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Abstract

The debate on whether COVID-19 vaccine patents are slowing down the pace of vaccination
and the recovery from the crisis has brought the optimal design of pharmaceutical patent policy
to the fore. In this paper we evaluate patent policy in the US pharmaceutical industry. We
estimate the effect of patent length and scope on generic entry prior to the expiration of new
drug patents using two quasi-experimental approaches: one based on changes in patent laws and
another on the allocation of patent applications to examiners. We find that extending effective
patent length increases generic entry whereas broadening protection reduces it. To assess the
welfare effects of patent policy, we match these empirical results with a model of new drug
development, generic entry, and patent length and scope. Optimal policy calls for shorter but
broader pharmaceutical patents.
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1 Introduction

Patent policy aims at stimulating innovation by providing exclusive rights to innovators at the cost

of reduced competition. This tradeoff between competition and innovation incentives is at the core

of the mature theoretical literature on the optimal design of patent length and scope, dating back

to the seminal works by Nordhaus (1969) and (1972). Empirical studies such as Sakakibara and

Branstetter (2001), Moser (2005), Quian (2007), and Lerner (2009) estimate the effects of patent

policy reforms on innovation.1 We combine theory and two-quasi experimental approaches to assess

the welfare effects of the US pharmaceutical patent policy. Our results indicate that the terms of

pharmaceutical patents should be shorter and their scope broader. The key mechanism behind our

conclusion is the positive effect of longer patent term on early generic entry: we find that one year

increase in effective patent length increases generic entry before the expiration of new drug patents

by roughly five percentage points.

The US pharmaceutical industry provides a well-defined setting to assess the effects of patent

policy on generic entry: The Drug Price Competition and Patent Term Restoration Act of 1984

(aka the "Hatch-Waxman" Act) introduced generic drug applications with Paragraph IV (PIV)

certifications. In such a PIV challenge a generic firm certifies noninfringement or invalidity of a

new drug patent, allowing the U.S. Food and Drug Administration (FDA) to approve the generic

application before the patent expires. Higgins and Graham (2009), Hemphill and Sampat (2011) and

Branstetter et al. (2016) document a substantial increase in PIV challenges during this millennium.

We estimate how the probability of PIV entry (generic entry via a PIV patent challenge) is im-

pacted by patent length and scope. We exploit two patent law reforms inducing quasi-experimental

variation in the effective terms of patents depending on their prosecution time at the U.S. Patent

and Trademark Office (USPTO): First, the Agreement on Trade-Related Aspects of Intellectual

Property (TRIPS) of 1994 changed the statutory patent term from 17 years from the grant date

to 20 years from the first filing date. TRIPS also introduced patent term adjustments (PTAs)

to compensate for delays in patent prosecution, but we document that those USPTO PTAs were

initially insignificant. Second, the American Inventors Protection Act (AIPA) of 1999 expanded

PTAs to compensate for long delays in patent prosecution. We show how the two reforms affected
1Denicolò (1996) and Belleflamme and Peitz (2015, Chapter 19) synthesize the theoretical literature and Boldrin

and Levine (2013), Moser (2013), Budish et al. (2016), and Sampat (2018) survey the empirical evidence.
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the effective terms of patents with grant lags exceeding three years, whereas the effective terms of

patents with shorter grant lags were hardly changed.

Using difference-in-differences (DiD) regressions, we find that TRIPS decreased the effective

terms of patents prosecuted at least three years by 17 percent, compared to other patents. This

shorter effective patent length reduced the rate of PIV entry around 8–10 percentage points. In

contrast, AIPA increased the effective terms of patents with the long prosecution lags by 10 percent,

which in turn increased the rate of PIV entry by seven percentage points. These results, together

with supporting evidence from ordinary least squares (OLS) regressions, suggest a positive effect of

longer patent duration on PIV entry.

Using multiple measures of patent scope and OLS regressions, we also find evidence of broader

patent scope reducing PIV entry. To address the endogeneity of patent scope, we develop instru-

mental variables (IV) for some of our scope measures by exploiting differences in the propensity of

patent examiners to grant broader or more claims. The evidence from our IV regressions – though

not conclusive given the lack of fully randomized examiner assignment (see Righi and Simcoe, 2019)

– implies that broader patent scope decreases the PIV entry rate by about two percentage points.

To turn these data moments into policy prescriptions we build on the theory of costly imitation

pioneered by Gallini (1992). Our model, while highly stylized, captures essential margins of phar-

maceutical patent policy in the Hatch-Waxman era: The expiration of a new drug patent enables

generic entry resulting in savings for consumers and a loss of profit for the originator firm. There is

also a possibility of early generic entry via a costly PIV challenge. Patent scope affects the costs and

thereby the probability of the early generic entry. Optimal patent policy must balance incentives

to develop new drugs, and costs and consumer savings from generic entry.

The model allows a welfare analysis of the effects of patent length and scope only using data

on generic entrants’, rather than, e.g., innovating firms’ or consumers’, responses to policy changes.

To provide policy recommendations, we only need to measure the probability of PIV entry and

its elasticity with respect to effective patent length or patent scope. Based on the DiD and IV

estimates, we extrapolate the elasticity of PIV entry with respect to effective length and scope to

be around three and −1, respectively. Using these elasticity estimates, we calibrate the effects of

changes in patent length and scope on innovation and consumer welfare. The results point to the

optimality of shorter patent length, which should be compensated for originator firms by broadening
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the scope of protection. This conclusion is at odds with some policies of balancing competition and

innovation incentives in the pharmaceutical industry. For example, the Hatch-Waxman Act – as its

official name suggests – simultaneously lengthened pharmaceutical patent terms and narrowed their

scope by introducing the FDA patent term extension and PIV challenge mechanism.

Our empirical work is inspired by the studies on the effects of TRIPS (e.g., Abrams, 2009;

Kyle and McGahan, 2012) and of commercialization lags (Budish et al., 2015) on innovation in the

pharmaceutical industry. Our paper differs from these studies, e.g., in that we consider imitation as

an outcome variable, the effects of AIPA, and patent policy structure. We also draw on Kuhn and

Thompson (2019), Sampat and Williams (2019), Farre-Mensa et al. (2020) and Feng and Jaravel

(2020) who develop similar examiner-leniency IVs as we do. Unlike these papers, we use examiner

variation to estimate the impact of patent scope on non-patent outcomes. Related to our results,

Gilchrist (2016), who also builds on the theory of Gallini (1992), shows how longer drug patent term

encourages the entry of differentiated originator products.

Methodologically, our policy evaluation builds on the sufficient statistics approach (Chetty,

2009). We estimate the effects of changes in effective patent length and scope on generic entry,

using these estimates to recover generic entry elasticities which determine the patent policy rec-

ommendations in our paper. In this respect related papers are Denicolò (2007) and Budish et al.

(2016) who use estimates from earlier empirical work to construct innovation elasticities for their

analyses of patent policy.

We abstract away from cumulative innovation – see Galasso and Schankerman (2015) and Sam-

pat and Williams (2019) for the effects of the existence of patents on follow-on pharmaceutical

innovation. However, characterizing the effects of patent length and scope in the classic stand-alone

innovation framework at the heart of the Hatch-Waxman Act should also constitute the first step

towards understanding of optimal drug patent policy when innovation is cumulative. Finally, while

the sufficient statistics approach allows an evaluation of pharmaceutical patent policy without a

need to collect or estimate difficult-to-obtain information on, e.g., R&D costs, and private and so-

cial value of new drugs, the precise policy prescription may be sensitive to some model details (as

will be discussed at the end of Section 7). Yet, our empirical results of the effects of patent length

and scope on PIV entry on their own should provide valuable information for the design of drug

patent policy.
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2 A Model

2.1 Assumptions

We consider a pharmaceutical market with an originator (brand) drug manufacturer (firm B) and

a generic drug manufacturer (firm G). The originator firm can invest in developing a new drug,

automatically protected by a patent. The generic firm can invest in challenging the new drug

patent. We allow for no ex ante licensing.

Some of these simplifying assumptions reflect industry practices. For example, the Hatch-

Waxman Act contains mandatory disclosure requirements which eliminates the originators’ pos-

sibilities to use secrecy, forcing them to rely on patents (see, e.g., Tang, 2013). There is also little

evidence of generic entry via licensing prior to PIV challenges. On the contrary, our data, as also,

the results e.g., in Higgins and Graham (2009), Hemphill and Sampat (2011) and Branstetter et al.

(2016), show that PIV challenges occur frequently. (We return to this ex-ante licensing issue at the

end of Section 7.) However, although the Hatch-Waxman Act awards the first generic entrant via a

PIV challenge a 180-day exclusivity period during which no further generic entry is allowed, there

may in practice be many generic entrants. Allowing many generic challengers would complicate the

model without changing its empirical implications.2

The success Yf : {0, 1} → {0, 1}, f = B,G, of the firm f ’s investment has a Bernoulli distribution

with parameter pf ∈ [0, 1]. Time t ∈ [0,∞) is continuous but, for brevity, we assume that the firms

act sequentially at t = 0 by directly choosing the their success probabilities pf . (Alternatively, we

may think that the firms choose an investment from a collection of projects indexed by pf .) The

associated investment cost functions Cf : [0, 1] → [0,∞) are twice continuously differentiable with

the standard properties ∂Cf/∂pf > 0 and ∂2Cf/∂p
2
f > 0 for pf > 0, and Cf (0) = ∂Cf (0)/∂pf = 0.

The cost functions are sufficiently convex to satisfy second-order conditions.

We consider two patent policy variables, length (term) T ∈ [0,∞) and scope (breadth) b ∈ [0,∞).

(To simplify the proofs, we only allow b and T to take arbitrarily large but finite values.) As is
2With one generic challenger, we need not to differentiate between successful non-infringement and invalidity

challenges. A generic firm has a stronger incentive to file an infringement challenge since the challenged patent is
still valid and enforceable against other generic firms. The prior work (see, e.g., Gallini, 1992; Wright, 1999; Maurer
and Scotchmer, 2002) suggest that allowing multiple entrants via non-infringement challenges would not qualitatively
change the results. If generic entry occurs via invalidation rather than non-infringement, however, then a waiting
game among generics might arise (Henry and Ponce, 2011). But in our context the 180-day exclusivity period dilutes
the generics’ incentives to wait.
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common in the theoretical literature (see Budish et al., 2015, for an exception), we assume that a

marketing authorization and a patent are granted to a new drug simultaneously upon the investment

success realization yB = 1 at t = 0, from which patent length is counted. Hence, T reflects effective

patent length.

Following Gallini (1992), we assume that if a new drug patent expires at t = T , then ∂CG(pG, b)/∂b >

0 for t < T and b = 0, with CG(pG, 0) = 0 ∀pG, for t ≥ T . (Maurer and Scotchmer, 2002, argue for

this modeling of patent scope.). In words, a broader patent makes early generic entry more difficult

whereas the patent expiration makes generic entry costless. For example, sometimes pharmaceuti-

cal patents can relatively cheaply be designed around by replacing one component with a slightly

different one that serves the same function, but if patent claims are broader or interpreted more

broadly by the courts, designing around becomes more difficult (Tang, 2013; Voet, 2016). There are

also other costs of generic entry specific to the scope of new drug patents (e.g., costs of the FDA

approval process and associated litigation). In Allergan, Inc v. Exela Pharmasci, Inc, for example,

the Federal Circuit found Exela’s design-around formulation sufficiently different to avoid infringe-

ment of Allergan’s patent, but the same difference prompted the FDA to request Exela to perform

expensive bioequivalence studies (Voet, 2016). Higgins and Graham (2009) report the average cost

of a PIV challenge to be $5 million. While the assumption of costless post-patent entry is made for

simplicity, the Hatch-Waxman Act greatly reduced the costs and lags of generic entry after patent

expiration (see, e.g., Tang, 2013).

After the realizations yf ∈ {0, 1} of Yf , f = B,G, the firms compete in the market. The net

cash flow from selling a drug is given by π̃N ∈ [0,∞), in which subscript N ∈ {0, 1, 2} denotes the

number of competing drugs in the market. The pharmaceutical market will exist only if yB = 1;

otherwise N = 0 and π̃0 = 0. Conditional on yB = 1, our assumptions imply that N = 1 only if

t < T and yG = 0; otherwise N = 2. As usually, π̃1 > 2π̃2. (The assumption of equal net cash flows

upon entry can be relaxed at the cost of complicating the notation.)

Somewhat as in Wright (1999), the shape of CG(pG, b) turns out to be a determinant of our

patent policy evaluation. We introduce the following definitions:

ϵp(pG) := pG
∂2CG/∂p

2
G

∂CG/∂pG
, (1)
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and

ϵb(pG) := pG
∂2CG/(∂b∂pG)

∂CG/∂b
. (2)

The elasticity of the marginal cost of patent challenging, ϵp(pG), provides a measure of the convexity

of the generic firm’s cost function. To avoid the need to check out additional corners, we assume

that ϵp(pG) > 0 ∀pG. (The additional restrictions here are mild, since our other assumptions imply

that ϵp(pG) > 0 at least for pG ∈ (0, 1).) In turn, ϵb(pG) is the elasticity of the impact of patent

scope on patent challenging costs. Since ∂CG/∂b > 0, the sign of ϵb(pG) is given by the sign of

∂2CG/(∂pG∂b). We assume that ∂2CG/(∂b∂pG) > 0.

Assumption 1. ϵb(pG) > 0.

According to Assumption 1, the effect of patent scope on patent challenging costs is the stronger

the easier is patent challenging. Besides shortening the analysis considerably, making this simplifi-

cation has four justifications: First, as shown in online Appendix 1, effects of patent scope in the

case ϵb ≤ 0 are counterintuitive. For example, if ϵb < 0, an increase in patent scope making patent

challenging more expensive has a positive impact on the probability of a successful patent challenge.

Second, our results concerning patent length do not depend on Assumption 1 (see online Appendix

1). Third, our empirical results of the negative effect of broader patent scope on PIV entry provide

support for Assumption 1. Fourth, this assumption is often implicitly done in the previous literature

modelling imitation costs as a function of patent scope.

We consider the following two-stage game: In the first stage the originator firm first chooses

pB(b, T ) ∈ [0, 1]. In the second stage, after observing yB, the generic firm chooses pG(yB, b, T ) ∈

[0, 1]. The outcome yG of that investment is realized. The firms collect their payoffs depending on

the realizations of Yf , f = B,G, and patent length T . Denote the firm f ’s expected profit by Πf . A

subgame perfect equilibrium of this game is a pair (p∗B, p
∗
G(yB(pB))) such that for yB(pB) ∈ {0, 1},

p∗G(yB(pB)) = argmaxpG∈[0,1]ΠG(pG, yB(pB)) and p∗B = argmaxpB∈[0,1]ΠB(pB, p
∗
G(yB(pB))). In

what follows, we present the main arguments leading to our results, relegating to Appendix 1 their

technical proofs.
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2.2 Equilibrium Analysis

Consider the second stage of the game after the realization of YB. Clearly, if yB(pB) = 0, the drug

market fails to arise, and p∗G = 0. We therefore focus on determining the part of the equilibrium

where the market exists, (p∗B, p
∗
G(yB(pB) = 1)), and suppress the argument yB(pB) for brevity.

