequencies. For instance, the esti-
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mated OLS coefficients are negative (positive) between the equity premium and IK (GDP growth

and TMS), but the sign flips at frequency D2 (D2 and D4) during most of the sample period. Third,

for a given predictor, the magnitude of the estimated coefficients also significantly varies across

frequencies and quite often differs from the magnitude using the original series.5

Overall, figure 7 suggests important structural instabilities in the relationships between the target

variables and these predictors not only over time, but also across frequencies. These findings

support the relevance of taking the frequency domain into account, as the magnitude and sign of

the estimated coefficients (that are used to make the forecasts) are time- and frequency-specific.

Another way to understand why forecast combination models perform better than individual pre-

dictive regression models is to look at the Theil (1971) MSFE decomposition into the squared

forecast bias and a remainder term (as proposed by Rapach et al., 2010). The latter term depends,

among other things, on the forecast volatility, and limiting forecast volatility helps to reduce the

remainder term. A model’s forecasting performance ultimately depends on the trade-off between

the reduction in bias and variance. To get a sense of this bias-efficiency trade-offs in the forecasts,

figure 8 is a scatterplot depicting the MSFE decomposition into the squared forecast bias and the

remainder term for the individual predictive regression models, the benchmark models, and the

forecast combination models for the full OOS period.

Looking at the equity premium forecast (left graph), several forecasting methods produce rela-

tively unbiased return predictions, many of them even better than the historical mean benchmark.

However, their performance relative to the historical mean is negatively affected by their higher

remainder term.

The FC-TD forecast has low forecast variance and a relatively small squared forecast bias (close

to the smallest squared biases of the individual predictive regression model, IK). When compared

5 It is beyond the scope of this paper to analyze why, for some of these variables, the sign and magnitude at some
frequencies are different than those with the original series. However, this fact has already been emphasized in other
applications. For instance, in the context of the Q theory of investment, Gallegati and Ramsey (2013) and Verona
(2020) show that the investment-Q sensitivity is not always positive at all points in time and for all frequencies.
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with the historical mean benchmark, both the squared bias and the remainder term are substantially

below. Hence, the FC-TD model achieves a higher R2
OS (that is, a smaller MSFE) than the historical

mean benchmark and any of the individual predictive regression models (except IK).

The FC-FD model delivers more accurate forecasts (higher R2
OS and smaller MSFE) than the FC-TD

model due to its ability to further reduce both the forecast bias and the remainder term.

Similar conclusions can be drawn from the analysis of the scatterplot for real GDP growth fore-

cast in the right graph of figure 8. Thus, forecasts based on the FC-FD model are generally both

less biased and more efficient than all the other forecasts analyzed here, including the forecast

combination in the time domain.

6 Predictability over the business cycle

So far we sum the forecasts of all (four) frequencies of the target variables when making the fore-

cast in the frequency domain. However, as shown by Faria and Verona (2021) and Martins and

Verona (2021), ignoring some frequencies of the target variable usually leads to better forecasts.

For instance, forecasting with a model like FC−FDt+1 =∑
3
f=2 r̂

D f
c,t+1, which ignores both the high-

est and the lowest frequency forecasts of the target variable, might produce more accurate forecast

than an identical model that sums all (four) frequencies.

We now check if and when it is valuable to ignore some frequencies of the target variables. We start

from an ex-post exercise to gain some intuition about the predictability over business-cycle phases.

We then move to a real-time exercise where the status of the business cycle is assessed in real time

and the forecaster switches between two forecasts according to the state of the economy.
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6.1 Ex-post exercise

To investigate how our method performs in recessions and in expansions, we analyse which fre-

quencies of the target variables are important to include (or exclude) to have good forecasts, and

whether there are differences between expansions and recessions.

The third row in panel B in table 2 reports the forecasts of the FC-FD model when the low-

frequency component (D4) of the target variable is ignored when making the forecast. This method

is denoted as FC-FD (no LF) and its forecast is given by ∑
3
f=1 r̂

D f
c,t+1. The gains over the full OOS

period are not very impressive (for the equity premium) or even really bad (for GDP growth).

