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Aaron Mehrotra and Jouko Rautava1 

 
Do sentiment indicators help to assess and predict  
actual developments of the Chinese economy? 
 

Abstract 
This paper evaluates the usefulness of business sentiment indicators for forecasting devel-

opments in the Chinese real economy. We use data on diffusion indices collected by the 

People’s Bank of China for forecasting industrial production, retail sales and exports. Our 

bivariate vector autoregressive models, each composed of one diffusion index and one real 

sector variable, generally outperform univariate AR models in forecasting one to four quar-

ters ahead. Similarly, principal components analysis, combining information from various 

diffusion indices, leads to enhanced forecasting performance. Our results indicate that Chi-

nese business sentiment indicators convey useful information about current and future de-

velopments in the real economy. They also suggest that the official data provide a fairly 

accurate picture of the Chinese economy. 

 

Keywords: forecasting, diffusion index, VAR, China.  

JEL: E32, E37, P27 

                                                 
1 The authors are Economists at BOFIT, Bank of Finland’s Institute for Economies in Transition. The views 
expressed are those of the authors and do not necessarily represent those of the Bank of Finland. Thanks to 
Iikka Korhonen and seminar participants at the ESCB Workshop on Emerging Markets for useful comments 
and suggestions. Corresponding author: Aaron Mehrotra, Bank of Finland, BOFIT, PO Box 160, 00101 Hel-
sinki, Finland. Email: aaron.mehrotra@bof.fi 
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Do sentiment indicators help to assess and predict  
actual developments of the Chinese economy? 
 

Tiivistelmä 
 
Tutkimuksessa tarkastellaan yritysbarometrimuuttujien käytön hyödyllisyyttä Kiinan re-

aalitalouden ennustamisessa. Työssä käytetään Kiinan keskuspankin julkaisemia diffuusio-

indeksejä teollisuustuotannon, vähittäiskaupan ja viennin ennustamiseksi. Yritysbaromet-

rimuuttujasta ja reaalitalouden muuttujasta koostuvat kahden muuttujan vektoriautoregres-

siiviset mallit ennustavat reaalitalouden kehitystä paremmin kuin yhden muuttujan autore-

gressiiviset mallit, kun ennustehorisontin pituus ulottuu yhdestä neljään vuosineljännek-

seen. Myös pääkomponenttianalyysi auttaa ennustamisessa kokoamalla informaatiota eri 

diffuusioindekseistä. Tulosten mukaan Kiinan yritysbarometrimuuttujat välittävät hyödyll-

istä tietoa talouden tämänhetkisestä ja tulevasta kehityksestä. Tulokset vahvistavat näke-

mystä, että virallinen data antaa kohtalaisen tarkan kuvan Kiinan talouden kehityksestä. 

 

Asiasanat: ennustaminen, diffuusioindeksi, vektoriautoregressiivinen malli, Kiina 

JEL: E32, E37, P27 
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1 Introduction 
 

In 2005, China surpassed France and the UK in nominal GDP to become the fourth largest 

economy in the world after Germany, Japan and the US. If we apply GDP in PPP terms, 

only the US outranks China. China's global role is accentuated by the fact that foreign trade 

plays a more prominent role in the Chinese economy than in most other large economies, 

as the exports-to-GDP ratio in China is about 34%. In recent years, China's contribution to 

global economic growth has been particularly noteworthy.  

The increasing importance of China for the world economy assures a growing de-

mand for information on its macroeconomic developments. However, from the standpoint 

of economic monitoring and research, major problems remain regarding basic economic 

statistics. This is evidenced by the upward revision of GDP by 17% at the end of 2005, 

based on improved information on the role of the service sector in China’s booming econ-

omy. Moreover, even with the improvements in GDP data, their usefulness is still impaired 

by a lack of quarterly series on GDP components in real terms. On the expenditure side of 

GDP, the problems are even more formidable. Thus, quarterly consumption and investment 

data are available only as cumulative nominal data, which do not enable direct computation 

of actual quarterly figures.2 

While one could in principle use some other indicator to proxy a national account 

item, there is also a lack of satisfactory proxies. For example, it has been argued that the 

monthly indicator on retail sales poorly captures trends in household consumption. The 

same applies to capital formation, as investment data published on a monthly basis (fixed 

asset investment) differ conceptually from the internationally comparable national account 

measure (gross fixed capital formation).3 Besides problems with real sector data, the lack 

of proper price indices hinders the evaluation of actual developments. 

