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Time-frequency forecast of the equity premium∗

Gonçalo Faria† Fabio Verona‡

Abstract

Any time series can be decomposed into cyclical components �uctuating at di�erent

frequencies. Accordingly, in this paper we propose a method to forecast the stock

market's equity premium which exploits the frequency relationship between the equity

premium and several predictor variables. We evaluate a large set of models and �nd

that, by selecting the relevant frequencies for equity premium forecasting, this method

signi�cantly improves in both statistical and economic sense upon standard time series

forecasting methods. This improvement is robust regardless of the predictor used, the

out-of-sample period considered, and the frequency of the data used.
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1 Introduction

Goyal and Welch (2008) and subsequent research show that the equity premium out-of-

sample (OOS) predictability of several economic and �nancial variables is not robust and

usually concentrated in speci�c periods of time (i.e. recessions). Notwithstanding, in recent

years there has been increasing evidence that the equity premium is, at least to some extent,

predictable when using more advanced econometric techniques. In particular, in the context

of a single-variable predictive regression setup, recent methodological contributions that im-

proved the OOS forecastability of the equity premium include regressions with time-varying

coe�cients (Dangl and Halling, 2012), with economic constraints (Pettenuzzo et al., 2014),

with learning and time-varying volatility (Johannes et al., 2014), and quantile regression

models with single predictor (Meligkotsidou et al., 2014). This paper contributes to this lit-

erature by proposing a forecasting method that combines a frequency-domain decomposition

technique with traditional time series econometric methods.

In particular, our forecasting method exploits the frequency relationship between the equity

premium and fourteen standard equity premium predictor variables. In the spirit of the

trend-cycle decomposition of a time series (as proposed by e.g. Watson, 1986), we decompose

both the equity premium and its predictors into time-frequency series components, each of

them capturing the oscillations of the original variable within a speci�c frequency band. We

do so by means of wavelet �ltering methods, which allow to decompose a time series in a

rather granular way, so that we can make use of the information embedded and aggregated

in the time series of the variables in a more e�cient way. Then, considering one predictor

variable at a time, we forecast separately each of the time-frequency series component of the

equity premium using the corresponding component of the predictor. Finally, to produce the

forecast of the equity premium based on that predictor, we evaluate a large set of models

that combine the forecasts from the di�erent frequency components of the equity premium.
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The main results can be summarized as follows. First, for all predictor variables considered,

by using the proper time-frequency series components, the OOS forecasting performance is

better than that using traditional time series forecasting methods. Second, when compared to

the standard benchmark in the literature (i.e. the historical mean of returns), �ve predictor

variables (the earnings-price ratio, the dividend-payout ratio, the in�ation rate, the long-term

government bond return and the term spread) deliver positive and statistically signi�cant

OOS R-squares (R2
OS), that is, they outperform the reference model in the literature. This

result thus unveils that some variables considered to be poor equity premium predictors are

ultimately good predictors once the frequencies that have the greatest predictive power are

retained and the noisy frequencies are excluded. Third, this method informs us about the

relative importance of the frequency components of each predictor variable. In particular,

we �nd that the low frequency components are important whereas shorter business cycle

frequencies are less so. Fourth, when examining the economic signi�cance of our model

predictive performance through an asset allocation analysis, we �nd that a mean-variance

investor who allocates her wealth between equities and risk-free bills enjoys signi�cant utility

gains (both with respect to the historical mean and with the time series analysis) when

making the forecasts using the proper time-frequency components of each predictor variable.

Fifth, and di�erently from the time series analysis, using the proposed forecasting model

some predictor variables outperform the historical mean benchmark also during periods of

normal and good economic growth (where the regimes are based on sorted values of real GDP

growth).

The rest of the paper is organized as follows. In section 2 we review related literature to

provide context for our contribution. Section 3 presents the data and the methodology.

Section 4 presents the OOS results and section 5 the results of the robustness exercises.

Section 6 concludes.
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2 Related literature

In the econometric literature, the recognition of frequency-speci�c modeling dates back at

least to the work of Grether and Nerlove (1970) and to band-spectrum regression of Engle

(1974). In this paper we use a relatively recent tool in economic and �nance � wavelets

�ltering methods � to forecast the equity premium.1 Di�erently from traditional frequency

domain tools such as the Fourier analysis, wavelets are de�ned over a �nite window in the

time domain, with the size of that window being adjusted automatically according to the

frequency of interest. This means that the high-frequency features of the time series can

be captured by using a short window, whereas by looking at the same signal with a larger

window, the low-frequency features are revealed. Hence, wavelets allow to extract both

time-varying and frequency-varying features simultaneously just by changing the size of the

window. They are thus better suited to handle variables (like e.g. �nancial variables) that

exhibit jumps, structural breaks, and time-varying volatility.