However, for both target variables, there are huge forecasting gains in ignoring their low-frequency

forecasts in recessions. The intuition is that ignoring the forecast of the trend allows to better

track the quick and sudden drop associated with recessions (recall that both variables are nega-

tively skewed). However, it is crucial to forecast well the trend (as well as some high-frequency

fluctuations) in expansions.6

This finding of enhanced return predictability during recessions is ex-post, since the dates of NBER

business-cycle peaks and troughs are known retrospectively. The question is then whether we can

use this insight in real time. In particular, how large are the statistical / economic gains if we were

able to switch between the forecasts of two different frequency combination methods – ∑
4
f=1 r̂

D f
c,t+1

for expansions and ∑
3
f=1 r̂

D f
c,t+1 for recessions – in real time according to the perception of the state

of the business cycle? We address this question in the next subsection.

6 Regardless of the forecasts of the other frequency components D1 - D3, we find similar results for almost all
possible frequency combinations in the spirit of Faria and Verona (2021): whenever we exclude (include) the low-
frequency forecasts (D4) of the target variable, the forecasts in recessions are much better (worse) and in expansions
are much worse (better).
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6.2 Real-time exercise

To guide switching between forecasts over the business cycle, we rely on a well-known leading

indicator of the business cycle – the stock market. In particular, we use the information from some

stock market technical indicators (TIs), which are widely employed by practitioners, to compute a

real-time indicator of the state of the business cycle. TIs rely on past stock market price and volume

patterns to identify trends believed to persist into the future, so they provide useful forward looking

information about the business cycle.7

Following Neely et al. (2014), we use two moving average indicators and three momentum indica-

tors, which are described and plotted in appendix 3. A value of 0 (1) for each of these indicators

implies a sell (buy) signal at the end of quarter t, hence quarter t+1 is considered to be a recession

(expansion) according to this specific technical indicator. Relying on a single TI might however

generate too many false recession signals. Hence, we introduce a novel business cycle leading in-

dicator, that we name as coincident index, that summarizes the information from the five TIs. In

particular, for quarter t+1 to be considered a recession, all five TIs have to be 0 at the end of quarter

t. In this case, we use the forecasts for t+1 (made at the end of quarter t) that exclude the low-

frequency forecast of the target variable (i.e. we use ∑
3
f=1 r̂

D f
c,t+1) . The coincident index, plotted in

figure 9, captures most of the actual NBER-dated recession quarters, albeit triggering some false

recession signals.

The results for the equity premium and GDP growth forecasts in real time, denoted FC-FD real

time, are reported in the last row of panel B and C in table 2. Being able to switch forecasts in

real time according to the state of the business cycle allows to improve forecast even further when

7 This method is similar in spirit but much simpler than the one proposed by Aruoba et al. (2009), who use
high-frequency data to compute a real-time indicator of economic activity. Other variables commonly used as real-
time / leading indicator of the business cycle are the Chicago Fed National Activity Index, the Business Conditions
Index, the term spread, and indicators based on survey data (Survey of Professional Forecasters, Livingston Survey,
and Purchasing Managers’ index). Markov-switching models (see e.g. Guidolin and Timmermann, 2007) provide a
different framework for switching between forecasting models according to estimated probabilities of the state of the
economy.
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compared to both the benchmark models and the FC-FD model. When compared to the benchmark

models, for the equity premium (second and third column), the R2
OS statistic and CER gain both are

statistically significant at 4.41 % and 385 basis points, respectively. The blue dashed line in figure

4 reports the log cumulative wealth for an investor who trades using the FC-FD real time model.

The possibility of being able to switch between forecasts significantly increases wealth throughout

the entire OOS period.

Looking at the real GDP growth rate forecasts (eighth column), the R2
OS statistic of the FC-FD

real time model is statistically significant and markedly higher than those of the other combination

models (14.8 % against 7.4 % and 2.9 % of the FC-FD and FC-TD model, respectively). The blue

dashed line in figure 5 shows the forecast of the FC-FD real time model. This method produces

more accurate forecast as it allows to capture remarkably well the drops associated with recessions.