To deal with concerns about the availability and reliability of the data one can use 

various survey indicators to gain insights into current developments and future trends in 

the real economy. While business sentiment indicators are widely used in developed indus-

trial countries, their role in assessing Chinese developments has so far been very modest. 

Nevertheless, the National Bureau of Statistics (NBS) and the People’s Bank of China 

                                                 
2 In order to overcome problems with the quarterly Chinese GDP data, Curran and Funke (2006) use some 
simple assumptions and time series techniques to construct a quarterly GDP series in real terms.  
3 See World Bank's China Quarterly Update August 2005. 
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(PBoC) have for several years been publishing a number of survey indicators for the con-

sumer and business sectors.  

In this paper, we consider various business condition indicators reported by the 

PBoC so as to evaluate their usefulness in assessing and forecasting actual developments in 

the Chinese economy. We are not aware of any earlier studies focusing on the forecasting 

properties of the PBoC's business condition indicators in China. Our paper provides a first 

attempt to fill this gap in the literature. We find that our estimated bivariate VARs, each 

composed of one diffusion index and one real sector variable, usually lead to an improve-

ment in forecasting performance compared with a univariate AR process. Similarly, prin-

cipal components analysis, combining information from various diffusion indices, leads to 

enhanced forecasting performance. These results indicate that Chinese business sentiment 

indicators provide useful information about current and future developments in the Chinese 

real economy. They also suggest that the official data provide a relatively accurate picture 

of the Chinese economy. 

The paper is organised as follows. In the next section, we briefly discuss the avail-

ability of business condition indicators in China and the main characteristics of the indica-

tors chosen for this study. Section 3 deals with the analytical framework, providing details 

about the empirical methodology used in our exercise. Section 4 reports the results of our 

estimations. The concluding section provides a summary of our findings.  

 

 

2 Data 
 

The classification of various leading and business confidence (sentiment, climate) indica-

tors seems to be somewhat arbitrary. However, leading indicators are often based on regu-

larly published 'hard' data (money supply, asset prices, exports, etc) while confidence indi-

cators build on particular consumer and enterprise surveys. Sometimes composite leading 

indicators include both hard and soft data. Nevertheless, both types of indicators are ex-

pected to contain some useful information about future developments. This paper focuses 

on the forecasting properties of enterprise survey-based indicators.4 

 

                                                 
4 Regarding composite leading indicators for China, see Nilsson and Brunet (2006) and Curran and Funke 
(2006). 
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Figure 1  General business condition and industrial production (y-o-y growth rate) 
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Given the above considerations, in this paper we consider the GBC and three other diffu-

sion indices (overseas and domestic order level, and lending attitude of bank) compiled by 

the PBoC to evaluate their ability to forecast actual developments in the Chinese economy. 

Overseas and domestic order level were chosen due to their presumably direct demand-pull 

link with our real sector variables, while lending attitude of bank should indicate the role of 

financial factors on actual developments. These three other diffusion indices are illustrated 

in Figure 2.  
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Figure 2  Domestic and overseas order level, and lending attitude of bank  
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Due to the aforementioned problems with GDP data and the fact that quarterly real GDP 

series are available only since 1998, we evaluate forecasting performances of the diffusion 

indices for developments in industrial output, retail sales and Chinese exports. These three 

series feature prominently in public discussion and news about Chinese economic devel-

opments.5 Consequently, it would be interesting to know whether diffusion indices could 

be used to provide forecasts for these three real sector indicators.  

In order to obtain stationary time series data for econometric inference, the follow-

ing transformations were applied. All the diffusion index variables were differenced once. 

Real exports and real retail sales in levels were first-differenced and transformed to loga-

rithms.6 The year-on-year growth rate of industrial production was differenced once, with-

                                                 
5 Holz (2004) notes that the regular data reporting system is most highly developed for the industrial sector. 
Industrial statistics have moved to a two-class compilation system where industrial firms with accurate data 
report directly to the NBS (accounting for 60% of industrial output) and all other firms are covered by sample 
surveys. 
6 Real retail sales was constructed by deflating nominal retail sales by a proxy for the CPI index (which is not 
available directly and was thus built by the authors). Real exports was obtained by deflating US dollar export 
figures by the US CPI. 