The core of our wavelet decomposition is known as wavelet multiresolution analysis. It

allows to decompose any variable (regardless of its time series properties) into a trend, a

cycle, and a noise component in a way which is similar to the traditional time series trend-

cycle decomposition approach (Watson, 1986), or other �ltering methods like the Hodrick

and Prescott (1997) or the Baxter and King (1999) bandpass �lter. In particular, using

the wavelet multiresolution decomposition allows to extract and forecast separately each

frequency component of the time series. As wavelet methods allow for a rather granular

decomposition of a time series, they could in principle help improving the forecast accuracy

of the series as a whole.

Wavelet-based forecasting methods have indeed been successfully used to forecast (OOS)

economic and �nancial variables. As regards economic variables, Rua (2011, 2017) proposes a

1 Crowley (2007) and Aguiar-Conraria and Soares (2014) provide reviews of economic and �nance appli-
cations of wavelets tools.
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wavelet-based multiscale principal component analysis to forecast GDP growth and in�ation,

while Kilponen and Verona (2016) forecast aggregate investment using the Tobin's Q theory

of investment. As regards �nancial variables, Mitra and Mitra (2006) and Caraiani (2017)

forecast exchange rates, while Zhang et al. (2017) and Faria and Verona (2018, 2020) focus

on stock return predictability. In particular, Faria and Verona (2018) run a time-frequency

forecast of stock market returns in the context of Ferreira and Santa-Clara (2011) sum-of-

the-part method. In this paper we generalize the idea of Faria and Verona (2018) and run the

time-frequency forecast of the equity premium within a more general OOS predictive setting

(single-variable predictive regression setup) instead of the sum-of-the-part method.

This paper is naturally related to the literature on the OOS forecasting of the equity pre-

mium, which was stimulated by Goyal and Welch (2008) �ndings that several equity premium

predicting variables perform poorly OOS.2 In particular, after running the OOS equity pre-

mium forecast on a frequency-by-frequency basis, we consider a large set of models that

combine the forecasts from the di�erent frequency components of the equity premium, and

show that statistically and economically signi�cant OOS gains can be obtained by removing

some frequencies (of each individual predictor variable) from the forecasting exercise and

only using the relevant frequencies.

Finally, this work links with recent literature analyzing the spectral properties of �nancial

asset returns (Dew-Becker and Giglio, 2016 and Chaudhuri and Lo, 2016) and of equity

returns predictability (Faria and Verona, 2018 and Bandi et al., 2019). In particular, we

�nd that, for all predictors under analysis, their lowest frequency components are always

selected as relevant frequencies for equity premium forecasting purposes (both with monthly

2 Besides the methodological contributions using single-variable predictive regression setup cited in section
1, methodological contributions that make use of several predictors to forecast the equity premium include
dynamic factor models (Ludvigson and Ng, 2007, Kelly and Pruitt, 2013 and Neely et al., 2014), forecasts
combination from di�erent predictors (Rapach et al., 2010 and Pettenuzzo and Ravazzolo, 2016), regime-
switching vector autoregression models (Henkel et al., 2011), the sum-of-the-parts method (Ferreira and
Santa-Clara, 2011 and Faria and Verona, 2018), and Bayesian regime-switching combination or quantile
combination approach (Zhu and Zhu, 2013 and Lima and Meng, 2017, respectively).
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and quarterly series). Furthermore, in some cases (like e.g. the term spread), the lowest

frequency component is the only relevant frequency. This �nding adds to recent empirical

evidence that the level and price of aggregate risk in equity markets are strongly linked to

low-frequency economic �uctuations (see e.g. Dew-Becker and Giglio, 2016, Bianchi et al.,

2017 and Gallegati and delli Gatti, 2018), that there are low-frequency, decades-long shifts

in asset values relative to measures of macroeconomic fundamentals in the US (e.g. Bianchi

et al., 2017), and also that accounting for time-varying macroeconomic trend components is

crucial for understanding and forecasting long-term interest rates and bond returns (Bauer

and Rudebusch, 2020).