Given yB(pB) = 1 the generic firm’s problem can be expressed as

max
pG∈[0,1]

ΠG = pG

∞∫
0

e−rtπ̃2dt+ (1− pG)

∞∫
T

e−rtπ̃2dt− CG(pG, b), (3)

in which r ∈ (0,∞) denotes the firms’ common discount rate. The first integral on the right-

hand side of equation (3) captures the generic firm’s profits if, with probability pG, it successfully

challenges the new drug patent. The second integral captures the profits if, with probability 1−pG,

the challenge fails and the generic entry is postponed until the patent expiration.3 The last term

captures the costs of patent challenging.

Using π2 := π̃2/r we can write the first-order condition for the problem (3) as

(
1− e−rT

)
π2 −

∂CG(p
∗
G, b)

∂pG
= 0. (4)

Equation (4) identifies for each patent policy (b, T ) ∈ [0,∞)2 a unique probability that a new drug

patent is successfully challenged by a generic entrant. We may hence consider a new drug patent

“probabilistic” (Lemley and Shapiro, 2005), with the endogenous strength of 1−p∗G(b, T ). As shown

by equation (4) the mapping p∗G(b, T ) is qualitatively invariant to many model details. On the

other hand, modifications to the model that quantitatively affect p∗G(b, T ) should be reflected to

our empirical estimation results.4 Proposition 1 establishes the main properties of the mapping

p∗G(b, T ).
3As Tang (2013, p.1083) writes "...the generic manufacturer can decide to push market entry before the patent

expires by filing a PIV challenge...Even if it loses the PIV challenge, it can still market its drug immediately after
the patent expires..."

4Even equation (4) in itself is fairly resilient to some changes in model details. For example, assuming that a
generic entrant’s profit flow is smaller when t ≥ T than when t < T makes both a PIV challenge and waiting for
patent expiration less lucrative, and these effects tend to cancel out each other: Consider, e.g., free entry after patent

expiration which drives profits to zero. Then the generic’s problem maxpG∈[0,1] ΠG = pG

T∫
0

e−rtπ̃2dt − CG(pG, b)

leads to the same first-order condition (4).
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Proposition 1: Increasing patent length or narrowing patent scope increases the probability of PIV

entry.

Proposition 1 confirms the standard results arising from the models of patent policy with costly

imitation like ours: A longer patent duration makes waiting for patent expiration less attractive and

hence stimulates early generic entry, whereas broader patent scope discourages patent challenging

by increasing its costs

In the first stage the originator firm chooses pB. The value of an approved new drug to its

manufacturer is given by

V P (T, p∗G(b, T )) =

T∫
0

e−rt [(1− p∗G (b, T )) π̃1 + p∗G (b, T ) π̃2] dt+

∞∫
T

e−rtπ̃2dt, (5)

in which p∗G (b, T ) is determined by equation (4). The first term on the right-hand side of equation (5)

depicts the originator’s profits when its new drug patent is in force. The originator firm will retain

market exclusivity if the generic’s patent challenge fails (the first term in the square brackets) but

will encounter competition if the patent challenge succeeds (the second term in the square-brackets).

The second term expresses the originator’s profits after the patent expiration.

The originator firm’s problem is given by

max
pB∈[0,1]

ΠB = pBV
P (T, p∗G(b, T ))− CB(pB),

in which V P (T, p∗G(b, T )) is given by equation (5) and the last term captures the costs of developing

a new drug. The first-order condition for this problem is given by

V P (T, p∗G(b, T ))−
∂CB(p

∗
B)

∂pB
= 0. (6)

Equations (4) and (6) determine the unique subgame perfect equilibrium (p∗B, p
∗
G) with a market

for a new drug (yB(pB) = 1). .

To facilitate the analysis of patent policy, we define

ϕ(pG) := ϵp(pG)−
pG

1− pG
, (7)
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in which ϵp(pG) > 0 is defined by equation (1). Then, we have the following result:

Proposition 2: Broader patent scope increases incentives to develop new drugs. Increasing (de-

creasing) patent length increases incentives to develop new drugs if ϕ(p∗G) > 0 (ϕ(p∗G) < 0).

Propositions 1 and 2 suggest, as is intuitive, that the sign of ∂p∗B/∂b is the reverse of the sign

of ∂p∗G/∂b: broader patent scope weakens incentives to challenge new drug patents which in turn

enhances incentives to develop new drugs.

In contrast, an increase patent length has both a direct and an indirect effect on incentives to

develop new drugs. The direct effect is positive: given the generic’s incentive for patent challenging,

the originator’s market exclusivity lasts longer in expectation. However, the indirect effect via p∗G is

negative: a longer patent duration enhances incentives for patent challenging. Hence, an increase in

patent length can have a positive or a negative effect on incentives to develop new drugs depending

on whether the direct or indirect effect dominates, which in turn depends on the sign of ϕ(p∗G).
5 As

shown in Section 7, however, the case ϕ(p∗G) < 0 is not only counterintuitive but also unlikely: If

ϕ(p∗G) < 0, the originator firm would have an incentive to shorten the effective length of its patent.

Also, our empirical results suggest ϕ(p∗G) > 0.

2.3 Welfare Analysis

Let us denote welfare flow from a new drug by w̃N ∈ [0,∞) when N ∈ {0, 1, 2} drugs compete in

the market. As usual, w̃N+1 > w̃N and w̃0 = 0.

Analogous to the private value of a new drug given by equation (5), we can write the social

value of an existing new drug as

V S(b, T ) =

T∫
0

e−rt [(1− p∗G (b, T )) w̃1 + p∗G (b, T ) w̃2] dt (8)

+

∞∫
T

e−rtw̃2dt− CG(p
∗
G(b, T ), b),

5 With mild additional assumptions (∂ϕ/∂pG < 0 and limT→∞ ϕ(p∗G(T )) < 0), these direct and indirect effects
of patent length would create the inverted-U relationship between patent length and innovation incentives (with the
peak at some T ′ solving ϕ(p∗G(T

′)) = 0), which has been discovered in the literature (see, e.g., Gallini, 2002; Quian,
2007).
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in which p∗G(b, T ) is identified by equation (4). The first and second term on the right-hand side of

equation (8) give welfare from a new drug before and after its patent expires, respectively. The last

term captures the generic’s patent challenging cost.

Following the standard practice, we formulate the patent policy problem as follows:

max
b∈[0,∞), T∈[0,∞)

V S(b, T ) (9)

subject to

p∗B (b, T ) = pB.

This formulation simplifies the analysis of optimal policy by determining the combination of patent

length and scope that provides a desired level of incentives to develop new drugs (pB) with the least

amount of welfare distortions. An interpretation is that a solution the problem (9) characterizes

the optimal patent policy reform while keeping incentives to innovate unchanged. Recalling that

ϵb(pG) > 0, the solution to the problem (9) can be expressed as follows:

Proposition 3: i) If ϕ(p∗G) < 0,reducing both patent length and scope is efficient; ii) If ϵb(p
∗
G) >

ϕ(p∗G) > 0, reducing patent length and increasing scope is efficient; iii) If ϕ(p∗G) > ϵb(p
∗
G), increasing

patent length and reducing scope is efficient.

We may explain Proposition 3 as follows: If ϵb(p∗G) > ϕ(p∗G), long-lived patents are inefficient

irrespective of the sign of ϕ(p∗G). This result tends to arise from the models of costly imitation. In

our context, long patent duration is ineffective in promoting new drug development, since it also

increases incentives for early generic entry.

When shortening the patent term is desirable, the sign of ϕ(p∗G) determines the optimal changes

to patent scope. If ϕ(p∗G) > 0, shorter patent length has an adverse effect on incentives to develop

new drugs, which should be compensated for originator firms by making patents broader. If ϕ(p∗G) <

0, shortening patent length has a positive effect on incentives to develop new drugs, and patents

can be made narrower without jeopardizing new drug development. Thus the sign of ϕ(p∗G) also

determines whether patent length and scope are substitutable or complementary policy tools with

regard to new drug development (see Belleflamme and Peitz, 2015, for this terminology).

Nonetheless, even in the presence of costly imitation, narrow and long-lived patents could be
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efficient. Here this scenario happens when ϕ(p∗G) > ϵb(p
∗
G). If ϵb(p∗G) is small, changes in patent

scope have only a relatively small impact on incentives for early generic entry but a relatively large

impact on its costs. Thus, distortions caused by broader patents can even be larger than distortions

caused by longer patents. It is, however, difficult to come up with a cost function that would

generate this outcome.

Example 1. Assume that the generic firm’s cost function takes the form

CG(pG, b) =
c(b)pηGG
ηG

, (10)

in which ηG > 1 is a constant capturing the elasticity of the cost function, and c(b) ≥ 0 denotes

a constant scaling the cost function. Assume that this constant is an increasing function of patent

scope, ∂c/∂b > 0. This constant elasticity cost function implies that Assumption 1 holds and, as a

result, Propositions 1 and 2 also hold.

As to the patent policy, equation (10) implies that ϵp = ηG− 1, and we can rewrite equation (7)

as

ϕ(pG) = ηG − 1

1− pG
. (11)

Applying equation (10) in the definition (2) yields ϵb = ηG. As a result, ϵb > ϕ(pG). Thus, by

Proposition 3, short-lived patents are efficient irrespective of the sign of ϕ(pG). However, the sign

of ϕ(pG) determines the sign of ∂p∗B/∂T and whether patent length and scope are substitutable or

complementary policy tools.

2.4 Implications for Empirical Analysis

Propositions 1-3 suggest three hypotheses for the design of patent policy that can be evaluated

by merely using data on generic challenges to new drug patents: First, like other models of costly

imitation, our model predicts that ∂p∗G/∂T > 0. If ∂p∗G/∂T > 0 holds in our data, then the patent

policy design for the pharmaceutical industry should take into account the distortions arising from

enhanced incentives for patent challenging.

Second, we determine the sign of ∂p∗G/∂b in our data by using multiple measures of patent

scope. Our model, as is common in the theoretical literature, associates broader scope with stronger
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exclusive rights leading to ∂p∗G/∂b < 0. However, commonly used empirical proxies of scope do not

necessarily generate such relation.

Third, the optimal structure of patent length and scope can be characterized by comparing the

magnitude of ϕ(p∗G) to zero and ϵb(p
∗
G). The optimal policy rule is invariant to many model details

such private and social value of new drugs and the originator’s R&D costs. But this simplicity comes

at a cost: While we can measure p∗G directly, we need to retrieve the elasticities ϵp and ϵb indirectly.

We develop two approaches: one based on the point estimate of ∂p∗G/∂T and another based on the

point estimate of ∂p∗G/∂b. This indirect approach renders our policy recommendation sensitive to

some calibration details (which will be discussed at the end of Section 7). Fortunately, we can test

the first and second hypothesis directly, and the results on their own provide information for the

patent policy design.

3 Construction of Data and Variables

The FDA is our source of the data concerning patents protecting approved new drugs, generic entry

before patent expiration, and new drug characteristics. We obtain information on patent attributes

from the USPTO and the European Patent Office (EPO). We next explain the construction of

variables used in our main regressions. Online Appendices 2–4 contain further details of our data

sources, the dataset development, and the description of variables used in robustness checks.

3.1 Identifying New Drug Patents

We construct our sample of new drug patents from 2001 – 2013 annual editions of the Orange

Book, which lists patents protecting approved new drugs and their expiration dates. Our sample

thus excludes both drug patents that expired before 2001 and patents of drugs whose marketing

authorization expired before 2001. Sample truncation arising from the exclusion of these old patents

is hardly biasing our estimates since PIV challenges only began to grow in the late 1990s (see Figure

1).

A more serious truncation bias is likely to stem from the patents with long grant lags filed at

the end of our observation period, since such patents were still pending in 2013. To mitigate this

truncation bias, we only use patents filed before 2009. Our results are similar without this sample
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restriction. Long grant lags could also cause a reverse distortion at the beginning of our observation

period if a patent was filed before 1980, but our data contains only 14 such patents. We drop all

patents with grant lags exceeding five years in robustness analyses.

Our final sample consists of 3517 new drug patents granted between 1980 – 2013 and listed in

the Orange Book.

3.2 Measuring Early Generic Entry

In a PIV challenge, a generic firm seeks to enter prior to the expiration of a new drug patent listed

in the Orange book by filing an FDA application with a certification that the patent is invalid or

noninfringed by the generic product (FDA, 2004). Our outcome variable is an indicator for whether

a new drug patent listed in the Orange Book has successfully been challenged at least once. Thus,

similar to the empirical literature on entry (see, e.g., Ciliberto and Elie, 2021), we focus on actual

generic entry before patent expiration, rather than generic firms’ attempts (including failed ones)

to enter. This outcome variable yields a direct measure of p∗G, the key variable of the theoretical

model of Section 2.

We obtain a list of 1020 approved generic drugs with a PIV certification from the FDA. The list,

however, contains no patent information. To identify the successfully challenged new drug patents,

we read the FDA’s generic drug approval letters. Some of the approval letters are readily available

from the Drugs@FDA database. We obtain more approval letters by submitting the Freedom of

Information Act requests to the FDA. However, we fail to specify the challenged patents for 343

approved generic drugs with a PIV certification.

Although the missing patent observations may lead to an underestimate of the number of suc-

cessful PIV challenges at a patent level, the measurement error in our outcome variable, the indicator

for at least one successful PIV challenge of a patent, is likely to be small. To measure the outcome

variable accurately, it suffices to observe only one of potentially many successful PIV challenges.

Moreover, when we aggregate successful challenges to the active ingredient level, we almost always

observe corresponding challenged patents in our sample. We provide further arguments for why

missing patent information is unlikely to bias the results in online Appendix 2.

Figure 1 depicts the number of new drug patents challenged by generic entrants in our sample

by the entry year. If we observe multiple PIV challenges of the same new drug patent, we use the
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one with the earliest generic drug approval date. While using a different measure, Figure 1 confirms

the finding documented by, e.g., Branstetter et al. (2016) that generic entry via PIV certifications

became de facto possible only after a series of well-known legal and policy changes at the turn of

the millennium.
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Figure 1: PIV Challenged New Drug Patents.

Notes: The figure shows the number of new drug patents that have been challenged via PIV certifications by generic
entrants. In the case of several challenges to the same patent, we use the challenge with the earliest approval year.

3.3 Measuring Effective Patent Length

The term of a patent can be measured in various ways. Following the model of Section 2, we calculate

the effective length of a new drug patent – the period when a patent is in force and protects an

approved new drug – by subtracting from the expiration date of the patent either its grant date or

the approval date of a drug protected by the patent, whichever date is later. If the patent protects

several new drugs, we use the first of their approval dates. We use the USPTO Patent Examination

Research Dataset (PatEx) to determine patent grant dates and the Orange Book to identify the

dates of patent expirations and new drug approvals.