BOFIT- Institute for Economies in Transition 
Bank of Finland 

BOFIT Discussion Papers 11/ 2007 

 

 11

out a logarithmic transformation.7 Augmented Dickey-Fuller (ADF) tests for unit root gen-

erally suggest that the resulting series are stationary, as displayed in Table 1. The lag 

length is that suggested by the commonly-used information criteria, setting the maximum 

number of lags to 8. While Schwarz criteria always reject the null of unit root, for three 

series longer lag lengths indicated by the Akaike and Hannan-Quinn criteria indicate the 

existence of a unit root. As the KPSS test for unit roots is not able to reject the null of level 

stationarity in these cases at the 5% level (depending on choice of lag truncation parame-

ter; results available on request), we continue with the assumption that all series are sta-

tionary.  

 
Table 1  Augmented Dickey-Fuller tests on final series used in estimation 

Series Lags Test statistic 

Domestic order level 3 (AIC, HQ) -1.40 

 0 (SC) -5.72*** 

Exports 8 (AIC, HQ) -0.42 

 3 (SC) -5.31*** 

Overseas order level 0 (AIC, HQ, SC) -6.16*** 

General business condi-

tion 
7 (AIC) -1.20 

 3 (HQ) -1.88 

 0 (SC) -7.85*** 

Industrial production 0 (AIC, HQ, SC) -9.71*** 

Lending attitude of bank 0 (AIC, HQ, SC) -6.35*** 

Retail sales 4 (AIC, HQ) -3.04** 

 0 (SC) -5.98*** 

Note: Constant included as deterministic term in all models.  
Information criteria in parentheses: AIC=Akaike, HQ=Hannan-Quinn, SC=Schwarz criteria. 
* indicates significance at 10% level, ** at 5% and *** at 1%.  
 

 

 

 

 

                                                 
7 It would have been preferable to use as the raw series the industrial production in levels, similarly to real 
retail sales and real exports, as the year-on-year growth rates are by definition affected by historical devel-
opments, which may not be optimal in a forecasting exercise. However, the estimated systems did not per-
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3 Methodology 
 

Our approach for analyzing the information content of the different diffusion indices is ba-

sed largely on the vector autoregressive (VAR) framework. The formal presentation that 

follows draws on Lütkepohl (2004). A reduced form VAR representation can be written as  

 

ttptptt uCDxAxAx ++++=
−−

...11     (1) 

where p denotes the order of the model. In our VAR with K endogenous variables, 

xt = (x1t, ..., xKt)´ is a (K×1) random vector, the Ai are fixed (K×K) coefficient matrices and 

Dt is a vector of deterministic terms. C is the coefficient matrix associated with the deter-

ministic terms. ut = (u1t, ..., uKt)´ is assumed to follow a K-dimensional white noise process 

with E(ut) = 0. 

We commence by discussing bivariate vector autoregressions (BVARs). Every 

BVAR in the first part of the empirical study is composed of one indicator of the real 

economy (industrial production, retail sales, or exports) and one diffusion index (over-

seas/domestic order levels, general business condition, or lending attitude of bank). The 

exact pair of variables depends on the suitability of the series, eg lending attitude of bank 

could a priori be considered appropriate to provide information about future growth in in-

dustrial production. All VARs are estimated for the time period 1993Q1-2004Q2. 8 

The estimated BVARs are then utilized in a forecasting exercise. After specifying a 

VAR model that passes the necessary tests for misspecification, we use it to obtain out-of-

sample forecasts for the real sector variable 1, 2 and 4 periods ahead, so that forecasts are 

generated for the period 2004Q3-2005Q2. An h-step forecast based on estimated coeffi-

cients yields 

TphTpThTThT xAxAx ||11| ... −+

∧∧

−+

∧∧

+

∧

++= ,    (2) 

where jTTjT xx ++

∧

=| for j ≤ 0 and the 
∧

iA  (i = 1, …, p) are estimated parameters. The 

goodness of the forecasts is assessed by comparing them to those from a univariate AR 

model in terms of the ratio of their root mean squared forecast errors (RMSE). In the uni-

                                                                                                                                                 
form satisfactorily in the misspecification tests using the industrial output series in levels terms (again con-
structed by the authors). 
8 Period 1993Q2-2004Q2 is used in the VARs with retail sales due to data availability. 
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variate AR model, the past development of the real sector variable alone is used in order to 

obtain forecasts for this variable.  