3 Data and methodology

We focus on the OOS predictability of monthly equity premium, measured by the di�erence

between the log (total) return of the S&P500 index and the log return on a one-month

Treasury bill. As it has been emphasized in the literature (e.g. Goyal and Welch, 2008

and Huang et al., 2015), the OOS exercise is more relevant to evaluate e�ective return

predictability in real time while avoiding the in-sample over-�tting issue, eventual small-

sample size distortions and the look-ahead bias concern. Moreover, we only focus on the

one-month forecasting period as it has been documented that return predictability with a

short horizon is usually magni�ed at longer horizons (see e.g. Cochrane, 2001).

We use monthly data from January 1973 to December 2018 for fourteen predictors from

Goyal and Welch (2008) updated database. Speci�cally, we use the log dividend-price ratio

(DP), the log dividend yield (DY), the log earnings-price ratio (EP), the log dividend-payout

ratio (DE), the excess stock return volatility (RVOL), the book-to-market ratio (BM), the

net equity expansion (NTIS), the Treasury bill rate (TBL), the long-term bond yield (LTY),

the long-term bond return (LTR), the term spread (TMS), the default yield spread (DFY),
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the default return spread (DFR) and the lagged in�ation rate (INFL). In appendix 1 these

predictors are brie�y explained and their time series are plotted. Table 1 reports summary

statistics for the equity premium and its predictors. The average monthly equity premium

is 0.42%, which, together with a monthly standard deviation of 4.40%, corresponds to an

average monthly Sharpe ratio of 0.10 in the sample period.

Our methodology to forecast the equity premium is based on the wavelet multiresolution

analysis, which is described in sub-section 3.1. The OOS procedure is then explained in

sub-section 3.2.

3.1 Wavelet multiresolution analysis

The wavelet multiresolution analysis (MRA) allows the decomposition of a time series into

its constituent multiresolution (frequency) components.3 Given a time series yt, its wavelet

multiresolution representation can be written as

yt = ySJ
t +

J∑
j=1

y
Dj

t , (1)

where ySJ
t is the wavelet smooth component and y

Dj

t , j = 1, 2, . . . , J , are the J wavelet detail

components. Equation (1) shows that the original variable yt, exclusively de�ned in the time

domain, can be decomposed in di�erent components, each of them also de�ned in the time

domain and representing the �uctuation of the original time series in a speci�c frequency

band. In particular, for small j, the j wavelet detail components represent the higher fre-

quency characteristics of the time series (i.e. its short-term dynamics). As j increases, the

j wavelet detail components represent lower frequencies movements of the series. Finally,

3 In this section we limit the description to the basic concepts which are directly useful to understand
our empirical analysis. A more detailed analysis of wavelets methods can be found in Percival and Walden
(2000) and in appendix 2.
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the wavelet smooth component captures the lowest frequency dynamics (i.e. its long-term

behavior).

In this paper, we use the maximal overlap discrete wavelet transform (MODWT) MRA with

the Haar wavelet �lter and re�ecting boundary conditions.4 Given the su�ciently long data

series, we set J to 6 so that the MRA decomposition delivers seven time-frequency series: six

wavelet detail components (yD1
t to yD6

t ) and the wavelet smooth component (yS6
t ).5 As we use

monthly data, the �rst detail component yD1
t captures oscillations between 2 and 4 months,

while detail components yD2
t , yD3

t , yD4
t , yD5

t and yD6
t capture oscillations with a period of

4-8, 8-16, 16-32, 32-64 and 64-128 months, respectively. Finally, the smooth component yS6
t ,

which in what follows we re-denote yD7
t , captures oscillations with a period longer than 128

months (10.6 years).6

To illustrate the rich set of di�erent dynamics aggregated (and therefore hidden) in the

original time series, �gure 1 plots the time series of the (log) equity premium (top left panel)

and of its seven time-frequency series components (remaining panels). As expected, the lower

the frequency, the smoother the resulting �ltered time series.

Furthermore, wavelets allow to analyze the variability of a time series on a frequency-by-

frequency basis. In particular, by running the so-called energy decomposition analysis, it is

possible to compute the variance decomposition by frequency and, hence, to detect which

frequency bands contribute relatively more to the overall volatility of the original time series.

Table 2 reports the results of the energy decomposition analysis for the variables under

4 Examples of papers using the MODWT MRA decomposition include Galagedera and Maharaj (2008),
Bekiros and Marcellino (2013), Xue et al. (2013), Barunik and Vacha (2015), Berger (2016), and Faria and
Verona (2020). While the Haar �lter is simple and widely used (see e.g. Manchaldore et al., 2010, Malagon
et al., 2015, Bandi et al., 2019 and Lubik et al., 2019), the results in this paper are qualitatively the same
using other wavelet �lters (like e.g. Daubechies).