Likewise, from the bias-variance scatterplot (figure 8), the improved performance of the FC-FD

real time model is due to its ability to decrease the forecast bias almost to zero and to reduce even

further the remainder term.

Remarkably, for both equity premium and real GDP growth, the FC-FD real time model produces

forecasts that are significantly better (from a statistical and economic point of view) than those of

the FC-TD model, as reported in the last row of panel C of table 2.

7 Robustness

We run the following robustness tests.

The choice of the band-pass filter affect both the equity premium and real GDP growth forecast.

We run the analysis with the Daubechies filter of length two and four, which is commonly used

with quarterly data (e.g. Crowley and Hudgins, 2021, 2023). The choice of the parameters related

with the asset allocation exercise only affects the CER gain results. We consider a risk aversion

21



coefficient of 5 (instead of 3), different set of portfolio constraints for the equity weights wt (no

leverage and / or no short selling instead of 50 % leverage and short selling), a ten-year (instead of

five-year) moving window of past equity premium to estimate the variance forecast, and CER gains

net of transactions costs of 50 basis points. For the real-time exercise, we use different technical

indicators to compute the coincident index. Results, not reported here but available upon request,

turn out to be robust to all these changes.

We also run the forecasts using the Christiano and Fitzgerald (2003) asymmetric band-pass filter.

As in other forecasting applications (e.g. Faria and Verona, 2020), this band-pass filter performs

worse than the Haar filter, especially when forecasting the equity premium.

8 Conclusions

In this paper we propose a new forecasting method – forecast combination in the frequency domain

– that takes into account the fact that predictability is time and frequency dependent. We apply

this method to forecast the equity premium and real GDP growth rate. Combining forecasts in the

frequency domain produces markedly more accurate predictions relative to the traditional forecast

combination in the time domain, both in terms of statistical and economic measures of out-of-

sample predictability. This result supports the theoretical findings of Kelly et al. (2024), who show

that more complex models (for instance, forecast combination in the frequency domain) tend to

deliver larger economic gains than simpler models (for instance, forecast combination in the time

domain). This method is flexible enough that it allows to exclude some of the frequencies of the

target variables when making the forecasts. In particular, we show that, in recessions, it is of

major relevance to ignore the forecast of the low-frequency components of the target variables.

This flexibility turns out to be crucial in a real-time forecasting exercise, as the method allows

to capture remarkably well the sudden and abrupt drops associated with recessions and further

improve predictability of the equity premium and real GDP growth rate. Besides providing more
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accurate forecasts, this method has very broad applicability, is easy to implement, and can be used

in combination with machine learning methods to take advantage of the large dataset nowadays

easily available to researchers and forecasters.
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mean 1st perc. 99th perc. std. dev. skew. kurt. AR(1)

Equity premium 0.02 -0.24 0.18 0.08 -0.97 4.81 0.07
Real GDP growth 0.76 -2.14 3.79 1.15 -1.29 22.5 0.12

DP -3.53 -4.47 -2.64 0.45 -0.06 2.20 0.98
DY -3.51 -4.48 -2.60 0.45 -0.06 2.26 0.98
EP -2.79 -4.26 -1.88 0.45 -0.50 5.09 0.95
DE -0.74 -1.23 0.65 0.29 2.77 20.3 0.90

SVAR 0.01 0.00 0.06 0.01 6.91 62.0 0.38
BM 0.52 0.14 1.13 0.25 0.55 2.49 0.98

NTIS 0.01 -0.04 0.04 0.02 -0.82 3.28 0.94
TBL 0.04 0.00 0.15 0.03 0.99 4.25 0.96
LTY 0.06 0.01 0.14 0.03 0.82 3.23 0.98
LTR 0.01 -0.11 0.20 0.05 0.89 5.86 -0.01
TMS 0.02 -0.02 0.04 0.01 -0.06 3.17 0.84
DFY 0.01 0.00 0.02 0.00 1.94 8.78 0.88
DFR 0.00 -0.08 0.06 0.02 -0.52 15.1 -0.12
INFL 0.01 -0.01 0.04 0.01 0.33 5.67 0.41