One obvious criticism of the BVAR approach is that more information could be ob-

tained by using combinations of the diffusion indices. Therefore, we also estimate trivari-

ate VAR models, each including one real sector variable and two diffusion indices, and 

compare the forecasting performance of these with the simple AR models. A problem here 

with multivariate VAR models is the extremely high correlation between three diffusion 

indices (general business condition and domestic and overseas order levels), as shown in 

Figures 1 and 2. This militates against using any combination of two of these in multivari-

ate VAR models – or indeed all three of them. Therefore, we additionally use principal 

components analysis, where we generate new variables (the principal components) as lin-

ear combinations of the original variables (the diffusion indices). These principal compo-

nents, obtained from an orthogonalization of the sample correlation matrix, are uncorre-

lated. In general, the use of principal component can also be seen as a way of summarizing 

information extracted from a large number of predictors.9 This analysis allows us to deter-

mine the component that has the highest variance proportion in the principal components 

analysis. In the BVAR framework, we estimate a model including this principal component 

and the real sector variable, and compare the forecasts provided by this model with uni-

variate autoregressions.  

A note on cointegration is in order. Our BVARs are estimated by using the station-

ary first-differenced variables. However, as the original (untransformed) variables are inte-

grated of order one, possible cointegrating relations cannot be ruled out. If the variables are 

cointegrated, estimating a VAR in first differences would be equivalent to estimating a 

misspecified equation. Acknowledging that tests for cointegration are likely to have weak 

power in our short sample, we find little robust evidence of common stochastic trends util-

izing the Johansen trace test. Importantly, while estimating the VAR models in levels 

would allow for possible cointegration relations, in the context of single equation estimates 

we could then encounter problems of spurious regressions. We therefore proceed on the 

assumption that no cointegration relationships exist among the untransformed (levels) data 

for the diffusion indices and real sector variables. 
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4 Empirical evidence 
 

In this section, we present the results from the estimated models. We commence with evi-

dence provided by the bivariate and trivariate VAR models using the individual business 

sentiment indicators. Finally, we look at results from principal components analysis.  

 

4.1 Forecasts with individual indicators 
 

The order of the VAR model is predominantly based on the Akaike information criterion, 

specifying a maximum number of lags of 8. In the case where misspecification tests pro-

vide evidence against the indicated order, another lag length is used. A constant was in-

cluded as a deterministic term for all systems, whereas a linear trend was only included 

when statistically significant. Appendix A displays information on the chosen BVAR or-

ders, as well as results from tests for model adequacy. The chosen systems using the busi-

ness sentiment indicators perform quite satisfactorily in the conducted tests.10  

We next compare the h-step out-of-sample forecasts of the real sector variables 

yielded by our BVARs to simple AR models involving only the past process of the real 

sector variable. The forecasting ability of the model is determined by the ratio of the root 

mean square forecast error (RMSE) of the BVAR process to the AR model 1, 2 and 4 quar-

ters ahead. The lag length of the AR model is based on the same considerations as the 

VAR model above. The results of this exercise are presented in Table 2 below. 

   

                                                                                                                                                 
9 Principal components analysis is utilized in Stock and Watson (2002), where diffusion indices are used to 
forecast US macroeconomic time series. Their forecasts outperform univariate autoregressions, small vector 
autoregressions, and leading indicator models. 
10 There is very weak evidence of autocorrelation (only at 10% significance level) in the models consisting of 
overseas order level and industrial production, and domestic order level and industrial production. The per-
formance of the models with the OECD composite leading indicator instead of the diffusion indices was 
somewhat poorer. There is now evidence of autocorrelation at certain lag orders even at 5% level (and at 1% 
level when exports are used as the real sector variable). However, the composite indicator is not the focus of 
our study. 
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Table 2  Relative RMSE of forecasts. BVAR, trivariate VAR and AR models, 2004Q3-2005Q2. 

Predictor Exports Retail sales Industrial production 

 h = 1 h = 2 h = 4 h = 1 h = 2 h = 4 h = 1 h = 2 h = 4 

General 

business 

condition 

0.62 0.52 0.36 1.00 0.52 0.45 0.70 0.69 0.75 

          

Domestic 

order level 
- - - 1.86 0.55 0.57 0.86 0.84 0.86 

          

Overseas 

order level 
0.33 0.63 0.52 - - - 0.77 0.72 0.78 

          

Lending atti-

tude of bank 
0.24 0.14 0.20 - - - 0.06 0.36 0.70 

          

OECD lead-

ing indicator 
0.07 0.36 0.43 2.73 1.09 0.73 0.41 1.08 1.04 

          

General 

business 

condition,  

Lending atti-

tude of bank 

1.65 1.16 0.91 - - - 0.05 0.30 0.78 

          

Domestic 

order level, 

lending atti-

tude of bank 

- - - - - - 0.13 0.28 1.01 

          

Overseas 

order level, 

lending atti-

tude of bank 

0.59 0.39 0.35 - - - 0.79 0.84 1.11 

 