This effective patent length varies for three reasons. First, its starting date depends on whether

the FDA drug approval or the USPTO patent grant comes later and is hence affected by approval

and grant lags. Note that the USPTO grant lags may also affect the effective length even when it

runs from the FDA approval date. For example, originator firms may want to ensure the possession

of core patents even before entering clinical trials (see, e.g., Budish et al., 2015). Second, legal

reforms changed the standard patent term in the US during our observation period. Third, patent-
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specific term extensions and adjustments partially compensate for both the FDA and USPTO lags.

(We explain these patent term reforms and USPTO term adjustments in Section 5.1.)

3.4 Measuring Patent Scope

We identify several measures of patent claim scope from the USPTO Patent Claims Research

Dataset. We calculate the count of "Markus groups" in the first independent claim. Drug patent

claims often include such Markush groups – lists of functionally equivalent alternatives (see, e.g.,

Kuhn and Thompson, 2019). The count of Markush groups in the first independent claim of a patent

might reflect different potential uses of the drug protected by the patent, and hence its scope. A

common and acceptable form of a Markush group is “...selected from the group consisting of A, B,

and C.”.6 We thus use the count of the phrase "selected from" in the first independent claim as a

proxy for the count of Markush groups. (Using the phrase "consisting of" as a proxy for a Markush

group gives similar results.) We also calculate the count of "or" in the first independent claim, since

the conjunction "or" might be used to introduce variants or different elements of the drug protected

by the patent.

Similarly, we calculate the count of words in the first independent claim. (Using the count of

characters gives similar results.) Some studies (e.g., Akcigit and Ates, 2019; Kuhn and Thompson,

2019; Marco et al., 2019) use claim length as an inverse proxy for patent scope. However, Kuhn

and Thompson (2019) argue that the use of Markush groups reverses this inverse relationship

between claim length and scope in the case of pharmaceutical patents. Following, e.g., Lanjouw and

Schankerman (2001, 2004) and Marco et al. (2019), we also use the number of independent claims

as a proxy for patent scope.

Measures of patent claim scope are frequently used in the literature since they are easy to con-

struct and their legal foundations are clear: the purpose of patent claims is to mark the boundaries

of patent rights (e.g., Merges and Nelson, 1990; Freilich, 2015). Therefore, patent claim scope is

also at the center of PIV challenges (e.g., Tang, 2013; Voet, 2016). Moreover, claim scope measures

allow us to formulate patent-examiner specific instruments in an attempt to identify the effects of

patent scope on PIV patent challenges (see Section 6). Yet, measures of claim scope are at best
6See, e.g., the USPTO Manual of Patent Examining Procedure (9th edition) §803.02, https://www.uspto.gov/

web/offices/pac/mpep/s803.html#d0e98237 (accessed February 5, 2020).
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imperfect proxies for patent scope and, at worst, it is ambiguous whether a change in a claim scope

measure (e.g., an additional claim or word) makes a patent broader or narrower. We thus also seek

alternative proxies for patent scope.

Using the Orange Book, we create dummies measuring whether or not a patent in our sample

protects a drug with new chemical entity (NCE), orphan drug, or pediatric exclusivity. These

exclusivities, granted by the FDA upon approval of the drug, prevent generic companies from using

clinical trials data of originator drugs during the exclusivity period. NCE exclusivity last four to

five years, and orphan drug exclusivity seven years. These exclusivities thus should make a drug

patent stronger compared to patents with no exclusivity or with the three year clinical investigation

exclusivity. Pediatric drugs may get six months of exclusivity on the top of other exclusivity periods

and the patent term. Pediatric exclusivity thus makes patent protection both broader and longer.

Finally, we create dummies measuring whether a patent in our data covers an active ingredient,

a method of use, or some other pharmaceutical invention (e.g., drug composition or formulation).

Active ingredient patents might provide stronger protection than other new drug patents (Hemphill

and Sampat, 2011). We infer these patent properties from the abstracts and claims of patents by

using text pattern recognition algorithm and manual verification (see online Appendix 2).

3.5 Other Patent Characteristics

We control for several characteristics of our sample patents and of the drugs protected by those

patents. We determine from the Orange Book whether a patent protects a drug that is available

as a capsule, an injection, a tablet or in some other, less common form. A dosage form may affect

generic firms’ incentives to engage in PIV challenges, since some dosage forms may be easier, e.g.,

to manufacture or to distribute, or to use by consumers (Hemphill and Sampat, 2011). From the

Drugs@FDA database, we identify whether a patent protects a drug priority reviewed by the FDA.

Such priority reviews may reflect drug value.

We collect backward and forward patent citations from the USPTO Patent Full-Text and Image

Database (PatFT), and patent family sizes from the Open Patent Services of the EPO. Patent

family size and citations are common indicators of patent value (Lanjouw and Schankerman, 2004;

Gambardella et al., 2008). Backward citations could also serve as proxy for patent scope: for exam-

ple, careful documentation of prior art can make a patent difficult to invalidate on the grounds of
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failure to disclose prior art (Lanjouw and Schankerman, 2001; Harhoff and Reitzig, 2004). However,

a high number of backward citations may also indicate a patent protecting an incremental invention,

which could make the patent less lucrative for PIV challenges.

From PatEx, we identify patents filed as continuation, continuation-in-part or divisional appli-

cations. Such "continuing patents" may differ from other patents across various dimensions (Lemley

and Moore, 2004) that may affect propensity to encounter PIV challenges.

We retrieve the main three-digit U.S. Patent Classification (USPC) number and the filing year of

each patent in our sample from PatEx, and use them as fixed effects to control for technology specific

idiosyncrasies and time trends in patenting. To account for possible negative bias in our length

estimates due to different exclusivity periods, we construct fixed effects for the latest exclusivity

expiration year (obtained from the Orange Book).7 To cluster the regression standard errors, we

identify from the Orange Book the first FDA-approved active ingredient related to each patent.

3.6 Summary Statistics

Table 1 reports the summary statistics for our sample of 3517 new drug patents. Over 17 percent of

these patents have been successfully challenged by generic firms via PIV certifications. The effective

length of pharmaceutical patents is 12.6 years, varying from one month to 20 years. Using related

measures, Hemphill and Sampat (2012) and Gilchrist (2016) report average new drug patent lengths

of 15.9 and 11.8 years, respectively.

A new drug patent has three independent claims on average. An average first independent claim

contains one Markush group and 117 words of which three are the conjunction "or". The average

numbers of backward and forward citations are both roughly around 35, and the mean patent family

size is 13. All count variables have highly skewed distributions.

Half of the patents in our sample protect a drug covered by either NCE exclusivity or orphan drug

exclusivity. Furthermore, pediatric exclusivity is attached to 18 percent of the patents. Approxi-

mately 23 percent of the patents concern active ingredients and 31 percent concern new methods

of use. A majority of the patents are filed as continuing applications. Around 20 percent of the
7When constructing these fixed effects, we group together patents for which we observe no exclusivity. This group

includes both drugs without FDA exclusivity and drugs whose exclusivity expired before 2001. Our results remain
similar when estimated only using the sample of patents protecting drugs for which we observe exclusivity (see Table
7 in online Appendix 3).
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Table 1: Summary Statistics for New Drug Patents.

Mean Std. Dev. Min Max N
PIV entry 0.171 0.377 0 1 3517
Effective length 12.586 3.931 0.096 20 3517
Markush groups 0.704 4.151 0 112 3485
Conjuctions "or" 3.256 9.572 0 184 3485
Words 116.890 153.337 1 2197 3485
Independent claims 3.187 3.840 1 92 3488
NCE exclusivity 0.374 0.484 0 1 3517
Orphan drug exclusivity 0.123 0.328 0 1 3517
Pediatric exclusivity 0.177 0.382 0 1 3517
Method patent 0.311 0.463 0 1 3517
Active ingredient patent 0.226 0.419 0 1 3517
Forward citations 35.705 57.889 0 1297 3517
Backward citations 34.065 63.209 0 1005 3517
Patent family size 13.418 12.031 1 51 3511
Continuing patent 0.589 0.492 0 1 3517
Priority review 0.078 0.269 0 1 3517
Tablet 0.384 0.486 0 1 3517
Capsule 0.160 0.366 0 1 3517
Injectable 0.195 0.397 0 1 3517

Notes: This table reports summary statistics for our sample of 3517 new drug
patents. PIV entry equals 0 if a patent has never been successfully challenged via a
PIV certification, and 1 otherwise. Effective length is measured in years and defined
as "Expiration date - max{Grant date, Drug approval date}". The third, fourth and
fifth row depict the counts of Markush groups, conjunctions "or", and words, respec-
tively, in the first independent claim. Each exclusivity indicator equals 1 if a patent
covers a drug that has been awarded the corresponding exclusivity. The indicators
Method patent and Active ingredient patent equal 1 if a patent protects a method
of use and an active ingredient, respectively. The indicators Tablet, Capsule, and
Injectable equal 1 if the drug protected by a patent has the corresponding dosage
form. The Priority review indicator equals 1 if a patent has been priority reviewed
by the FDA, and the Continuing patent indicator equals 1 if a patent is filed as a
continuation, a continuation-in-part or a divisional application. Independent claims,
Backward citations, Forward citations, and Patent family size give the count of in-
dependent claims included in a patent in our sample, of earlier patents cited by a
patent in our sample, of later patents citing a patent in our sample, and of countries
where the same new drug has been patented, respectively.
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patents protect injectable drugs, 16 percent capsules, 38 percent tablets, and around eight percent

protect drugs priority reviewed by the FDA.

4 Evidence from Ordinary Least Squares Regressions

We begin by estimating the following OLS regression using our patent-level data:

1[PIV entryit] = α+ β log(Effective lengthi) + γ′Xi + δt + ηit, (12)

in which 1[PIV entryit] is an indicator variable equaling one if patent i filed in year t is successfully

challenged via a PIV certification, log(Effective lengthi) is the natural logarithm of the effective

length of patent i, the vector Xi includes other controls except for the patent filing year fixed effects

captured by δt. Table 2 presents estimates from various specifications of the model.

We find a statistically significant but economically modest relationship between PIV entry and

the effective patent length. The estimated coefficient in column (1) implies that doubling the

effective term of a patent is associated with a 13 percentage point increase in the probability of

PIV entry. The relationship becomes economically weaker but remains statistically significant after

adding various controls – see columns (2) and (3) of Table 2.

Table 2 shows a negative, but statistically insignificant, relationship between PIV entry and

the count of Markush groups in the first independent claim. (Using another measures of patent

claim scope instead of the count of Markus groups yields similar results, except that the logged

count of conjunctions "or" in the first independent claim gets a statistically significant coefficient

– see Table 8 in online Appendix 4.) Estimates for the other scope measures, however, suggest

stronger associations: The probability of PIV entry is over six percentage points lower for patents

covering active ingredients, and three percentage points lower for patents covering new methods of

use compared to patents protecting, say, new drug formulations. Furthermore, the probability of

PIV entry is around eight to nine percentage points lower for patents protecting drugs with NCE

or orphan drug exclusivity. Pediatric exclusivity appears to be associated with an increase in the

rate of PIV entry. However, pediatric exclusivity provides both broader and longer protection.

The negative estimate of the effect of backward citations might also support a negative associ-

ation between PIV entry and patent scope, but it could also suggest a positive association between

19



PIV entry and patent value. This positive association between PIV entry and patent value is also

supported by the positive and statistically significant coefficients of log(Patent familiy sizei) and

the dummy variables Priority reviewi, Tableti, and Capsulei.
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Table 2: PIV Entry and Patent Characteristics: OLS Estimates.

(1) (2) (3)
log(Effective length) 0.129 0.069 0.065

(0.015) (0.013) (0.013)
NCE exclusivity -0.091 -0.075

(0.025) (0.026)
Orphan drug exclusivity -0.093 -0.092

(0.024) (0.025)
Pediatric exclusivity 0.087 0.086

(0.035) (0.035)
Priority review 0.179 0.178

(0.046) (0.047)
Tablet 0.181 0.183

(0.027) (0.028)
Capsule 0.106 0.112

(0.034) (0.035)
(0.024) (0.024)

Injectable -0.041 -0.033
(0.024) (0.024)

log(Markush groups+1) -0.012
(0.012)
(0.017)

Method patent -0.029
(0.017)
(0.021)

Active ingredient patent -0.063
(0.021)

log(Forward citations+1) 0.003
(0.007)

log(Backward citations+1) -0.021
(0.008)

log(Patent family size) 0.010
(0.006)

Continuing patent 0.024
(0.015)

Mean dep. variable 0.171 0.171 0.173
Observations 3517 3517 3483
R-squared 0.065 0.224 0.237
Filing year FE × × ×
Exclusivity expiration year FE × ×
USPC FE ×

Notes: This table reports coefficients from OLS regressions of the PIV
entry indicator on log(Effective length), measures of patent scope and
controls. FE stands for fixed effects. Standard errors, in parentheses, are
clustered at the level of patents protecting the same drug.
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Overall the findings from the OLS regressions suggest that PIV entry positively correlates with

effective patent length and negatively with patent scope. However, while we attempt to control for,

e.g., drug and patent value, these results may still be driven by unobserved heterogeneity.

5 Impact of Patent Length

In Section 5.1, we describe how two patent policy reforms, TRIPS of 1994 and AIPA of 1999,

affected the effective lengths of patents depending on their grant lags. Using this plausibly exogenous

variation in effective length across patents and over time, we estimate the effects of the reforms on

the probability of PIV entry in Section 5.2.

5.1 Patent Term Reforms in the US and Pharmaceutical Patents

TRIPS introduced a 20-year standard patent term measured from the (earliest) filing date to the

US. Prior to TRIPS, the US had a 17-year standard patent term counting from the grant date. The

change in the standard patent term was implemented so that the 20-year term from filing applies

to the patents filed on and after June 8, 1995. For patents filed prior to June 8, 1995, the standard

patent term was changed to either the new 20-year term from filing or the old 17-year term from

the grant, whichever expires later. (Patents that were issued prior to June 8, 1978, were kept in the

old 17-year term regime, but our sample includes no such old patents.)

This change in the standard patent term due to TRIPS treats patents differently depending on

whether or not they are granted within three years from filing: Patents granted within three years

from filing receive the same 20-year standard term from filing regardless of whether or not they

are filed before or after TRIPS (came into force). In contrast, patents with grant lags exceeding

three years filed before TRIPS received the 17-year standard term from the grant date, which fully

compensates for grant lags. But similar patents filed after TRIPS receive the 20-year standard term

from filing, thus losing some of effective protection time because of TRIPS.

To compensate patentees for this loss in effective patent life because of delays in the USPTO

approval process, TRIPS also introduced PTAs (which were initially called patent term extensions).

These PTAs only apply to patents filed after TRIPS, and can add a maximum of five years to the

patent term. The USPTO calculates the length of a PTA automatically, taking into account only
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certain delays caused by the USPTO itself. Initially eligible delays were limited (to interference,

secrecy orders, successful appeals to the Patent Trial and Appeal Board or to the federal courts)

but, subsequently, AIPA expanded the list of reasons which may give rise to PTAs for patents filed

on and after May 29, 2000. In particular, AIPA introduced compensation for grant lags exceeding

three years, thus at least partially neutralizing the adverse impact of TRIPS on the length of patents

with grant lags exceeding three years.