IK 0.04 0.03 0.04 0.00 0.49 2.81 0.96

Table 1: Summary statistics, U.S. data, 1947:Q1-2022:Q4
This table reports summary statistics for the (log) equity premium, real GDP growth, and for the 15 predictive
variables. See appendix A for a description of the predictors.
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icto Equity premium Real GDP growth rate

column (2) (3) (4) (5) (6) (7) (8) (9) (10)

predictor / 1965:Q1-2022:Q4 Expansions Recessions 1965:Q1-2019:Q4 Expansions Recessions

method R2
OS CER gain R2

OS CER gain R2
OS CER gain R2

OS R2
OS R2

OS

Panel A: Individual predictive regression (vs benchmark models)

DP -0.15 -1.46 -4.88 -3.78 6.24*** 9.74** -5.2 13.1*** -34.0

DY -0.17 -0.72 -5.84 -3.83 7.47*** 14.6** -4.6 14.9*** -35.3

EP -1.23 0.43 -2.40 -0.56 0.34 5.06 -6.2 10.3*** -32.1

DE -1.36 0.30 -2.77 -1.13 0.54 7.39 -10.7 -2.1 -24.2

SVAR -8.70 -0.82 -12.8 -0.21 -3.12 -4.18 -42.6 -77.1 11.7***

BM -1.87 -0.44 -2.26 -0.64 -1.34 0.24 -6.9 -1.5 -15.3

NTIS -1.97 -0.79 -0.08 0.26** -4.53 -5.54 2.1*** 12.9*** -14.8

TBL -1.87 2.07 -2.92 -0.05 -0.46 12.6 -7.9 -10.7 -3.5

LTY -1.72 1.37 -2.19 -0.59 -1.09 11.1 -7.5 -6.0 -9.8

LTR 0.03 0.17 1.47* 0.27 -1.92 -0.39 -26.3 -11.6 -49.3

TMS -2.75 3.20** -9.57 0.25 6.47** 17.8** -10.3 4.5*** -33.8

DFY -2.10 -0.21 -2.03 0.05* -2.19 -1.35 -3.2 -13.7 13.2*

DFR -2.22 0.06 -4.63 -1.64 1.02 8.57 -6.8 0.6*** -18.3

INFL 0.50 0.70 -0.24 -0.14 1.49 5.12 -0.6 7.8*** -13.8

IK 2.43*** 2.24 -1.58 -0.59 7.86*** 16.3* -21.0 -29.6 -7.4

Panel B: Forecast combination regression (vs benchmark models)

FC-TD 2.35*** 1.26 1.52** 0.42 3.47** 5.56 2.9*** 11.2*** -10.0

FC-FD 2.78*** 2.61* 1.75** 0.91 4.18** 11.0 7.4*** 15.6*** -5.5

FC-FD (no LF) 1.51*** -0.23 -5.05 -5.91 10.4*** 29.0** -76.0 -158 54.1***

FC-FD real time 4.41*** 3.85* 0.00 0.00 0.00 0.00 14.8*** 0.0 0.0

Panel C: Forecast combination regression (vs FC-TD model)

FC-FD 0.44 1.35 0.23 0.49 0.73 5.46 4.6*** 5.0*** 4.1**

FC-FD (no LF) -0.86 -1.49 -6.67 -6.33 7.15*** 23.4** -81.4 -191 58.3***

FC-FD real time 2.11** 2.60* 0.00 0.00 0.00 0.00 12.3*** 0.0 0.0

Table 2: Equity premium and real GDP growth rate out-of-sample forecasting results
R2

OS is the Campbell and Thompson (2008) out-of-sample R2 statistic. CER gain is the portfolio manage-
ment fee (in annualized percentage return) that an investor with mean-variance preferences and risk aversion
coefficient of three would be willing to pay to have access to the forecasting model given in column (2), (4),
or (6) relative to the benchmark forecasting model. Statistical significance for the R2