The first four rows in Table 2 show that in 7 cases out of 9, the BVAR models including a 

diffusion index outperform forecasts from a univariate AR-process, with forecasts con-

ducted 1, 2 and 4 quarters ahead.  This is suggested by values below the magnitude of 1 in 

the table. Specifically, in the case of exports and industrial production, the forecasting per-

formance of the BVAR model is always superior to that of an AR-process. For retail sales, 

a simple AR-process produces the best forecast one quarter ahead, whereas the forecasting 

ability of the BVARs improves substantially when forecasts 2 and 4 quarters ahead are 



Aaron Mehrotra and Jouko Rautava 
       
 

Do sentiment indicators help to assess and predict  
actual developments of the Chinese economy? 

 

 16

considered. Lending attitude of bank seems to provide information that improves forecasts 

quite substantially, at least in the short run.  

A comparison of the forecasting performance of the enterprise survey indicators 

with other plausible leading indicators is complicated in the Chinese case by the paucity of 

data. However, the OECD publishes a composite leading indicator for China, which is 

available at a monthly frequency.11 The component series used in the compilation of this 

indicator are cargo handled at ports, enterprise deposits, chemical fertilizer production, non 

ferrous metal production, monetary aggregate M2 and imports from Asia. Even if this 

composite variable is not designed to provide information on the series for retail sales and 

exports considered in our study, it does provide a benchmark against which the enterprise 

survey indicators can be examined.  The fifth row of Table 2 shows the results from 

BVARs utilizing the OECD composite leading indicator.12 The BVAR model outperforms 

the univariate AR model for all forecast horizons only in the case of exports. This is per-

haps not surprising given that two of the components of the OECD indicator are directly 

linked to trade. As in the models with enterprise survey indicators, retail sales seems to be 

the most difficult variable to forecast. 13 

The vector autoregressive setup further allows us to examine the dynamics between 

the diffusion indices and real sector variables by the use of impulse response analysis. In 

this framework, we introduce a shock to the diffusion index and trace the effects of this 

shock on the real sector variable in the BVAR setup. In most of our estimated BVARs, the 

model residuals are not contemporaneously correlated, permitting the use of forecast error 

impulse responses (for discussion on impulse response analysis, see Breitung et al., 2004). 

However, in only three BVAR systems do we obtain a statistically significant impact of the 

diffusion index shock on the real sector variable. Acknowledging that the 'shocks' to the 

diffusion indices are difficult to justify from a theoretical viewpoint, and the statistical sig-

                                                 
11 For the purpose of our study, we aggregated this series from monthly to quarterly frequency by calculating 
the average value for every quarter. To ensure stationarity, the resulting quarterly series was included in the 
analysis in logarithms and differenced once.  
12 It should be noted that our series for industrial production differs in construction from the one used as a 
reference series for China's composite leading indicators by Nilsson and Brunet (2006). We use the y-o-y real 
growth rate of the value added of industry provided by China Monthly Economic Indicators from 2002Q3 
onwards and the IMF's series until 2002Q2. Nilsson and Brunet (2006) consider a series constructed by com-
bining the series for gross industrial output before 1994 and industrial value added over 1995-2004, and then 
recalculated to constant prices of 1995. 
13 To again compare the Chinese diffusion indices with their Japanese counterparts, we constructed a BVAR 
model with the Japanese industrial production (y-o-y growth rate) and the Tankan index (business conditions, 
manufacturing). However, in this brief analysis for Japan, the BVAR forecasts were not markedly different 
from a univariate AR model.  
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nificance of these shocks may be limited in our short sample, we leave further causality 

analysis to future research. 

The forecasting performance of the trivariate VAR models is evaluated in the last 

three rows of Table 2. We consider only combinations of those diffusion indices that are 

not closely correlated. In order to disregard a large number of statistically insignificant co-

efficients in these larger systems, we used subset models where the coefficients with t-

values below the threshold of one were eliminated from the system. The trivariate models 

outperform the univariate autoregressions at all forecast horizons only in 2 out of 5 systems 

examined. Both systems include the lending attitude of bank, but this variable is also in-

cluded in those cases where the multivariate systems are found to provide poorer forecasts 

than the AR models.  Overall, the BVAR models seem to perform better in relative terms 

than the trivariate ones.  

 

4.2 Forecasts with principal components 
 

Finally, we use the principal components methodology to examine the forecasting ability 

of the variables created by this approach. Here, new variables are generated as linear com-

binations of the original diffusion index variables. The weights of the linear combinations 

– the factor loadings - are chosen so that the new principal components are uncorrelated. 