We determine PTAs and grant lags for our sample of drug patents from PatEx. As shown by

panels A and B of Figure 2, PTAs were rare and had short duration before AIPA (came into force),

which increased their provision substantially. The share of patents with a PTA rises from two

percent in 1996 to 66 percent in 2005 in our sample (panel A). The average PTA length increases

from less than a month in 1996 to around 15 months in 2005 (panel B). Even after AIPA, the

increase in the length of PTAs was gradual, reflecting increasingly slow patent prosecution at the

USPTO in the early years of the millenium (panel C). (The long grant lags observed in the early

years in panel C are a consequence of the truncation of our sample discussed in Section 3.1).
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Figure 2: USPTO Grant Lags and PTAs of Pharmaceutical Patents.

Notes: Panel A of this figure shows the share of new drug patents in our sample with a USPTO PTA by patent
filing year. Panel B shows the average length of a PTA in our sample by patent filing year, including patents without
PTAs. Panel C figure shows the average grant lag of new drug patents in our sample by patent filing year.

Comparing panels A and B with panel C indicates that PTAs fail to fully compensate for

the adverse impact of TRIPS on the effective length of new drug patents with long grant lags,

especially before AIPA. To confirm this suggestion, we regress the patent grant lag on the effective

patent length separately for the periods of pre-TRIPS, post-TRIPS but pre-AIPA, and post-AIPA.

Figure 3 shows the results: Before TRIPS, the effective length is relatively invariant to the grant lag.

TRIPS disproportionately shortens the effective length of patents that were pending more than three

years, especially before AIPA, which partially restores the effective length of such patents. More

specifically, estimation results reported in column (6) of Table 3 below show that patents prosecuted

at least three years experience a 17 percent decrease in their effective length after TRIPS, compared

with other patents. After AIPA the corresponding increase in the effective length is 10 percent.
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Figure 3: Effective Patent Length Before and After TRIPS and AIPA.

Notes: This figure shows OLS estimates and 95 percent confidence intervals of the raw data relationships between
the patent grant lag (in the x-axes) and the effective patent length (in the y-axis). We estimate the relationships
separately for three time periods by using our patent-level data and no controls. The pre-TRIPS period includes
patents filed before June 8, 1995. The post-TRIPS, pre-AIPA period includes patents filed between June 8, 1995
and May 29, 2000. The post-AIPA period includes patents filed on or after May 29, 2000. Patents with grant lags
exceeding five years are binned together (denoted by "5-" on the x-axis). In each regression, the comparison group
consists of patents granted less than 1.5 years from the filing date. Each dot shows the averages of the x- and y-axes
variables within each equal-sized bin.

5.2 Difference-in-Differences Estimations and Results

In Section 5.1 we document how patents with grant lags exceeding three years have shorter effective

lengths than other patents after TRIPS. The model of Section 2 predicts a decrease in the rate

of PIV entry encountered by such patents after TRIPS. Furthermore, AIPA should mitigate this

negative effect on the rate of PIV entry. Consistent with this prediction, Figure 4 indicates that in

the post-TRIPS, pre-AIPA period, the rate of PIV entry is lower for patents prosecuted over three

years compared to patents with shorter grant lags. There is no similar difference between the two

patent groups in other periods. These patterns in grant lags and PIV entry motivate our research

design.
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Figure 4: Average PIV Entry by Patent Filing Year and Grant Lag.

Notes: This figure shows the average PIV entry by patent filing year. The dashed and solid lines depict the groups of
patents with a grant lag more and less than three years, respectively. Patents filed up to and including year 1990 are
binned together (denoted by "-1990" on the x-axis). Those oldest patents in our sample encounter only few successful
PIV challenges with no systematic difference depending on the grant lag.

We estimate the following DiD model using our patent-level data:

1[PIV entryit] = α+ β11[Grant lagi ≥ 3years] + (13)

β21[Grant lagi ≥ 3years]× 1[Post-TRIPSi] +

β31[Grant lagi ≥ 3years]× 1[Post-AIPAi] + γ′Xi + δt + εit,

in which 1[Grant lagi ≥ 3years] is an indicator variable equaling one if patent i has at least a three-

year grant lag, 1[Post-TRIPSi] is an indicator variable equaling one if the filing date of patent i is

on or after June 8, 1995, and 1[Post-AIPAi] is an indicator variable equaling one if the filing date

of patent i is on or after May 29, 2000. The coefficients of interest, β2 and β3, measure changes in

the probability of PIV entry after TRIPS and AIPA, respectively, for patents prosecuted at least

three years (treatment group), compared to other patents (control group).
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Table 3: PIV Entry, Effective Length, and Patent Law Changes by Patent Grant Lag.

Outcome PIV PIV PIV PIV PIV log(Effective
entry entry entry entry entry length)
(1) (2) (3) (4) (5) (6)

Grant lag ≥3 years -0.021 0.016 0.026 0.021 0.022 0.044
(0.027) (0.025) (0.025) (0.026) (0.028) (0.028)

Grant lag ≥3 years,
Post-TRIPS -0.080 -0.114 -0.106 -0.099 -0.100 -0.171

(0.042) (0.039) (0.039) (0.044) (0.041) (0.043)
Grant lag ≥3 years,
Post-AIPA 0.072 0.084 0.072 0.066 0.072 0.100

(0.041) (0.037) (0.037) (0.042) (0.039) (0.045)
Mean dependent variable 0.171 0.171 0.173 0.167 0.177 2.457
Observations 3517 3517 3483 2998 3066 3517
R-squared 0.045 0.221 0.234 0.234 0.240 0.020
Filing year FE × × × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × ×
USPC FE × × ×
Excluded filing years None None None 1995, None None

2000
Grant lag Any Any Any Any ≤ 5 yrs Any

Notes: This table reports estimates of the effects of TRIPS and AIPA on PIV entry and the effective patent
length. Columns (1)–(5) show coefficients from an OLS regression of the PIV entry indicator and column (6)
of log(Effective length) on three indicators for patents with a grant lag exceeding three years and controls. FE
stands for fixed effects. Drug controls include the indicators NCE exclusivity, Orphan drug exclusivity, Pediatric
exclusivity, Priority review, Capsule, Injectable, and Tablet. Patent controls include log(Markush groups+1),
log(Backward citations+1), log(Forward citations+1), log(Patent family size), and the indicators Active ingredient
patent, Method patent, and Continuing patent. The samples in columns (4) and (5) exclude patents filed in years
1995 and 2000 and patents with a grant lag exceeding five years, respectively. Standard errors, in parentheses, are
clustered at the level of patents protecting the same active ingredient.

Column (1) of Table 3 reports coefficients from a regression that uses the full sample of new

drug patents but only controls for filing year fixed effects. Patents prosecuted at least three years

experience an eight percentage point reduction in the probability of PIV entry after TRIPS (but

before AIPA), compared to other patents. AIPA almost neutralizes this effect: the corresponding

increase in the probability of PIV entry is seven percentage points after AIPA.

Column (2) of Table 3 reports results after we add characteristics of the drugs protected by

the patents in our sample, including exclusivities and their expiration year fixed effects. Column

(3) shows results from a specification that further controls for patent characteristics, including
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the main US patent class fixed effects. These two specifications attempt to account for potential

differences between the treatment and control groups stemming from observable characteristics,

unobserved heterogeneity, and possible compositional changes over time across these groups. Adding

the fixed effects and other controls makes the effects of TRIPS and AIPA stronger and more precisely

estimated compared to column (1).

We also estimate the DiD model of equation (13) using a sample that excludes patents filed

in 1995 and 2000. This sample restriction attempts to address the potential anticipation effects

of the TRIPS and AIPA reforms. For example, applicants expecting a decrease in patent terms

due to TRIPS could have advanced patent filing and, analogously, applicants expecting an increase

in patent terms due to AIPA could have postponed filing. The coefficient estimates from this

regression, reported in column (4) of Table 3, remain similar to the baseline estimates, suggesting

no clear anticipation effects. The coefficient β3 is, however, less precisely estimated, perhaps due to

a smaller sample.

Next, we estimate the DiD model using a sample of patents prosecuted within five years. This

sample restriction further mitigates concerns arising from possible compositional changes in the

treatment group. For example, long grant lags observed in the earliest and the latest years of our

data increase the number of patents falling into the treatment group (see panel C of Figure 2). This

restriction also excludes the patents for which the five-year maximum length of PTAs is binding.

The results from this estimation reported in column (5) are similar to the baseline results.

Overall, we find the probability of PIV entry increasing with effective patent length, as predicted

by the theory: TRIPS shortens the effective length of patents with long grant lags which discourages

PIV entry, whereas AIPA partially restores the effective length of those patents which promotes PIV

entry.

Robustness. While we use a rich set of controls, and while the raw data trends presented in

Figure 4 suggest otherwise, the DiD estimates of the effects of TRIPS and AIPA might nonetheless

reflect differential pre-trends in PIV entry between treated and untreated patents. To mitigate this

concern, we estimate the following event study specification using the same controls as in the DiD

specification in column (3) of Table 3:
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1[PIV entryit] = α+ β11[Grant lagi ≥ 3years] +∑
l,l ̸=−1

µl1[Grant lagi ≥ 3years]× 1[t− 1995 = l] +

γ′Xi + δt + εit,

in which 1[t−1995 = l] is an indicator variable equaling one if the difference between the filing year

t of patent i and the implementation year of TRIPS is l ⊂ Z \ {−1} years. The first lead l = −1,

i.e., patents filed in 1994, is excluded as a normalization. The coefficients µl for l ≤ −2, l = 0, ..., 4

and l ≥ 5 capture, respectively, possible pre-trends in the outcome, the effects of TRIPS, and the

the effect of AIPA.

The event study estimates reported in Figure 5 are consistent with the DiD estimates: they

suggest a decrease in PIV entry after TRIPS but before AIPA on average. There also appears to be

no pre-trend in the outcome. The event study estimates are, however, more imprecise than the DiD

estimates – the number of patents per filing year is only 103 on average (with a standard deviation

of 74) in our sample.

We make many other robustness checks, some of which are detailed in online Appendix 3. To

address the concern that longer patent duration would increase generic entry even if that entry were

random, we control for the length of exposure of a patent to PIV challenges. We also show that

the estimated effects on the probability of PIV entry cannot be explained by differential changes in

patent scope or value after TRIPS and AIPA, nor by the introduction of provisional applications in

1995. Also, sometimes multiple patents cover the same new drug and for them, challenge decisions

will be correlated. We therefore identify the chain of patents covering the same new drug and

exclude some or all but one of the patents in the chain. When we estimate equation (13) using

different subsamples and specifications, the effects of TRIPS and AIPA only become stronger and

more precisely estimated.

We also find additional evidence of longer effective patent length encouraging PIV entry: TRIPS

disproportionately shortened effective terms of continuing patents, leading to a more negative es-

timate of β2 using the sample of these patents. Finally, we document how AIPA also mandated

earlier disclosure of patent applications, resulting in a longer period of public patent applications.

29



This change may affect the interpretation of the effective patent length in the post-AIPA period.
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Figure 5: Event Study Estimates.

Notes: This figure shows event study estimates and 95 percent confidence intervals of the effects of TRIPS and AIPA
on PIV entry. The number of patents per filing year is (only) 103 on average in our sample. The x-axis shows the
number of years between patent filing and the implementation of TRIPS in 1995. Five years after TRIPS corresponds
to the implementation of AIPA in 2000. The horizontal line represents the omitted coefficient for one year before
TRIPS. The specification includes the same controls as the one in column (3) of Table 3. Standard errors are clustered
at the level of patents protecting the same active ingredient.

6 Impact of Patent Scope

In identifying the effect of a change in patent scope on PIV patent challenges we cannot resort to

an ideal experiment of random assignment of scope over patents. Inspired by Kuhn and Thompson

(2019), Sampat and Williams (2019), Farre-Mensa et al. (2020), and Feng and Jaravel (2020) we

instead develop IVs for patent scope based on the "leniency” of patent examiners. Our approach

exploits the differences across examiners in their propensity to grant broader or more claims as a

source of variation in patent scope, together with the assignment of patent applications to examiners

at the USPTO. Previous research (e.g., Cockburn et al., 2003; Lemley and Sampat, 2012) indicates

that examiners differ in their decision making which translates into different patent outcomes.

Since patent prosecution typically consists of several rounds of claim rejections and modifications

required by an examiner (Kuhn and Thompson, 2019; Marco et al., 2019), systematic differences

across examiners plausibly generate systematic differences in patent claim scope. Furthermore,

prosecution-history estoppel enhances the role of patent examination in affecting claim scope at the

core of PIV challenges (Tang, 2013).

30



The second stage of our two-stage least squares (2SLS) analysis consists of estimations of equa-

tion (12) using instrumented scope measures. We instrument the following four measures of scope

of a new drug patent: the counts of Markush groups, the coordination conjunctions "or", and words

in the first independent claim, and the count of independent claims. (Kuhn and Thompson, 2019,

too, develop a similar IV for the count of words in the first independent claim.) For each scope

measure xijt of new drug patent i reviewed by examiner j and filed in year t, we construct the

corresponding instrument zijt as

zijt =

t−1∑
τ=τ j

njτ∑
k=1

xkjτ

t−1∑
τ=τ j

njτ

, (14)

in which xkjτ is the scope measure of patent k reviewed by examiner j and filed in year τ , njτ

is the number of patents reviewed by examiner j in filing year τ , and τ j is the earliest filing year

of any patent reviewed by examiner j. Hence, zijt gives the "examiner j’s historical average" –

the cumulative average of a scope measure over all patents assigned to examiner j up to one year

preceding the filing year of new drug patent i. Although we include the previous new drug patents

granted by examiner j in zijt, we exclude their parents and continuations, which are usually assigned

to the same examiner (Righi and Simcoe, 2019).

Table 4 shows marked variation across the examiners of the new drug patents in our sample in

granting broader or more claims. For example, the average number of words in the first independent

claim is 147, but the toughest examiner only allows 11 words on average, whereas the most lenient

examiner allows 456 words on average. This variation unlikely arises from a small sample size: as

shown in the last row of Table 4, the average number of patents reviewed by an examiner is 626
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Table 4: Heterogeneity Across Examiners in Patent Measures.

Mean Std. Dev. Min Max
Examiner average of Markush groups 0.786 1.037 0.000 7.000
Examiner average of conjunctions "or" 3.633 4.100 0.000 21.737
Examiner average of words 147.115 59.068 11.000 455.776
Examiner average of independent claims 2.397 0.443 1.000 4.455
Patents reviewed by an examiner 625.515 660.926 1 3653

Notes: This table reports summary statistics for 579 examiners who have reviewed the new
drug patents in our sample. Each of the first four rows shows summary statistics for a
examiner-specific patent scope measure, averaging over all patents reviewed by an examiner
of a new drug patent in our sample. The last row shows summary statistics for the number
of patents reviewed by an examiner of a new drug patent in our sample.