5 As regards the choice of J, the number of observations dictates the maximum number of frequency bands
that can be used. In particular, if t0 is the number of observations in the in-sample period, then J has to
satisfy the constraint J ≤ log2 t0.

6 In the MODWT, each wavelet �lter at frequency j approximates an ideal high-pass �lter with passband
f ∈

[
1/2j+1 , 1/2j

]
, while the smooth component is associated with frequencies f ∈

[
0 , 1/2j+1

]
. The level j

wavelet components are thus associated to �uctuations with periodicity
[
2j , 2j+1

]
(months, in our case).
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analysis. For the variables with low persistence, most of the volatility (more than 70%) is

concentrated at higher frequencies (D1 and D2), whereas for the more persistent variables

the lowest frequencies components (D5 and above) account for the majority of the total

variability of the series.

3.2 Out-of-sample forecasts

The one-step ahead OOS forecasts are generated using a sequence of expanding windows.

We use an initial in-sample period (1973:01 to 1989:12) to make the �rst one-step ahead

OOS forecast. The in-sample period is then increased by one observation and a new one-step

ahead OOS forecast is produced. This is the procedure until the end of the sample. The full

OOS period therefore spans from 1990:01 to 2018:12.

3.2.1 Single-variable predictive regression model: time series

Let r be the equity premium. For each individual predictor xi, i = 1, ..., 14, the predictive

regression model is

rt+1 = α + βxi,t + εt+1 , (2)

and the one-step ahead OOS forecast of the equity premium, r̂t+1, is given by:

r̂t+1 = α̂t + β̂txi,t , (3)

where α̂t and β̂t are the OLS estimates of α and β in equation (2), respectively, using data

from the beginning of the sample until month t. We denote this forecast as the TS (time

series) forecast.
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3.2.2 Wavelet-based forecasting model

To forecast with wavelets, we �t a model like (2) to each time-frequency component of the

MODWTMRA decomposition of r and xi. The overall forecast for r can then be obtained by

aggregating the forecasts of its time-frequency components.7 Importantly, as the MODWT

MRA at a given point in time uses information of neighboring data points (both past and

future), we recompute the time-frequency series components at each iteration of the OOS

forecasting process. This ensures that our method does not su�er from look-ahead bias as

the forecasts are made with current and past information only.

Let us explain in more detail the steps involved. First, we apply the MODWT MRA de-

composition to the variable to be forecasted (r) as well as to all predictors (xi). Second, for

each predictor xi, we estimate a model like (2) for each frequency level j = 1, ..., 7. That is,

we estimate � separately � each time-frequency component of the equity premium using the

time-frequency component of the predictor at the same level j :8

r
xi,Dj

t+1 = αxi
t,j + βxi

t,jx
Dj

i,t + εt+1 . (4)

Third, we use the estimation results to produce the one-step ahead forecast of the corre-

sponding time-frequency component of r :

r̂
xi,Dj

t+1 = α̂xi
t,j + β̂xi

t,jx
Dj

i,t ,

where α̂xi
t,j and β̂

xi
t,j are the OLS estimates of αxi

t,j and β
xi
t,j in equation (4), respectively, using

7 The closest approaches in the literature are those suggested by Rua (2011) and Faria and Verona (2018).
This is also the spirit of the scale predictability in Bandi et al. (2019), who explore a model where returns and
predictors are linear aggregates of components operating over di�erent frequencies, and where predictability
is frequency-speci�c.

8 In principle it is possible to �t di�erent forecasting models for each frequency components. For instance,
we could use non-linear models when forecasting the high frequency components of the equity premium, or
include more lags of the predictor when forecasting the lowest frequency components of the equity premium.
We leave this for future research.
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data from the beginning of the sample until month t.