Thus, we are able to use all information derived from the diffusion indices, even when tho-

se indices are highly correlated. Table 3 below depicts the results from the principal com-

ponents analysis. The eigenvalues result from orthogonalization of the sample correlation 

matrix, whereas the variance proportion indicates the share of a principal component in the 

total variance of the diffusion index.  
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Table 3  Principal components of diffusion index variables, 1993Q1-2004Q2 

 PC1 PC2 PC3 PC4 

Eigenvalue 2.19 1.20 0.40 0.22 

Variance proportion 0.55 0.30 0.10 0.05 

Loadings:     

Domestic order level -0.57 0.36 0.38 0.64 

Overseas order level -0.59 0.32 0.07 -0.74 

General business condition -0.52 -0.38 -0.74 0.18 

Lending attitude of bank -0.24 -0.79 0.55 -0.10 

 

We do not give much detail here on the structure of the estimated principal components. 

The first principal component has high negative factor loadings on all components, perhaps 

reflecting weak domestic demand conditions. As most of the information from the diffu-

sion indices can be summarized by the first principal component (55% of the total variance 

proportion), we use this first component in the BVAR setup with real sector variables, 

again comparing the resulting forecasts to the univariate AR models. The results are dis-

played in Table 4 below, with misspecification tests for the models reported in Appendix 

C. Our BVAR models with the first principal component pass all of our misspecification 

tests.  

 

Table 4  Relative RMSE of forecasts, BVARs with first principal component and AR models, 2004Q3-2005Q2. 

Predictor Exports Retail sales Industrial production 

 h = 1 h = 2 h = 4 h = 1 h = 2 h = 4 h = 1 h = 2 h = 4 

1st Principal 

component 
0.57 0.78 0.88 0.46 0.61 0.47 0.65 0.78 0.79 

          

1st Principal 

component 

(excl. GBC) 

0.48 0.74 0.81 0.38 0.63 0.47 0.75 0.84 0.86 

 

Table 4 shows that summarizing information from all four diffusion indices by the first 

principal component results in an improvement in the forecasting exercise as compared 

with the univariate model. Notably, the relative RMSE values are less than one for all fore-

casting horizons and for all real sector variables, as shown in the first row of the table. As a 

robustness check, we re-estimated the first principal component by excluding general busi-
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ness condition (GBC).14 One can argue that the inclusion of general business condition in 

the principal components analysis is unnecessary, as this variable may already act as a 

summary variable of the different diffusion indices. Nevertheless, this robustness check 

does not change the conclusions from the principal components analysis, as shown in the 

second row of Table 4. It seems that the information content of the various diffusion indi-

ces can be meaningfully combined by principal components to form forecasts of the real 

sector variables. 

 

 

5 Conclusion 
 

While business condition indices are regularly published in China, their role in economic 

monitoring is still very modest compared with the use of similar indicators in developed 

countries. In this paper, we used various econometric techniques to study whether the dif-

fusion indices published by the PBoC could actually be useful in assessing the short-term 

prospects of the Chinese economy. To our knowledge, while composite leading indicators 

have been constructed for China, no previous studies have evaluated the forecasting power 

of business sentiment indicators in the Chinese context.  

We find that forecasts from our bivariate vector autoregressive models, each com-

posed of one diffusion index and one real sector variable, generally outperform forecasts 

from univariate AR models one to four quarters ahead. In particular, the forecasts for in-

dustrial production and exports in the BVAR framework always beat the AR forecasts. 

These results suggest that the individual diffusion indices considered in our paper could be 

meaningfully applied in a BVAR setup to predict future economic developments in China. 

Similarly, principal components analysis, summarizing information from various diffusion 

indices, always outperforms the univariate AR models. However, the forecasting perform-

ance of trivariate VAR models, including two individual business sentiment indicators, 

does not differ markedly from the univariate models. 

Finally, the results could be taken as support for the reliability of the 'hard' macro-

economic time series considered in our paper. As the trends in both soft and hard data are 

similar and the former can be meaningfully used to predict the latter, it is likely that both 

series reflect the same underlying economic dynamics.  