OS statistic is based on
the p-value for the Clark and West (2007) out-of-sample MSFE-adjusted statistic; the statistic corresponds
to a one-sided test of the null hypothesis that the competing forecasting model has equal expected square
prediction error relative to the benchmark forecasting model against the alternative hypothesis that the com-
peting forecasting model has a lower expected square prediction error than the benchmark forecasting model.
Statistical significance for the CER gains is based on a one-sided Diebold and Mariano (1995) test. *, **,
and *** indicate significance at the 10 %, 5 %, and 1 % levels, respectively.
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Figure 1: Equity premium and real GDP growth rate, U.S. data, 1947:Q1-2022:Q4
Time series of the quarterly log equity premium (upper graph) and quarterly real GDP growth rate (lower
graph). Grey bars depict NBER-dated recessions.
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Figure 2: Time series of the predictors, U.S. data, 1947:Q1-2022:Q4
Grey bars depict NBER-dated recessions.
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Figure 3: Investment rate (IK), time series and frequency decomposition, U.S. data, 1947:Q1-
2022:Q4
The top panel shows the time series of quarterly U.S. investment rate, while the remaining panels show the
four time series frequency components into which the investment rate series is decomposed. Grey bars depict
NBER-dated recessions.
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A. Equity weights

B. Log cumulative wealth

Figure 4: Equity weights and log cumulative wealth, 1965:Q1-2022:Q4
Panel A plots the dynamics of the equity weights for a mean-variance investor with relative risk aversion
coefficient of three who allocates quarterly between equities and risk-free bills using a predictive regression
excess return forecast based on the benchmark forecast model (black solid line), the FC-TD model (red
solid line), the FC-FD model (blue solid line), or the FC-FD real time model (blue dashed line). The equity
weights are constrained to lie between -0.5 and 1.5. Panel B delineates the corresponding log cumulative
wealth for the investor, assuming that the investor begins with 1C and reinvests all proceeds. Grey bars
denote NBER-dated recessions.
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Figure 5: Real GDP growth rate, realized and out-of-sample forecasts, 1965:Q1-2019:Q4
Quarterly U.S. real GDP growth rate (black solid line) and its out-of-sample forecasts based on the FC-TD
model (red solid line), the FC-FD model (blue solid line), or the FC-FD real time model (blue dashed line).
Grey bars depict NBER-dated recessions.
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Figure 6: Placebo test R2
OS and CER gains

In each box, the red line displays the median across models, the boundaries of the box depict the 25 % and
75 % percentiles, and the whiskers outside of the box mark the 90 % confidence interval of the distribution.
Red, black, and blue dots denote the results (as reported in table 2) with the FC-TD model, the FC-FD model,
and the FC-FD real time model, respectively.
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Figure 7: OLS regression coefficients between the target variables and three individual predictors
based on expanding window estimates
Left (right) column: OLS regression coefficients (based on expanding window estimates starting in 1947:Q2-
1964:Q4Q4, recursively including one additional quarter through 2022:Q4) between the equity premium
(real GDP growth) and three individual predictors (DP, black lines; TMS: blue lines; IK, red lines). Top row:
time series. Remaining rows: coefficients in each frequency band. Each predictor variable is standardized to
have a standard deviation of one before running the estimation.
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Figure 8: Scatterplot of the Theil (1971) MSFE decomposition into the squared forecast bias and a
remainder term
Left (right) graph: equity premium (real GDP growth rate) forecast. Benchmark corresponds to the bench-
mark forecast model (historical mean for equity premium, and AR(p) for GDP growth), and FC-TD, FC-FD,
and FC-FD real time denote the combination forecast in the time domain, in the frequency domain, and in
the frequency domain in the real time exercise in section 6.2, respectively. The other points correspond to
the individual predictive regression model forecasts.
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Figure 9: Coincident index and NBER-dated recessions (grey bars)
The coincident index is computed from five stock market technical indicators. A value of 0 indicates a
recessions. See appendix 2 for a description of the technical indicators.
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Appendix 1. List of predictors

• Log dividend-price ratio (DP): difference between the log of dividends (12-month moving

sums of dividends paid on S&P 500) and the log of prices (S&P 500 index).

• Log dividend yield (DY): difference between the log of dividends (12-month moving sums

of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index).