In the first-stage of our 2SLS analysis, we regress each of the four claim scope measures on the

corresponding instrument and controls. In the main 2SLS specifications we use the same control

variables as in column (3) of Table (2). While some of these controls (e.g., patent filing year and US

patent class fixed effects) may also capture examiner specialization, we also add USPTO Technology

Center fixed effects. Technology Centers are responsible for examination in broad technological

areas. Each Technology Center typically contains a few dozen Art Units, which are groups of

examiners specializing in narrow technology areas. Within a Technology Center, a patent application

is assigned to an Art Unit and finally to an examiner. We use Technology Center fixed effects instead

of Art Unit fixed effects because we only observe a small number of new drug patents per Art Unit.

The exclusion restriction in our setting holds if, conditional on covariates, examiners’ propensity

to grant broader claims is uncorrelated with such application characteristics, e.g., drug or patent

value or quality, that correlate with PIV entry. The validity of this exclusion restriction is supported

by a growing literature (e.g., Lemley and Sampat, 2012; Sampat and Williams, 2019; Kuhn and

Thompson, 2019; Farre-Mensa et al., 2020; Feng and Jaravel, 2020) although, e.g., Righi and Simcoe

(2019) are more critical. These previous studies indicate that examiner assignment is independent

of application characteristics at the time of filing. For example, examiner assignment is based

on the last digit of the application number in Art Units. Such assignment plausibly implies that

examiner characteristics are uncorrelated with the value or quality of applications. While Righi and

Simcoe (2019) show that examiners specialize in narrow technology fields, they find no evidence

that more valuable or broader applications are allocated to certain examiners. Moreover, since our
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new drug patents form a relatively homogeneous technology field, examiners might be less likely to

be specialized within this sample. Nevertheless, the validity of this exclusion restriction is debatable

and our IV results must be interpreted cautiously.

Table 5 reports the 2SLS regression results. The first stage coefficients of panel B and F-statistics

suggest strong instruments. Estimates of the instrumented scope measures of panel A suggest a

negative effect of broader patent scope on the probability of PIV entry: A 10 percentage increase in

the count of Markush groups in the first independent claim decreases the probability of PIV entry

by some two percentage points. Additional words in the first independent claim perform similarly,

supporting a positive relationship between claim length and scope in the case of pharmaceutical

patents as argued by Kuhn and Thompson (2019). A 10 percent increase in the count of conjunctions

"or" in the first independent claim reduces the likelihood of PIV entry by around one percentage

point. These coefficients of the scope measures are statistically significant but smaller in magnitude

compared to the OLS estimates reported in Table 8 in online Appendix 4. Such an upward bias

in the OLS estimates could arise, e.g., if originator firms seek broader protection for more valuable
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drugs which, at the same time, attract more PIV challenges.

Table 5: Patent Scope and PIV Entry: IV Estimates.

(1) (2) (3) (4)
PANEL A: Second stage estimates
Instrumented variables:
log(Markush groups+1) -0.220

(0.090)
log(Conjunctions "or"+1) -0.105

(0.052)
log(Words) -0.237

(0.095)
log(Independent claims) 0.069

(0.132)
PANEL B: First stage estimates
Instruments:
log(Examiner historical average of Markush groups+1) 0.239

(0.048)
log(Examiner historical average of conjunctions "or"+1) 0.225

(0.034)
log(Examiner historical average of words) 0.238

(0.062)
log(Examiner historical average of independent claims) 0.242

(0.073)
Observations 3445 3445 3445 3447
First stage F-statistic 25.286 44.860 14.523 10.934
Technology Center FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports 2SLS estimates of the effects of patent scope on PIV entry. Panel A shows the main
coefficient from the second stage regressions of the PIV entry indicator on the instrumented scope measures and
controls. Panel B shows the main coefficient from the first stage regressions of the scope measures on the corre-
sponding instruments and controls. The first stage F-statistic test is on the excluded instruments. FE stands for
fixed effects. Drug controls include the indicators NCE exclusivity, Orphan drug exclusivity, Pediatric exclusivity,
Priority review, Capsule, Injectable, and Tablet. Patent controls include log(Effective length), log(Backward cita-
tions+1), log(Forward citations+1), log(Patent family size), and the indicators Active ingredient patent, Method
patent, and Continuing patent. We use a full sample of new drug patents for the regressions, and construct the
instruments using data on all granted patents reviewed by the examiners of these new drug patents. Robust stan-
dard errors are reported in parentheses.

The question of whether or not independent claim count is a useful proxy for patent claim scope

has been debated in the literature (see, e.g., Kuhn and Thompson, 2019 and Marco et al., 2019 for

different points of view). Our coefficient estimate of the number of independent claims is close to
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zero in magnitude and statistically insignificant, suggesting that additional independent claims in

a pharmaceutical patent fail to protect the patent against PIV challenges.

Robustness. Overall, we view the IV regression results as suggesting that broadening patent

scope hinders PIV entry. We assess the robustness of the results to specification changes in online

Appendix 4. The results remain unchanged when we exclude most of the control variables (Table

9) or include of an additional control for trends varying with the Technology Center (Table10).

We also use Art Unit fixed effects instead of Technology Center fixed effects (Table 11). The

number of patents per Art Unit is typically small, only 21 on average. Reflecting this challenge,

the point estimates from these specifications remain similar in magnitude compared to the main

specifications, but are less precisely estimated: only the coefficient of the count of words remains

statistically significant.

We have also experimented with modified instruments. Our results do not change if we ex-

clude all new drug patents reviewed by examiner j from zijt, or if we allow τ to run from τ j to

min{τ̄j , 2009}, in which τ̄j is the last filing year of any patent reviewed by examiner j, and only

impose k ̸= i in equation (14). Also, using two alternative measures of scope, the counts of char-

acters and the phrase "consisting of" in the first independent claim, and corresponding alternative

instruments, yields similar IV regression results.

7 Implications for Pharmaceutical Patent Policy

Our empirical evidence suggests that longer effective patent length encourages PIV patent chal-

lenges, as predicted by the models of costly imitation. This effect weakens the efficiency of patent

length as a policy tool to promote innovation. Our evidence also suggests that broader patent scope

appears to hinder PIV entry.

However, these findings alone are not enough to determine whether and how pharmaceutical

patent policy should be reformed. Ideally, we would also like to know the effects of patent policy

on incentives to develop new drugs. Instead of a direct test of incentives to develop new drugs, we

resort to the formula ϕ(p∗G) := ϵp(p
∗
G)− p∗G/(1− p∗G) developed in Section 2. The sign of ϕ(p∗G) tells

us whether incentives to develop new drugs are increasing or decreasing in patent length, and also

whether patent length and scope are substitutable or complementary policy tools.
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In our data the average probability of PIV entry is 0.17 (see Table 1), which directly provides

an estimate of p∗G. We develop two approaches to recover ϵp(p∗G), the elasticity of the generic firms’

marginal cost function (see equation (1)): one based on the estimated elasticity of PIV entry with

respect to effective patent length, ξT (pG) := (∂pG/pG)/(∂T/T ), and another on the corresponding

elasticity with respect to patent scope, ξb(pG) := (∂pG/pG)/(∂b/b).

Recovering ϵp(p
∗
G) via Patent Length Estimates. In Appendix 2, we show that ϵp(pG) can

be written as

ϵp(p
∗
G) =

e−rT rT

(1− e−rT )ξT (p∗G)
. (15)

Hence, to calculate ϵp(p
∗
G), we need values for r, T and ξT (p

∗
G).

We set r = 0.03, following the value used by Schankerman and Schuett (2021). Next, we set

T = 12.59 corresponding the average effective patent length in our data (see Table 1). To obtain

a value for ξT (p
∗
G), we compare estimates of β2 of equation (13) in columns (1)–(5) of Table 3 to

the average probability of PIV entry, 0.17. This comparison suggests that TRIPS reduced the rate

of PIV entry by 47 − 65 percent. These figures, and the estimated effect of TRIPS on effective

patent length (−17 percent) reported in column (6) of Table 3, suggest that ξT could be between

47/17 ≈ 2.76 and 65/17 ≈ 3.82. We use the mean value of this range and set ξT = 3.29. Inserting

ξT = 3.29, r = 0.03, and T = 12.59 into equation (15) gives ϵp ≈ 0.25.

Recovering ϵp(p
∗
G) via Patent Scope Estimates. Our regressions of the PIV entry indicator

on the logged patent scope measures imply that an estimate of ξb(p∗G) can directly be obtained by

dividing an estimated coefficient of a log scope measure by the average probability of PIV entry,

0.17. The statistically significant coefficient estimates of the IV regressions (columns (1)–(3) of

Panel A of Table 5) suggest that ξb ∈ [−0.65,−1, 41]. Using the average value of this range, we set

ξb = −1.03.

To link ξb(p
∗
G) with ϵp(p

∗
G), we assume that the generic firm’s cost function has the constant

elasticity form used in Example 1 of Section 2, and further stipulate that c(b) = cb. Using this

functional form, we show in Appendix 2 that ϵp = −1/ξb. Thus, setting ξb = −1.03 gives ϵp ≈ 0.97.

Effect of Patent Length on Incentives to Develop New Drug. We have two alternative

ways to calculate ϵp(p
∗
G) in the formula for ϕ(p∗G): using ξT (p

∗
G) yields ϵp = 0.25, whereas using

ξb(p
∗
G) yields ϵp = 0.97. Assuming that these calculations mean that ϵp ∈ [0.25, 0.97], and setting
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p∗G = 0.17 yields ϕ(p∗G) ∈ [0.05, 0, 77]. To conclude, the marginal cost of PIV entry appears to

be sufficiently inelastic to keep innovation incentives in the pharmaceutical industry increasing in

patent length, implying that patent length and scope are substitutes with regard to those innovation

incentives.

Evaluating Patent Policy. To complete the evaluation of patent policy, we should assess

whether ϕ(p∗G) is larger or smaller than ϵb(p
∗
G), the elasticity of the effect of patent scope on patent

challenging costs (see equation (2)). We can estimate ϵb(p∗G) in a similar way as ξb(p∗G). In Appendix

2, we show that ϵb = 1− 1/ξb. Using ξb = −1.03 suggests that ϵb ≈ 1.97. Thus, ϵb(p∗G) appears to

be clearly larger than our estimates of ϕ(p∗G). In sum, our results suggest that ϵb(p
∗
G) > ϕ(p∗G) >

0, implying that the term of pharmaceutical patents should be made shorter which should be

compensated for originator firms by broader patent scope.

Robustness. Our sufficient statistics approach to patent policy evaluation is based on some

strong assumptions. Evaluating pharmaceutical patent policy based on estimates of the effect of

patent scope is robust in the sense that all our estimates of ξb(p
∗
G) suggest that ϕ(p∗G) is firmly

positive but below ϵb(p
∗
G). However, these estimates are based on a functional form assumption

which we cannot test.

Using patent length estimates to evaluate the patent policy requires no specific functional form

of the generic firm’s cost function, but requires values for the firms’ discount rate, r, and for

the effective patent length, T . Our estimates suggest that ϕ(p∗G) is positive but close to zero.

Nonetheless, to render ϕ(p∗G) negative we would need to use significantly higher values of r or T .

If we used the estimated effects of AIPA on effective patent length instead of those of TRIPS, we

would get somewhat higher values of ξT (p∗G) and hence lower values of ϕ(p∗G). (Using our largest

estimate of the effect of AIPA from Table 3 would make ξT (p
∗
G) sufficiently high to render ϕ(p∗G)

slightly negative.) However, the interpretation of the effect of AIPA on effective patent length

is somewhat ambiguous because of the earlier disclosure of patent applications in the post-AIPA

period (see online Appendix 3).

Finally, a revealed-preference argument supports that ϕ(p∗G) > 0 is more likely than ϕ(p∗G) < 0

– if ϕ(p∗G) were negative, originator firms would have an incentive to find means (e.g., licensing

or other contractual solutions) to shorten the effective lengths of their patents. In line with this

argument, we show in online Appendix 3 how originator firms shy away from continuing patents
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with long grant lags after TRIPS and argue that such a behavior is consistent with ϕ(p∗G) > 0 but

not with ϕ(p∗G) < 0.

We conclude that ϕ(p∗G) is likely to be smaller than ϵb(p
∗
G), but hardly negative.

8 Conclusion

We evaluate patent policy in the US pharmaceutical industry by only using data on pharmaceutical

patents. Our results combining theory and evidence from DiD regressions exploiting variations

in patent law and IV regressions exploiting patent examiner leniency differences suggest that new

drug patent length should be made shorter, while using broader patent scope to restore incentives

to develop new drugs. The main channel leading to this conclusion is the positive effect of longer

effective patent term on successful PIV patent challenges by generic entrants.

Our IV regression results concern patent claim scope, which does not necessarily constitute

a straightforward policy tool. To broaden the claim scope of drug patents so as to restrict PIV

challenges, Tang (2013) proposes wider applications of the doctrine of equivalents or means-plus-

function clauses. Ideally, we would (also) like to instrument more clear-cut measures of scope such

as the active ingredient.
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Appendix

A.1 Proofs

Proof of Proposition 1: Applying the implicit function theorem to equation (4) yields

∂p∗G
∂T

=
re−rTπ2

∂2CG/∂p2G
> 0 (16)

and
∂p∗G
∂b

= −∂2CG/∂pG∂b

∂2CG/∂p2G
< 0, (17)

in which the inequalities follow from ∂2CG/∂p
2
G > 0 and Assumption 1. □

Proof of Proposition 2: Using the implicit function theorem in equation (6) together with
∂2CB/∂p

2
B > 0 imply that the signs of ∂p∗B/∂b and ∂p∗B/∂T are given by the signs of ∂V P /∂b and

∂V P /∂T , respectively. Then, differentiating equation (5) with respect to b and using the definition
πN := π̃N/r yield

∂V P

∂b
= −

(
1− e−rT

)
(π1 − π2)

∂p∗G
∂b

, (18)

in which ∂p∗G/∂b < 0 by Proposition 1. The claim concerning patent scope follows.
Similarly, differentiating equation (5) with respect to T gives

∂V P

∂T
= (π1 − π2)

[
re−rT (1− p∗G)−

∂p∗G
∂T

(1− e−rT )

]
. (19)
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After using equations (1), (4), and (16), we can rewrite this equation as

∂V P

∂T
=

re−rT

ϵp
(π1 − π2)ϕ(p

∗
G)(1− p∗G), (20)

in which ϕ(pG) is defined by equation (7). Thus the sign of ∂V P /∂T is given by the sign of ϕ(p∗G).
The claim concerning patent length follows. □

Proof of Proposition 3: Using equation (6), which determines p∗B (b, T ), in applying the implicit
function theorem to equation (9) yields

∂T

∂b
= − ∂V P /∂b

∂V P /∂T
. (21)

We may now re-express the planner’s problem as maxb∈[0,∞) V
S(b, T (b)). Differentiating V S(b, T (b))

with respect to b gives
dV S

db
=

∂V S

∂b
+

∂V S

∂T

∂T

∂b
. (22)

After substituting equations (18) and (20) for equation (21), we get

∂T

∂b
=

(1− e−rT )ϵp
re−rT (1− p∗G)ϕ(p

∗
G)

∂p∗G
∂b

. (23)

Let wN := w̃N/r. Then, differentiating equation (8) with respect to b gives

∂V S

∂b
=

[(
1− e−rT

)
(w2 − w1)−

∂CG

∂pG

]
∂p∗G
∂b

− ∂CG

∂b
. (24)

Similarly, for T we get

∂V S

∂T
= −re−rT (1− p∗G) (w2 − w1) +

[(
1− e−rT

)
(w2 − w1)−

∂CG

∂pG

]
∂p∗G
∂T

,

which can be rewritten after some algebra by using equations (1), (4), (7), and (16) as

∂V S

∂T
=

−re−rT

ϵp
[(w2 − w1)ϕ(p

∗
G)(1− p∗G) + p∗Gπ2] . (25)

After using equations (23)–(25), and some algebra, equation (22) can be written as

dV S

db
= −

∂p∗G
∂b

[
∂CG

∂pG
+

(
1− e−rT

)
π2p

∗
G

ϕ(p∗G)(1− p∗G)

]
− ∂CG

∂b
.