                                                 
14 The variance proportion of the new first principal component amounts to 0.59 (excluding GBC). 
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 APPENDIX A. Misspecification tests for BVAR models  

Model Lags Portmanteau 
LMF 

(5, 4, 1 lags) 

Nonnormality 

(skewness, kur-

tosis) 

ARCH-LM 

General busi-

ness condi-

tion, 

Exports 

5 45.63 (0.40) 

0.83 (0.66) 

0.84 (0.81) 

0.70 (0.59) 

0.40 (0.82) 

0.57 (0.75) 

18.74 

(0.28) 

15.11 

(0.52) 

      

Overseas or-

der level, 

Exports 

4 45.75 (0.57) 

0.39 (0.99)  

0.28 (1.00) 

0.32 (0.86) 

0.54 (0.77) 

1.42 (0.49) 

9.36 

(0.90) 

12.50 

(0.71) 

      

Lending atti-

tude of bank, 

Exports 

7 45.59 (0.13) 

1.10 (0.41) 

1.44 (0.19) 

0.50 (0.73) 

0.33 (0.85) 

0.24 (0.89) 

14.97 

(0.53) 

17.90 

(0.33) 

      

General busi-

ness condi-

tion, Retail 

sales 

1 69.72 (0.18) 

1.54 (0.10) 

1.57 (0.10) 

1.59 (0.19) 

1.25 (0.54) 

0.48 (0.79) 

12.10 

(0.74) 

14.87 

(0.53) 

      

Domestic 

order level, 

Retail sales 

3 42.26 (0.83) 

1.27 (0.25) 

1.32 (0.22) 

1.56 (0.20) 

2.82 (0.24) 

1.09 (0.58) 

15.06 

(0.52) 

11.82 

(0.76) 

Note: Portmanteau refers to the adjusted Portmanteau test statistic for autocorrelation at 16 lags; LMF is the LM-F test for autocorrela-

tion at 5, 4 and 1 lags; Nonnormality is the Doornik & Hansen (1994) test for skewness and kurtosis; ARCH-LM test is conducted with 

16 lags; p-values in parentheses. 



Aaron Mehrotra and Jouko Rautava 
       
 

Do sentiment indicators help to assess and predict  
actual developments of the Chinese economy? 

 

 22

Misspecification tests for BVAR models (continued) 

Model Lags Portmanteau 
LMF 

(5, 4, 1 lags) 

Nonnormality 

(skewness, kur-

tosis) 

ARCH-LM 

Overseas order 

level, Industrial 

production 

1 50.91 (0.79) 

1.45 (0.14) 

1.76 (0.06*) 

2.01 (0.10) 

1.07 (0.59) 

2.68 (0.26) 

9.44 (0.89) 

18.30 (0.31) 

      

General busi-

ness condition, 

Industrial pro-

duction 

1 64.04 (0.34) 

1.29 (0.22) 

1.46 (0.14) 

0.36 (0.84) 

0.24 (0.89) 

2.15 (0.34) 

10.41 (0.84) 

16.14 (0.44) 

      

Lending atti-

tude of bank, 

Industrial pro-

duction 

5 48.14 (0.31) 

1.07 (0.42) 

1.46 (0.14) 

0.36 (0.84) 

0.31 (0.86) 

0.42 (0.81) 

20.59 (0.19) 

15.24 (0.51) 

      

Domestic order 

level, Industrial 

production 

3 44.20 (0.77) 

0.83 (0.66) 

1.22 (0.29) 

2.20 (0.08*) 

1.99 (0.37) 

1.15 (0.56) 

9.68 (0.88) 

16.43 (0.42) 

      

OECD leading 

indicator, 

Exports 

8 73.83 (0.00***) 

0.42 (0.97) 

0.56 (0.88) 

0.95 (0.45) 

0.66 (0.72) 

2.07 (0.36) 

17.02 (0.38) 

11.37 (0.79) 

      

OECD leading 

indicator, 

Retail trade 

3 40.12 (0.89) 

1.08 (0.40) 

0.93 (0.54) 

1.79 (0.14) 

0.99 (0.61) 

0.31 (0.86) 

14.42 (0.57) 

18.05 (0.32) 

      

OECD leading 

indicator, 

Industrial pro-

duction 

4 48.98 (0.43) 

1.53 (0.12) 

1.30 (0.24) 

3.00 (0.03**) 

2.21 (0.33) 

0.56 (0.76) 

20.01 (0.22) 

9.19 (0.91) 

Note: Portmanteau refers to the adjusted Portmanteau test statistic for autocorrelation at 16 lags; LMF is the LM-F test for autocorrela-

tion at 5, 4 and 1 lags; Nonnormality is the Doornik & Hansen (1994) test for skewness and kurtosis; ARCH-LM test is conducted with 

16 lags; p-values in parentheses. 
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APPENDIX B. Misspecification tests for trivariate VAR models  