• Log earnings-price ratio (EP): difference between the log of earnings (12-month moving

sums of earnings on S&P 500) and the log of prices (S&P 500 index price).

• Log dividend-payout ratio (DE): difference between the log of dividends (12-month moving

sums of dividends paid on S&P 500) and the log of earnings (12-month moving sums of

earnings on S&P 500).

• Stock variance (SVAR): sum of squared daily returns on the S&P 500.

• Book-to-market ratio (BM): ratio of book value to market value for the Dow Jones Industrial

Average.

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by NYSE-

listed stocks to the total end-of-year NYSE market capitalization.

• Treasury bill rate (TBL): three-month Treasury bill rate.

• Long-term yield (LTY): long-term government bond yield.

• Long-term return (LTR): long-term government bond return.

• Term spread (TMS): difference between the long-term government bond yield and the T-bill.

• Default yield spread (DFY): difference between Moody’s BAA- and AAA-rated corporate

bond yields.
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• Default return spread (DFR): difference between long-term corporate bond and long-term

government bond returns.

• Inflation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban con-

sumers.

• Investment to capital ratio (IK): ratio of aggregate (private nonresidential fixed) investment

to aggregate capital for the whole economy.
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Appendix 2. Haar filter

To extract the different frequency components from the data, we use the Maximal Overlap Discrete

Wavelet Transform (MODWT). This approach permits decomposition of any variable, regardless

of its time series properties, into a trend and several cycles in a manner similar to the traditional

Beveridge and Nelson (1981) time series trend-cycle decomposition approach.

By using the MODWT with the Haar filter, any variable Xt can be decomposed as:

Xt =
J

∑
j=1

D j,t +SJ,t , (6)

where D j,t are the wavelet coefficients at scale j, and SJ,t is the scaling coefficient. These coeffi-

cients are given by

D j,t =
1
2 j

[
2( j−1)−1

∑
i=0

Xt−i −
2 j−1

∑
i=2( j−1)

Xt−i

]
(7)

and

SJ,t =
1
2J

2J−1

∑
i=0

Xt−i . (8)

In particular, in our analysis we compute a J=3 level decomposition. Hence the corresponding time

series components are given by

D1,t =
Xt −Xt−1

2

D2,t =
Xt +Xt−1 − (Xt−2 +Xt−3)

4

D3,t =
Xt +Xt−1 +Xt−2 +Xt−3 − (Xt−4 +Xt−5 +Xt−6 +Xt−7)

8

S3,t =
Xt +Xt−1 +Xt−2 +Xt−3 +Xt−4 +Xt−5 +Xt−6 +Xt−7

8
.

In the paper we denote component S3 as D4.
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Appendix 3. List of technical indicators

Let Pt be the stock price index in quarter t.

Moving average indicator. The MA rule generates a buy (Si,t = 1) or sell (Si,t = 0) signal at the

end of quarter t by comparing two moving averages:

Si,t =


1 i f MAshort,t ≥ MAlong,t

0 i f MAshort,t < MAlong,t

where

MA j,t =
1
j

j−1

∑
i=0

Pt−i f or j = short, long

and short (long) is the length of the short (long) MA (short < long). The MA indicator with MA

lengths short and long is denoted as MA(short,long). Intuitively, the MA rule detects changes in

stock price trends because the short MA will be more sensitive to recent price movement than will

the long MA. In the paper we use MA indicators with short=1 and long=3,4.

Momentum indicator. The momentum rule generates the following buy (Si,t = 1) or sell (Si,t = 0)

signal at the end of quarter t:

Si,t =


1 i f Pt ≥ Pt−m ,

0 i f Pt < Pt−m .

Intuitively, a current stock price that is higher than its level m periods ago indicates positive momen-

tum and relatively high expected excess returns, thereby generating a buy signal. The momentum

indicator that compares Pt to Pt−m is denoted by MOM(m) and we compute momentum indicators

for m=3, 4, 6.

These technical indicators are plotted in figure 10.
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Figure 10: Time series of the technical indicators, U.S. data, 1965:Q1-2022:Q4
Grey bars depict NBER-dated recessions.
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