By using equations (1), (2), (4), (17), and (7), this expression can be further rewritten as

dV S

db
=

∂CG

∂b

[
ϵb(p

∗
G)

ϕ(p∗G)
− 1

]
. (26)
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Since ∂CG/∂b > 0 by assumption, the sign of dV S/db is given by the sign of the term in the square
brackets of equation (26).

An optimal patent policy reform is characterized by the signs of equations (23) and (26). Equa-
tion (26) tells us the optimal direction of patent scope and equation (23) tells us the direction
where patent length needs to be adjusted to compensate a change in patent scope. As to the sign
of equation (23), Proposition 1 implies that ∂p∗G/∂b < 0. As a result, the sign of ∂T/∂b is given
by the sign of −ϕ(p∗G). As to the sign of equation (26), the term in the square brackets of equation
(26) is definitely negative if ϕ(p∗G) < 0 and, thus, dV S/db < 0. If ϕ(p∗G) > 0, then the first term in
the square brackets of equation (26) is positive. Then the term in the square brackets is negative if
ϵb(p

∗
G) < ϕ(p∗G), and positive if ϵb(p∗G) > ϕ(p∗G).
To sum up: i) If ϕ(p∗G) < 0, ∂T/∂b > 0 and dV S/db < 0. It is efficient to reduce both patent

scope and patent length; ii) If ϵb(p∗G) > ϕ(p∗G) > 0, ∂T/∂b < 0 and dV S/db > 0. It is efficient to
increase patent scope and reduce patent length; iii) If ϕ(p∗G) > ϵb(p

∗
G), ∂T/∂b < 0 and dV S/db < 0.

It is efficient to reduce patent scope and increase patent length. □

A.2 Elasticity Calculations for Section 7

Recall from Section 7 the definitions

ξj(pG) :=
∂pG
∂j

j

pG
, j ∈ {b, T} . (27)

We now prove the claims of Section 7 concerning the relation of ξj(p∗G) to ϵp(p
∗
G) of equation (1),

and to ϵb(p
∗
G) of equation (2).

Let us start with the relationship between ξT (p
∗
G) and ϵp(p

∗
G). Using the first-order condition

(4) to eliminate π2 from equation (16) allows us to rewrite equation (16) as

∂p∗G
∂T

=
re−rT

(1− e−rT )

∂CG/∂pG
∂2CG/∂p2G

.

Multiplying both sides of this equation by T/p∗G gives

∂p∗G
∂T

T

p∗G
=

e−rT rT

(1− e−rT )

∂CG/∂pG
p∗G∂

2CG/∂p2G
.

By using the definitions of the elasticities (1) and (27) this equation can be rewritten as

ξT (p
∗
G) =

e−rT rT

(1− e−rT )ϵp(p∗G)
,

i.e.,

ϵp(p
∗
G) =

e−rT rT

(1− e−rT )ξT (p∗G)
.

This equation equals equation (15) of Section 7.
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To link ξb(p
∗
G) with ϵp(p

∗
G), we assume that the generic firm’s cost function is specified by

equation (10), and further stipulate that c(b) = cb. Then, equation (10) can be expressed as
CG(pG, b) = cbpηGG /ηG. Using this cost function in equation (4) yields after some algebra

p∗G (b, T ) =

[(
1− e−rT

)
π2

cb

] 1
ηG−1

. (28)

Differentiating equation (28) with respect to b gives

∂p∗G
∂b

= −1

b

(
1

ηG − 1

)[(
1− e−rT

)
π2

cb

] 1
ηG−1

.

Using equation (28) and multiplying both sides of the equation above by b/p∗G gives

∂p∗G
db

b

p∗G
=

1

1− ηG
,

which may be rewritten by using equation (27) as

ηG = 1− 1

ξb
. (29)

Using equation (10) in equation (1) yields ϵp = ηG − 1 which, according to equation (29), is
equivalent to ϵp = −1/ξb, as claimed in Section 7. Our claim in Section (7) that ϵb = 1 − 1/ξb

directly follows from equation (29) and Example 1 of Section 2 in which we show that ϵb = ηG.
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Online Appendix

Online A.1 Results Without Assumption 1

As the main text characterize results for the case ∂2CG/(∂pG∂b) > 0, we here focus on the case
∂2CG/(∂pG∂b) ≤ 0. The proofs of Proposition 1 and 2 imply that if ∂2CG/∂pG∂b = 0, changes
in patent scope have no impact on the incentives of the generic and originator firms and, if
∂2CG/(∂pG∂b) < 0, an increase in patent scope increases incentives for patent challenges and
reduces incentives for new drug development. The results of Proposition 1 and 2 concerning the
effect of patent length remain unaffected.

We next analyse the optimal structure of patent policy for ∂2CG/(∂pG∂b) ≤ 0, implying that
ϵ ≤ 0. We first consider the case ϵ < 0, before moving to the case ϵ = 0.

When ϵ < 0, the counterpart to Proposition 3 can be expressed as follows:

Proposition 4: Assume that ϵb < 0. Then, i) if ϕ(p∗G) > 0, it is efficient to reduce both patent
length and patent scope; ii) If ϵb < ϕ(p∗G) < 0, it is efficient to reduce patent length and increase
patent scope; iii) If ϕ(p∗G) < ϵb, it is efficient to reduce patent scope and increase patent length.

Proof: The proof follows the proof of Proposition 3. The efficient structure of patent policy
is still characterized by the signs of equations (23) and (26). As before, equation (26) tells us the
optimal direction of patent scope and equation (23) tells us the direction in which patent length
needs to be adjusted so as to compensate the change in patent scope.

But now ∂2CG/(∂pG∂b) < 0 and, consequently, the proof of Proposition 1 implies that ∂pG/∂b >
0. Thus, equation (23) shows that the sign of ∂T/∂b is given by the sign of f(p∗G).

Note next from equation (26), that if ϕ(p∗G) > 0, then dV S/db < 0 because because ϵb < 0. If
ϕ(p∗G) < 0, the first term in the square brackets of equation (26) is positive. Then the term in the
square brackets is positive if ϵb < ϕ(p∗G)ϕ(p

∗
G), implying dV S/db < 0.

To sum up: i) If ϕ(p∗G) > 0, ∂T/∂b > 0 and dV S/db < 0. It is efficient to reduce both patent
scope and length; ii) If ϵb < ϕ(p∗G) < 0, ∂T/∂b < 0 and dV S/db > 0. It is efficient to increase patent
scope and reduce length; iii) If ϕ(p∗G) < ϵb, ∂T/∂b < 0 and dV S/db < 0. It is efficient to reduce
patent scope and increase length. □

Recall that if ϵb < 0, an increase in patent scope has counterintuitive effects: Even if an increase
in patent scope continues to make patent challenging more expensive, it has a positive effect on
incentives for patent challenging and, consequently, a negative impact on incentives to develop new
drugs. With this observation, the explanation of Proposition 4 is analogous to the one of Proposition
3.

Finally, let us consider the case ϵb = 0. To simplify the analysis, we use a standard relationship
between welfare flow and market structure and define wN := NπN +csN in which NπN and csN are
industry profits and consumer surplus (when N ∈ {0, 1, 2} drugs compete in the market), respec-
tively. Furthermore, define T ′ := argmax p∗B(T ) and assume for the moment that the conditions
stipulated in footnote 5, ∂ϕ/∂pG < 0 and limT→∞ ϕ(p∗G(T )) < 0, hold. Then T ′ is a finite and
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strictly positive unique solution to ϕ(p∗G(T
′)) = 0. Under these assumptions, we get the following

result:

Proposition 5: Assume that ϵb = 0. Then, patents should have a minimum scope. The optimal
patent duration is given by T ∗ := argmaxT W (T ) = p∗B (T )V S(T )−CB(p

∗
B(T )). in which T ∗ < T ′.

Proof: We may write the total (ex ante) welfare from a new drug as

W (b, T ) = p∗B (b, T )V S(b, T )− CB(p
∗
B(b, T )) (30)

in which p∗B (b, T ) and V S(b, T ) are given by equations (6) and (8), respectively, and CB(pB(b, T ))

is the originator’s cost of developing a new drug.
Differentiate next W (b, T ) from equation (30) with respect to b. Note here that when ϵb = 0,

∂2CG/(∂pG∂b) = 0, and ∂p∗B/∂b = 0. As a result, the sign of ∂W (b, T )/∂b is given by the sign
of ∂V S/∂b. Since ∂p∗G/∂b = 0, equation (24) implies that ∂V S/∂b = −∂CG/∂b < 0. Thus, it is
optimal to have as narrow patents as possible.

Since ∂p∗B/∂b = 0, equation (23) implies that ∂T/∂b = 0. As a result, T is the only relevant
dimension of the patent policy, and the socially optimal T is given by T ∗ := argmaxT W (T ). We
next characterize the circumstances under which T ∗ < T.

With the the help of equation (6), the first-order condition for the optimal T can be written as

∂W

∂T
=

∂p∗B (T )

∂T

[
V S(T )− V P (T )

]
+ p∗B (T )

∂V S(T )

∂T
= 0. (31)

Let us first prove that V S(T )−V P (T ) > 0, i.e., that the social value of a new drug is larger than its
private value. If V P (T ) ≥ V S(T ), the issue of the patent policy design would be moot. However,
since the social value of the new drug includes the costs of generic entry, the question of whether
V S(T ) > V P (T ) holds is not trivial.

Using xN := x̃N/r, x = w, π, in subtracting equation (5) from equation (8) yields

V S(T )− V P (T ) (32)

=
(
1− e−rT

)
[(1− p∗G (T )) (w1 − π1) + p∗G (T ) (w2 − π2)] + e−rT (w2 − π2)− CG(p

∗
G(T )).

From equation (3) we observe that ΠG(p
∗
G(T )) ≥ 0 implies that

(
1− e−rT

)
π2p

∗
G (T ) ≥ CG(p

∗
G(T )).

Approximating the right-hand side of equation (32) downwards by substituting
(
1− e−rT

)
π2p

∗
G (T )

for CG(pG(T )
∗) gives

V S(T )− V P (T )

≥
(
1− e−rT

)
[(1− p∗G (T )) (w1 − π1) + p∗G (T ) (w2 − 2π2)] + e−rT (w2 − π2) > 0,

in which the last inequality follows from wN = NπN + csN .
Next, we evaluate ∂W/∂T at T = T ′. Then, ϕ(p∗G(T

′)) = 0, and equation (25) implies that
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∂V S(T ′)/∂T < 0. From the proof of Proposition 2 we also observe that when ϕ(p∗G(T
′)) = 0,

∂p∗B(T
′)/∂T = 0. As a result, equation (31) shows that ∂W (T ′)/∂T < 0.

Assume then that i) ∂2W/∂T 2 < 0 for all T so that the problem is well-behaving. Assume
further that ii) ∂W (0)/∂T > 0. A sufficient condition for ii) is ∂p∗B (0) /∂T > p∗B (0) . To see this,
note first from equation (4) that p∗G(0) = 0. Then, when evaluating ∂W/∂T at T = 0 by using
equations (25) and (32) we get

∂W (0)

∂T
=

∂p∗B (0)

∂T
(w2 − π2)− p∗B (0) r (w2 − w1) ,

in which, as indicated by equations, (5), (6), and (19), ∂p∗B (0) /∂T > 0 and p∗B (0) > 0. Clearly,
w2 − π2 > r (w2 − w1) .

If both conditions i) and ii) hold, then there exists exactly one solution for equation (31) in
the range where T ∈ (0, T ′) and this solution characterizes the maximum. Note for completeness,
that if condition ii) fails to hold, but condition i) holds, then the optimal policy is to set T ∗ = 0.

If condition i) fails to hold, then there may be multiple solutions to equation (31). If condition ii)
nonetheless holds, there must at least be one local maximum in the range where T ∈ (0, T ′). □

The explanation of Proposition 5 is the following: Since ϵb = 0, changes in patent scope have no
impact on incentives for new drug development, and an increase in patent scope only increases the
costs of generic firms with no welfare benefits. As a result, it is optimal to have narrow patents.

When changes in patent scope have no impact on incentives for new drug development, patent
length becomes the only relevant patent policy tool. The social planner faces the classic Nordhausian
patent length design problem with the twist that an increase in patent length increases incentives
to challenge new drug patents, creating wasteful costs of patent challenging. Under some plausible
restrictions on functional forms, the optimal length lies in the range (0, T ′) in which patent length
has a positive impact on incentives to develop new drugs and adverse impact on social welfare for
a given level of drug development incentives.

Note that the proof of Proposition 5 is based on the assumptions guaranteeing that a finite T ′

solving ϕ(p∗G(T
′)) = 0 exists. However, if no such T ′ exists, then Proposition 5 holds trivially since

in that case T ′ → ∞.

Online A.2 Data Construction

In this appendix we describe the details of our data sources and variable construction. We also
address the issue of missing observations in the outcome variable.

Online A.2.1 FDA Approved Drugs: Orange Book and Drugs@FDA

The main data for our empirical analysis comes from the FDA’s publication Approved Drug Products
with Therapeutic Equivalent Evaluations, commonly known as the Orange Book. We use the
annual editions 21 – 33 (corresponding years 2001–2013) of the Orange Book. The editions 21 –
32 in electronic format were received from the FDA through a Freedom of Information Act (FOIA)
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request. The 33rd edition was downloaded from the FDA web-pages.8 The Orange Book digital
publications consist of product, patent, and exclusivity data files. The product file identifies each
drug with an FDA application number and, among others, lists information on active ingredient,
dosage form, strength, producer, trade name and approval date. The patent file lists the patents
included in each drug application. If a drug is covered by the FDA exclusivity the type of exclusivity
and its latest expiration date are listed in the exclusivity file. Using the drug application numbers
we first link the Orange Book data files into one, and then link it with the early 2014 release of the
Drugs@FDA database, Application and Product Tabs.9

The unit of observation in our analysis is a new drug patent. By definition, only new medicines,
so called New Drug Applications (NDAs), may be listed in the Orange Book with corresponding
patent information. Each patent thus protects an NDA. To account for the characteristics of NDAs,
we aggregate drug application level data into the patent level observations. For example, if a patent
protects a drug in a tablet form, we assign value one to the patent level indicator variable Tablet.
The indicator variables for two other common drug forms, Capsule and Injectable, are calculated
similarly. Some patents protect several active ingredients listed in the Orange Book. So we identify
the first FDA-approved active ingredient protected by a given patent. We also identify the first
FDA approval date of an NDA protected by a patent.