Model Lags Portmanteau 
LM 

(5, 4, 1 lags) 

Nonnormality 

(skewness, kurto-

sis) 

ARCH-LM 

General busi-

ness condition, 

Lending atti-

tude of bank, 

Exports 

4 125.59 (0.47) 

52.99 (0.19) 

43.49 (0.18) 

8.36 (0.50) 

0.59 (0.90) 

0.69 (0.88) 

19.85 (0.23) 

10.83 (0.82) 

11.56 (0.77) 

 

      

Overseas order 

level, lending 

attitude of 

bank, Exports 

2 138.24 (0.45) 

51.23 (0.24) 

 41.32 (0.25) 

6.36 (0.70) 

0.49 (0.92) 

0.40 (0.94) 

11.39 (0.78) 

9.27 (0.90) 

9.24 (0.90) 

      

General busi-

ness condition, 

Lending atti-

tude of bank, 

Industrial pro-

duction 

5 125.51 (0.47) 

59.64 (0.07*) 

41.80 (0.23) 

9.04 (0.43) 

0.16 (0.98) 

0.79 (0.85) 

15.72 (0.47) 

16.32 (0.43) 

13.23 (0.66) 

      

Domestic order 

level, Lending 

attitude of 

bank, Indus-

trial production 

5 117.23 (0.50) 

47.88 (0.36) 

31.99 (0.66) 

10.34 (0.32) 

5.26 (0.15) 

3.45 (0.33) 

15.62 (0.48) 

10.74 (0.83) 

13.59 (0.63) 

      

Overseas order 

level, Lending 

attitude of 

bank, Indus-

trial production 

4 114.56 (0.76) 

54.07 (0.17) 

41.76 (0.23) 

4.50 (0.88) 

1.59 (0.66) 

0.58 (0.90) 

11.82 (0.76) 

15.50 (0.49) 

12.62 (0.70) 

Note: Portmanteau refers to the adjusted Portmanteau test statistic for autocorrelation at 16 lags; LM is the LM test for autocorrelation 

at 5, 4 and 1 lags; Nonnormality is the Doornik & Hansen (1994) test for skewness and kurtosis; ARCH-LM test is conducted with 16 

lags; p-values in parentheses. 
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Appendix C. Misspecification tests for principal components models 

Model Lags Portmanteau 
LM 

(5, 4, 1 lags) 
Nonnormality ARCH-LM 

Exports, 

1st principal 

component 

4 42.13 (0.71) 

0.54 (0.93) 

0.35 (0.99) 

0.60 (0.67) 

0.03 (0.99) 

0.77 (0.68) 

9.58 (0.89) 

9.61 (0.89) 

      

Retail sales,  

1st principal 

component 

1 38.92 (0.98) 

1.10 (0.37) 

1.20 (0.29) 

1.34 (0.26) 

0.05 (0.98) 

0.69 (0.71) 

17.30 (0.37) 

14.32 (0.58) 

      

Industrial pro-

duction, 

1st principal 

component 

3 35.09 (0.97) 

0.66 (0.85) 

0.70 (0.79) 

0.91 (0.46) 

0.33 (0.85) 

1.27 (0.53) 

18.58 (0.29) 

11.53 (0.78) 

      

Exports, 

1st principal 

component 

(excl. GBC) 

4 42.22 (0.71) 

0.40 (0.99) 

0.32 (0.99) 

0.29 (0.88) 

1.01 (0.60) 

1.80 (0.41) 

10.53 (0.84) 

15.94 (0.46) 

      

Retail sales, 

1st principal 

component 

(excl. GBC) 

1 38.84 (0.98) 

1.15 (0.33) 

1.17 (0.31) 

1.20 (0.32) 

0.99 (0.61) 

0.07 (0.97) 

14.31 (0.58) 

16.39 (0.43) 

      

Industrial pro-

duction,  

1st principal 

component 

(excl. GBC) 

3 37.63 (0.93) 

0.88 (0.61) 

0.83 (0.64) 

0.91 (0.46) 

0.07 (0.97) 

1.27 (0.53) 

17.77 (0.34) 

14.15 (0.59) 

Note: Portmanteau refers to the adjusted Portmanteau test statistic for autocorrelation at 16 lags; LM is the LM-F test for autocorrela-

tion at 5, 4 and 1 lags; Nonnormality is the Jarque-Bera test; ARCH-LM test is conducted with 16 lags; p-values are in parentheses; 

GBC refers to general business condition.  
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