New chemical and orphan drug exclusivities are marked in the Orange Book by the codes "NCE"
and "ODE", respectively. Using these codes, we construct the indicator variables New chemical
exclusivity and Orphan drug exclusivity measuring whether or not a patent protects a drug with
new chemical or orphan drug exclusivity.

A drug receives pediatric exclusivity if its producer has conducted clinical trials and proved
efficacy and safety of its drug for children. In this case, additional six month of exclusive marketing
rights are added to all existing patents and exclusivities covering the drug (21 U.S.C. § 355a(b)). A
patent listed for an application with pediatric exclusivity has is recorded twice in the Orange Book:
first, with the original patent number and its corresponding expiration date, and second, with the
original patent number followed by a *PED" mark and a new expiration date six months later than
the original expiration date. Based on "*PED" designations, we assign value one to the indicator
variable Pediatric exclusivity if the patent protects a drug with pediatric exclusivity. Using the
Orange Book, we also compute the latest FDA exclusivity year for each patent, and identify the
patent expiration date.

We identify priority reviewed drugs from the Drugs@FDA database. Priority reviewed drugs
are assessed by the FDA faster as they, if approved, would represent significant improvements over
available therapy, and thus might be particularly valuable. During our data period, such drugs were
marked by a letter "P" or "P*" in the Therapeutic Potential column of the Drugs@FDA Application
Tab. Based on these codes, we construct the indicator variable Priority measuring whether or not

8The latest release of the Orange Book is available at: https://www.fda.gov/Drugs/InformationOnDrugs/
ucm129662.htm (accessed April 18, 2020).

9The latest release of Drugs@FDA is available at: https://www.fda.gov/Drugs/InformationOnDrugs/
ucm079750.htm (accessed April 2, 2020).
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a patent protects a drug that was priority reviewed by the FDA.

Online A.2.2 Measuring Patent Challenges: ANDA Approval Letters and Orange Book

We measure generic entry via successful PIV challenges to new drug patents. In a PIV challenge,
a generic firm seeks to enter prior to the expiration of a new drug patent by filing an Abbreviated
New Drug Application (ANDA) to the FDA containing a certification that the new drug patent is
invalid or noninfringed by the generic drug (21 U.S.C. § 355(j)(2)(A)(vii)(IV)). To construct the
outcome variable, we first obtain the list of the approved ANDAs containing PIV certifications from
the FDA through a FOIA request. To link this list with patent numbers, we seek the FDA’s letters
approving these ANDAs. Each originator drug is usually protected by multiple patents, and these
approval letters specify all originator drug patents that have successfully been challenged. Some of
the letters are readily available from the FDA web-pages through the Drugs@FDA search engine.
To collect more letters, we submit FOIA requests to the FDA. The data collection process has been
slow, since the FDA only accepts a few FOIAs per month.

We read each approval letter and record patent numbers together with corresponding PIV cer-
tifications mentioned in the letters. Using patent numbers, we then link the data on PIV challenges
from ANDA approval letters to the data on all new drug patents listed in the Orange Book. Some
patents are challenged by multiple generics, so we calculate the earliest PIV ANDA approval date
for each patent from the Orange Book files. We then construct our outcome variable, PIV entry,
as an indicator which equals one if a new drug patent has successfully been challenged via PIV
certification at least once.

PIV challenges by definition only concern patents before they expire. However, six patents in our
sample are listed in the FDA approval letters as challenged through PIV certification even though
the patents expired before the approval of the first generic drug. For consistency, we classify them
as non-challenged, but the results do not significantly change if we assign them as challenged.

Missing Observations in PIV Challenged Patent Numbers. Some of the PIV challenged
patent numbers are missing from our dataset. The FDA provided us with a list of 1020 ANDAs
containing PIV certifications and we have collected the 677 approval letters for these ANDAs. There
are thus 343 ANDAs in our sample for which the exact numbers of challenged patents are missing.

While we continue to file the FOIA requests to the FDA to update our data, we believe that
our estimation sample is comprehensive enough to allow for an accurate measurement of both our
outcome variable, PIV entry, and its timing: First, to measure PIV entry correctly, we only have to
observe one of potentially many successful challenges of a new drug patent. Second, we aggregate
the challenges to the active ingredient level, and measure whether or not we observe both 180-day
generic exclusivity and a PIV challenged patent for each challenged active ingredient. That 180-day
exclusivity is granted to the first filer of an ANDA and reliably measures the first successful PIV
challenge of an active ingredient. ANDAs which have received 180-day exclusivity are marked by
"PC" designation in the Orange Book. Our sample includes 1009 unique active ingredients and 150
of them are associated with ANDAs holding 180-day exclusivity. Out of those 150 active ingredients,
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we fail to observe a PIV challenged patent number only in 13 cases. Third, when looking at those
150 PIV challenged active ingredients, the average year of the first PIV entry is in practice the
same regardless of whether we calculate it based on the earliest approval date of generic drugs
with 180-day exclusivity or based on the earliest approval date of generic drugs with non-missing
challenged patent numbers. We thus also appear to measure the timing of (the first) PIV entry
reliably. Fourth, when filing the FOIA requests to the FDA in stages, we randomize over the target
ANDA approval letters. Since the FDA sends us exactly what we ask for, each month we receive
approval letters of several randomly chosen ANDAs and add the challenged patent numbers from
these letters to our sample. For some time now, our outcome variable of interest, PIV entry, has
remained virtually unchanged as we add missing patent numbers.

Online A.2.3 Measuring Effective Patent Length, Grant Lags, PTAs, and Some Patent
Characteristics: USPTO PatEx and Orange Book

Effective Patent Length. Our primary measure of the effective length of patent i is

Effective lengthi = Expiration datei −max{Grant datei,Drug approval datei},

in which Expiration datei is the date when patent i expired, Drug approval datei is the date when
the FDA approved the first of potentially many new drugs protected by patent i, and Grant datei
is the date when the USPTO issued patent i. We identify patent grant dates from the Application
Data Tab of the USPTO PatEx, and the FDA approval and patent expiration dates from the
product and patent files of the Orange Book.

Patent Grant Lags. We calculate the grant lag of patent i simply as

Grant lagi = Grant datei − Filing datei,

in which Filing datei is the date on which USPTO received the application that was subsequently
issued as patent i. Like grant dates, we identify patent filing dates and application numbers from
the Application Data Tab of PatEx.

PTAs. We use patent application numbers to collect PTAs from the Patent Term Adjustment
Tab of PatEx. Compensations for patent term forgone due to the USPTO regulatory delays are
labeled as patent term extensions for patents filed after the adoption of TRIPS on June 8, 1995 but
before the implementation of AIPA, on May 29, 2000, after which the compensations are labeled as
patent term adjustments.10 For brevity and following the variable label in the PatEx files, we call
both of these term modifications PTAs.

Other Patent Characteristics from PatEx. We assign the value one to the indicator
variable Continuing patenti if patent i has been filed as a continuation, a continuation-in-part or a
divisional application. We identify this information using application numbers from the Continuity

10See, e.g., https://www.uspto.gov/web/offices/pac/mpep/s2720.html and https://www.uspto.gov/web/
offices/pac/mpep/s2730.html (accessed April 3, 2020).
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Data Tab of PatEx where continuation, continuation-in-part and divisional applications are recorded
as "CON", "CIP" and "DIV", respectively.

We use the Application Data Tab of PatEx to retrieve the USPC numbers and examiners’ Art
Unit codes. We identify the Technology Centers from the first two digits of the Art Unit codes.
As the number of patents and their examiners in some Technology Centers is small, we combine
patents prosecuted in the Technology Centers that have issued less than 100 new drug patents into
one group (with 188 patents).

Online A.2.4 Measuring Claim Scope: USPTO Patent Claims Research Dataset

Our measures of patent claim scope are the count of words, the counts of Markush groups and
conjunctions "or" in the first independent claim, and the count of independent claims in each
patent. The data on these measures of claim scope is available from the USPTO Patent Claims
Research Dataset and we link it to our main dataset using patent numbers.

We instrument these measures of claim scope with the "examiner’s historical average" calculated
according to equation (14). To construct the instruments, we first identify the examiners of new drug
patents from the Application Tab of PatEx. We then find all patents reviewed by these examiners
and link the data using the patent number to the USPTO Patent Claims Research Dataset. Finally,
we identify the scope outcomes for all granted patents reviewed by these examiners.

Online A.2.5 Measuring Method and Active Ingredient Patents: Google Patent

We combine text recognition algorithms and manual verification to identify method and active
ingredient patents. Our classification approach employs the texts of the abstracts and first claims
of patents. We collected the full texts of patent abstracts and the first claims using Google Patent
Search Engine and data scrapping algorithms (written in Python using BeautifulSoup and urlib2

packages.)
Method patents covering drugs mostly pertain to the method of use of a drug or the ulti-

mate intended effect of a patented chemical. Typically the first claim of a method patent begins
with a word "method" or "process". For example, the first claim of the USPTO patent number
4870105 begins with: "A method for inhibiting gastrointestinal absorption ...". Hence, we assign
the Method patenti dummy equal to one, if the text of the first claim of a patent begins with the
words "method" or "process". We manually verified texts of multiple patents to ensure the accuracy
of the assignment.

We assign the value one to the Active ingredienti dummy if the first claim of a patent per-
tains a chemical formula. We classify the first claim as a chemical formula when its first four
symbols are a combination of single letters, dashes, commas or digits, for example, "N,N" or "R-
R". Active ingredienti also equals one if the first three words of the first claim indicate a chemical
compound and its variations. Word combinations used in chemical compound patents are, e.g.,
"composition of matter", "compound", "chemical compound", "antiviral compound", "amine", and
"peptide". We also identify patents claiming solid forms (crystallines) of compounds, derivatives
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of compounds, and some other cases based as active ingredient patents. (In identifying the active
ingredient patents, we used Python package re and heavily relied on regular expressions.)

Manual checks suggest that the patents in our sample not classified as methods nor active
ingredients mostly pertain to drug delivery systems, devices, or formulations.

Online A.2.6 Measuring Backward and Forward Citations: USPTO PatFT

We collect the data on forward and backward citations from PatFT using a Python algorithm.
We define the variable Backward citationsi as the total number of patent documents (including
foreign) listed on under the headline "References Cited" of patent i in our sample, and the variable
Forward citationsi as the number of the US issued patents mentioning patent i in their "References
Cited" list. Forward citation data was collected from PatFT using "Referenced By" retrieval tool
in October 2017.

Online A.2.7 Measuring Patent Family: EPO Open Patent Services

Various definitions of the patent family size are used in the literature. One commonly used definition
of the patent family size (see, e.g., Lanjouw and Schankerman, 2004; Sampat and Williams, 2019)
is the number of distinct countries where the same invention has been patented. We follow this
definition and construct the variable Patent family sizei as follows: We first collect the "DOCDB
simple patent families" of the new drug patents in our sample from the Open Patent Services
of the EPO in October 2017 11. To collect the data, we used an algorithm and the Application
Programming Interface granted to authors by the EPO. (The algorithm is written in Python using
epo_ops and xml packages).

A "DOCDB simple patent family" may contain multiple patents from one patent office since
it, e.g., includes continuing patents in addition to their parent patents. To solve the problem, we
count the unique countries based on the country codes, which are the two letters preceding patent
numbers retrievable from the Open Patent Services (e.g., Canadian patents contain a prefix CA,
Japanese JP, Finnish FI, etc.). Thus, even if the DOCDB simple patent family lists several patents
with the country code JP, we count Japan in our family size variable only once.

Online A.3 Patent Length Estimations: Robustness

Online A.3.1 Other Impacts of TRIPS and AIPA

Besides the changes affecting the effective patent length described in Section 5.1, TRIPS and AIPA
introduced other changes to the U.S. patent law. In what we analyze some of these other changes
that could threaten our identification of the effects of the effective patent length on PIV entry, affect
the interpretation of our results, or be used to further support our main results.

11https://www.epo.org/searching-for-patents/helpful-resources/first-time-here/patent-families/docdb.html (ac-
cessed April 24, 2020)
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Provisional Patent Applications. Another major change associated with the implementation
of TRIPS was the introduction of a provisional patent application as a simplified version of a regular
utility patent application. Provisional applications include no claims nor description of prior art,
are not subject to examination, and automatically expire after one year (35 U.S.C. § 111 (b)). The
purpose of a provisional application is to give priority rights on invention without starting the patent
clock: If a regular utility patent application is filed for the same invention before the expiration of
its provisional application, the priority date is the provisional application date but the patent term
is calculated from the utility patent application date.

A threat to our identification might arise if the use of provisional applications varies across
patents depending on their prosecution time. To address this concern, we first create the indicator
Provisional applicationi which equals one if patent i claims the priority date of a provisional appli-
cation. We identify these patents based on the "PRO" designations listed in the Continuity Data
Tab of PatEx. We then estimate the DiD model of equation (13) using the Provisional applicationi

indicator as the dependent variable.
The results reported in column (1) of Table 6 suggest no systematic relationship between the

probability of a patent claiming the priority date of a provisional application and its grant lag in
the different policy regimes. Another robustness check confirms this conclusion: when we estimate
equation (13) using a sample excluding all patents with Provisional applicationi = 1, the effects of
TRIPS and AIPA, reported in column (1) of Table 7 in the next subsection, become stronger and
more precisely estimated than in Table 3.

Table 6: Patent Law Changes and Patent Characteristics by Patent Grant Lag.

Outcome Provi- Conti- log(Markush Active log(Public log(Family log(Backward
sional nuing groups+1) ingredient length) size) citations+1)
(1) (2) (3) (4) (5) (6) (7)

Grant lag ≥3 years 0.000 0.076 0.030 0.001 -0.081 -0.174 0.385
(0.000) (0.030) (0.038) (0.033) (0.013) (0.091) (0.078)

Grant lag ≥3 years,
Post-TRIPS 0.024 -0.138 -0.032 -0.012 -0.088 0.013 0.140

(0.030) (0.055) (0.054) (0.041) (0.023) (0.141) (0.123)
Grant lag ≥3 years,
Post-AIPA 0.019 -0.193 -0.036 -0.063 0.294 0.216 -0.078

(0.045) (0.052) (0.058) (0.037) (0.026) (0.140) (0.133)
Mean dep. variable 0.214 0.589 0.247 0.226 2.777 1.905 2.760
Observations 3517 3517 3485 3517 3517 3511 3517
Filing year FE × × × × × × ×

Notes: This table reports estimates of the effects of TRIPS and AIPA on patent characteristics. Columns (1)–(7) show
coefficients from an OLS regression of the Provisional application indicator, the Continuing patent indicator, log(Markush
groups+1), the Active ingredient patent indicator, log(Public length), log(Patent family size), and log(Backward citations+1),
respectively, on three different indicators for patents with at least a three-year grant lag and filing year fixed effects (FEs).
Standard errors, in parentheses, are clustered at the level of patents protecting the same active ingredient.

Continuing Patents. In the case of continuing patents – which represent close to 60 percent
of our sample (see Table 1) – TRIPS had an impact on the effective patent length besides those
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effects discussed in Section 5.1. Before TRIPS, the terms of continuing patents and other patents
were calculated in the same way, implying that continuing patents typically expired later than
their (earlier-filed) parent patents. After TRIPS, continuing patents expire simultaneously with
their parent patent (35 U.S.C. §154 (a)(2)). Thus, TRIPS shortened the effective patent length of
continuing patents more than that of other patents, and this shortening is stronger for continuing
patents prosecuted over three years. As a result, long patent prosecution times might incentivize
originator firms to opt for separate patent applications instead of continuing applications after
TRIPS. Supporting this idea, patents with long prosecution lags are less likely to be continuing
after TRIPS, compared to other patents in our sample, as shown in column (2) of Table 6.

A smaller share of continuing patents in the post-TRIPS period of our sample has several
implications: First, it implies a stronger variation in the effective patent length stemming from the
variation in patent grant lags. Second, since continuing patent applications might be used as a tool
to make patent protection stronger (see, e.g., Lemley and Moore 2004), it raises the concern that
our baseline estimates of the effect of TRIPS on patents with long prosecution lags would partially
reflect narrower patent protection. To address this concern, we estimate the DiD model of equation
(13) using a sample of continuing patents. The results, reported in column (2) of Table 7, support
our main result of the positive impact of longer effective patent length on the probability of PIV
entry: the effects of TRIPS and AIPA on the patents prosecuted at least three years are stronger
than in any other specification. The results in columns (3) (4), and (7), discussed at the end of the
subsection, also mitigate the concern that potentially narrower patent protection in the post-TRIPS
period would be driving our main results.

Third, taken together, the results in columns (2) of Table 6 and Table 7 suggest that TRIPS made
continuing patents with long grant lags less valuable for originator firms even if it simultaneously
reduced the threat of PIV challenges to these patents. We interpret these results as reflecting the
strong negative effect of TRIPS on the effective length of continuing patents with long grant lags.
Then, by revealed preference, the results also support our policy conclusion of Section (7) that
f(p∗G) > 0 is more likely than f(p∗G) < 0 – if f(p∗G) were negative, we should have observed the
proportion of continuing patents to increase in the post-TRIPS period.

Disclosure of Patent Applications. AIPA affected the timing of disclosure of patent appli-
cations (see, e.g., Johnson and Popp 2003). Prior to AIPA, patent applications were not published
before they were issued. AIPA harmonized disclosure in the US with international standards accord-
ing to which a pending patent application is published 18 months after its filing date. For patents
with long grant lags, the resulting loss in secrecy can be substantial, whereas patents granted (and,
by implication, published) within 18 months loose little. Earlier disclosure of a patent application
may lengthen the effective time for generic entry prior to the patent expiration, and hence affect
the interpretation of our results concerning the effect of AIPA.

To evaluate the effects of AIPA on patent information disclosure in our setting, we measure the
new drug patent length beginning from its disclosure. We define the public length of patent i filed
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in year t as

Public lengthit =



Expiration datei − Grant datei,

if 1[Grant lagi≥18 months]× 1[Post-AIPAi] = 0

Expiration datei − Filing datei + 18 months,

if 1[Grant lagi≥18 months]× 1[Post-AIPAi] = 1,

in which the indicator variable 1[Grant lagi≥18 months] gets, analogous to 1[Grant lagi≥3 years]
of equation (13), value one if the grant lag of patent i is at least 18 months.

Our calculation only provides a crude measure of the effect of AIPA on public patent length.
For instance, the calculation ignores the disclosure of the US inventors’ international applications
after 18 months prior to AIPA, the exception to the post-AIPA publication requirement concerning
applicants who waive the possibility of international patenting (35 U.S.C. § 122 (b)(2)(B)(i)), and
the requirement that the filing date of patent i should be measured from its earliest filing date in
the post-AIPA period (35 U.S.C. § 122 (b)(1)(A)).

We then estimate the DiD model of equation (13) using log(Public lengthi) as the dependent
variable. Column (5) of Table 6 reports the results. Compared to the estimate reported in column
(6) of Table 3, the coefficient estimate of the term 1[Grant lagi≥3 years] × 1[Post-AIPAi] is now
larger. While this result may arise from the imprecise measurement of public length, it may also
indicate that an increase in public length partially contributes to the estimated positive effect of the
longer effective length on PIV entry. Overall, however, estimates of the effects of TRIPS and AIPA
depending on grant lags reported in column (6) of Table 3 and column (5) of Table 6 are similar.

Other Changes due to TRIPS and AIPA. Finally, we explore whether our results concern-
ing the differential impacts of TRIPS and AIPA on PIV entry depending on grant lags could be
explained by simultaneous differential changes in patent scope or value induced by various patent
law modifications of TRIPS and AIPA. In this respect, estimates reported columns (3), (4), (6), and
(7) of Table 6 are comforting: we observe no clear impacts of TRIPS and AIPA on the relationship
between grant lags and patent scope or value, as measured by the count of Markush group in the
first independent claim, the proportion of active ingredient patents, the patent family size, and the
count of backward citations.

Online A.3.2 Other Subsamples and Specifications

Table 7 provides results from the estimation of the DiD model of equation (13) using different
subsamples and specifications. We first report estimates using samples that only include patents
which do not claim the priority date of a provisional application (column (1)) and continuing patents
(column (2)).

The results in column (3) are generated by a sample that excludes all other new drug patents
sharing the common parent application except for the latest one. We identify the excluded patents
using information on parent applications from the Continuity Data Tab of PatEx.
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In column (4) the results arise from a sample that only includes patents for which we observe
FDA exclusivity. These patents might be more valuable or – as our results of Table (2) indicate
– more difficult to challenge than patents for which we observe no FDA exclusivity. Column (5)
reports estimates from a model that, analogous to survival models, includes fixed effects to control
for the length of exposure of a patent to PIV challenges. In this specification we, in addition to a
full set of other controls, include a dummy measuring the time (in years) between the grant date
of a patent and the earliest successful PIV patent challenge date or the patent expiration date
whichever is earlier. Finally, we estimate a model allowing for richer interactions between grant lags
and patent policy reforms, and report the results in column (6).

The signs and magnitudes of the coefficient estimates reported in Table 7 are similar to those
coefficients reported in columns (1)–(5) of Table 3. If anything, the effects of TRIPS and AIPA
are now stronger and more precisely estimated. Coefficients of the additional interaction terms
involving patents with a grant lag exceeding five years reported in Column (6) are imprecisely
estimated, possibly because we have only 417 such patents in our sample.
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Table 7: PIV Entry and Patent Law Changes by Patent Grant Lag: Robustness Analysis.

(1) (2) (3) (4) (5) (6)
(0.039)

Grant lag ≥3 years 0.025 0.030 0.016 0.032 0.040
(0.025) (0.029) (0.029) (0.031) (0.024)

Grant lag ≥3 years,
Post-TRIPS -0.123 -0.180 -0.126 -0.118 -0.132

(0.041) (0.052) (0.044) (0.046) (0.035)
Grant lag ≥3 years,
Post-AIPA 0.089 0.154 0.105 0.087 0.090

(0.044) (0.051) (0.041) (0.039) (0.030)
Grant lag 3-5 years 0.023

(0.027)
Grant lag 3-5 years,
Post-TRIPS -0.102

(0.041)
Grant lag 3-5 years,
Post-AIPA 0.075

(0.039)
Grant lag > 5 years 0.033

(0.039)
Grant lag > 5 years,
Post-TRIPS -0.117

(0.071)
Grant lag > 5 years,
Post-AIPA 0.065

(0.063)
Mean dependent variable 0.179 0.176 0.167 0.180 0.173 0.173
Observations 2731 2054 2627 2668 3478 3483
R-squared 0.233 0.268 0.210 0.262 0.385 0.234
Exposure length FE ×
Filing year FE × × × × × ×
Drug controls × × × × × ×
Exclusivity expiration year FE × × × × × ×
Patent controls × × × × × ×
USPC FE × × × × × ×
Sample No prior Continuing Latest FDA Full Full

provisional filed exclusivity
Notes: This table reports estimates of the effects of TRIPS and AIPA on PIV entry. Columns (1)–(5) show coefficients
from an OLS regression of the PIV entry indicator on three and column (6) on five indicators for patents with at least
a three-year grant lag and controls. FE stands for fixed effects. Drug controls include the indicators New chemical
exclusivity, Orphan drug exclusivity, Pediatric exclusivity, Priority review, Capsule, Injectable, and Tablet. Patent
controls include log(Markush groups+1), log(Backward citations+1), log(Forward citations+1), log(Patent family
size), and the indicators Active ingredient patent, Method patent, and Continuing patent. In columns (1)–(4) the
samples exclude patents claiming the priority date of a provisional application, first-filed patents covering the same
invention, all but the latest-filed patents covering the same invention, and patents protecting drugs without (observed)
FDA exclusivity, respectively. Standard errors, in parentheses, are clustered at the level of patents protecting the
same active ingredient.
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Online A.4 Patent Scope Estimations: Robustness

In this section we explore the robustness of our patent claim scope estimates. Table 8 reports
estimates of various claim scope measures from the OLS model of equation (12). Column (1) shows
an estimate using the specification of column (3) in Table (2). We then replace the count of Markush
groups in the first independent claim with alternative measures of patent claim scope: the count
of the conjunction "or" in the first independent claim (column (2)), the count of words in the first
independent claim (column (3)), the count of independent claims (column (4)). The coefficient
estimate in colunm (3) suggests a statistically significant but small negative relationship between
PIV entry and patent scope, as measure by the count of the conjunction "or" in the first independent
claim. When compared with our IV estimates from Table (5), there appears to be an upward bias
in most of these OLS estimates.

Tables (9)–(11) report the results from our exploration of 2SLS estimates of patent scope mea-
sures. Tables (9) and (10) show that the results reported in Table (5) are robust, respectively, to
the exclusion of control variables, and to the inclusion of the interaction of Technology Center fixed
effects with filing year fixed effects, to control for Technology Center specific trends. Table (11)
reports estimates from a regression in which we replace Technology Center fixed effects with Art
Unit fixed effects. The number of patents per Art Unit is small, only 21 on average. Even if we
group Art Units with less than 10 patents into one group of 266 patents, coefficients of the scope
measures become less precisely estimated (although remaining similar in magnitude) than in Table
(5). The only scope measure generating statistically significant effects is the count of words in the
first independent claim.

Our results are also robust to using the following alternative measures of claim scope: the count
of claims, and the counts of characters and the phrase "consisting of" in the first independent claim.
We omit these regression results for brevity.
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Table 8: PIV Entry and Patent Scope: OLS Estimates.

(1) (2) (3) (4)
log(Markush groups+1) -0.013

(0.012)
log(Conjunctions "or"+1) -0.020

(0.007)
log(Words) -0.001

(0.007)
log(Independent claims) -0.009

(0.008)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3483 3483 3483 3485
R-squared 0.242 0.241 0.243 0.241
Technology Center FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from OLS regressions of the PIV en-
try indicator on scope measures and controls. FE stands for fixed effects.
Drug controls include the indicators New chemical exclusivity, Orphan drug
exclusivity, Pediatric exclusivity, Priority review, Capsule, Injectable, and
Tablet. Patent controls include log(Effective length), log(Backward cita-
tions+1), log(Forward citations+1), log(Patent family size), and the indi-
cators Active ingredient patent, Method patent, and Continuing patent.
Standard errors, in parentheses, are clustered at the level of patents pro-
tecting the same active ingredient.
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Table 9: PIV Entry and Patent Scope:
Robustness of IV Estimates to Exclusion of Control Variables.

(1) (2) (3) (4)
log(Markush groups+1) -0.244

(0.071)
log(Conjunctions "or"+1) -0.095

(0.030)
log(Words) -0.484

(0.233)
log(Independent claims) -0.154

(0.123)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3447 3447 3447 3449
First-stage F-statistic 41.446 127.960 5.417 15.264
Technology Center FE × × × ×
Filing year FE × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the PIV
entry indicator on instrumented scope measures and controls. The
instruments are the cumulative averages of the scope measures of all
patents reviewed by the examiner of a new drug patent, until one
year preceding the filing year of the new drug patent. The first stage
F-statistic tests is on the excluded instruments. FE stands for fixed
effects, respectively. Robust standard errors are in parentheses.
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Table 10: PIV Entry and Patent Scope:
Robustness of IV Estimates to Technology Center Specific Trends.

(1) (2) (3) (4)
log(Markush groups+1) -0.218

(0.091)
log(Conjunctions "or"+1) -0.101

(0.052)
log(Words) -0.219

(0.091)
log(Independent claims) 0.062

(0.132)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3445 3445 3445 3447
First-stage F-statistic 24.520 43.897 14.769 10.592
Technology Center FE × Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the PIV entry indicator
on instrumented scope measures and controls. The instruments are the cumulative
averages of the scope measures of all patents reviewed by the examiner of a new drug
patent, until one year preceding the filing year of the new drug patent. The first stage
F-statistic tests is on the excluded instruments. FE stands for fixed effects. Drug
controls include the indicators New chemical exclusivity, Orphan drug exclusivity,
Pediatric exclusivity, Priority review, Capsule, Injectable, and Tablet. Patent controls
include log(Effective length), log(Backward citations+1), log(Forward citations+1),
log(Patent family size), and the indicators Active ingredient patent, Method patent,
and Continuing patent. Robust standard errors are in parentheses.
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Table 11: PIV Enry and Patent Scope:
Robustness of IV Estimates to Art Unit Fixed Effects.

(1) (2) (3) (4)
log(Markush groups + 1) -0.257

(0.214)
log(Conjunctions "or"+1) -0.073

(0.065)
log(Words) -0.190

(0.077)
log(Independent claims) 0.117

(0.172)
Mean dependent variable 0.173 0.173 0.173 0.173
Observations 3445 3445 3445 3447
First-stage F-statistic 6.202 30.447 18.815 6.669
Art Unit FE × × × ×
Filing year FE × × × ×
Drug controls × × × ×
Exclusivity expiration year FE × × × ×
Patent controls × × × ×
USPC FE × × × ×

Notes: This table reports coefficients from 2SLS regressions of the PIV
entry indicator on instrumented scope measures and controls. The instru-
ments are the cumulative averages of the scope measures of all patents
reviewed by the examiner of a new drug patent, until one year preceding
the filing year of the new drug patent. The first-stage F-statistic tests is on
the excluded instruments. FE stands for fixed effects. Drug controls include
the indicators New chemical exclusivity, Orphan drug exclusivity, Pediatric
exclusivity, Priority review, Capsule, Injectable, and Tablet. Patent con-
trols include log(Effective length), log(Backward citations+1), log(Forward
citations+1), log(Patent family size), and the indicators Active ingredient
patent, Method patent, and Continuing patent. Robust standard errors are
in parentheses.
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