The �nal step consists in evaluating the performance of a large set of models that combine

the forecasts from the di�erent frequency components of the equity premium, and to select

the best one. We do so by searching, for each individual predictor, the combination of its

time-frequency series components that maximizes the Campbell and Thompson (2008) R2
OS

statistic (as explained in sub-section 3.2.3). Taking the dividend-payout ratio (DE) as an

example, the equity premium wavelet-based forecasting econometric model is given by:

r̂DE
t+1 =

J+1∑
j=1

δj r̂
DE,Dj

t+1 =
J+1∑
j=1

δj

[
α̂DE
t,j + β̂DE

t,j DE
Dj

t

]
, (5)

where DE
Dj

t , j = 1, ..., 7, are the time-frequency series components of DE. For each predictor,

the weights δj of each frequency component are chosen in order to maximize the predictor's

statistical performance. In (5) we consider �ve possible values for each weight: 0, 0.25, 0.5,

0.75 and 1. A weight of 0 excludes a particular frequency from the forecast, that is, the

information carried by that frequency to the forecast exercise is completely removed. We

consider a limited number of possible values for the weights δj mainly due to computational

reasons. However, although the results are likely to improve by using a �ner grid, the main

message of this exercise would most likely be the same.

Moreover, in (5) we use a �xed weighting scheme for two main reasons. First, to e�ectively

deal with the bias-variance trade-o� it is preferable to �x the relative importance of various

frequency components. In fact, estimating a model with time-varying weights would help

reducing the bias in the forecasting exercise but would increase its forecast variance.9 Second,

several factors like e.g. market sentiment, monetary policies and uncertainty could motivate

the use of time-varying schemes in order to assess the importance of each frequency at each

point in time. However, in this paper we are interested in analyzing which frequencies of

9 We thank Christiane Baumeister for this insight.
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each predictor are � on average � relevant to forecast the equity premium.

This model, which we will refer to as the WAV model, thus informs about the relevant

frequencies of each predictor variable for the equity premium forecasting purposes.

3.2.3 Forecast evaluation

The forecasting performances of the time series (TS) and wavelet based (WAV) models are

evaluated using the Campbell and Thompson (2008) R2
OS statistic. As standard in the

literature, the benchmark model is the average equity premium up to time t (rt). The

R2
OS statistic measures the proportional reduction in the mean squared forecast error for the

predictive model (MSFEPRED) relative to the historical mean (MSFEHM) and is given by

R2
OS = 100

(
1− MSFEPRED

MSFEHM

)
= 100

[
1−

∑T−1
t=t0

(rt+1 − r̂t+1)
2∑T−1

t=t0
(rt+1 − rt)2

]
,

where r̂t+1 is the equity premium forecast for t+1 from the TS or the WAV models considered

and rt+1 is the realized equity premium from t to t+1. A positive (negative) R2
OS indicates

that the predictive model outperforms (underperforms) the historical mean (HM) in terms

of MSFE.

The statistical signi�cance of the results is evaluated using the Clark and West (2007) statis-

tic. This statistic tests the null hypothesis that the MSFE of the HM model is less than

or equal to the MSFE of the TS or WAV model against the alternative hypothesis that the

MSFE of the HM model is greater than the MSFE of the TS or WAV model (H0 : R
2
OS ≤ 0

against HA : R2
OS > 0).

To assess the forecasting performance of the wavelet-based forecasting method with respect

to the time series forecast, we also compute the R2
OS (and its statistical signi�cance) of the

WAV model versus the TS model.
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3.3 Asset allocation

We analyze the economic value of the di�erent predictive models from an asset allocation

perspective, considering a mean-variance investor who allocates her wealth between equities

and risk-free bills. At the end of month t, the investor optimally allocates

wt =
1

γ

R̂t+1

σ̂2
t+1

(6)

of the portfolio to equity for period t+1. In (6), γ is the investor's relative risk aversion

coe�cient, R̂t+1 is the time t (TS or WAV) model forecast of equity premium for t+1, and

σ̂2
t+1 is the forecast of the variance of the equity premium. As in Rapach et al. (2016), we

assume a relative risk aversion coe�cient of three, use a ten-year moving window of past

equity premium to estimate the variance forecast and constrain the weights wt to lie between

-0.5 and 1.5. These constraints limit the possibilities of short selling and leveraging the

portfolio.

The realized portfolio return at time t+1, RPt+1, is given by RPt+1 = wtRt+1+RFt+1, where

RFt+1 denotes the risk-free return from time t to t+1 (i.e. the market rate, which is known

at time t). The average utility (or certainty equivalent return, CER) of an investor that uses

the portfolio rule (6) is given by CER = RP − 0.5γσ2
RP , where RP and σ2

RP are the sample

mean and variance of the portfolio return, respectively. We report the annualized utility

gain, which is computed as the di�erence between the CER for an investor that uses the TS

or WAV model to forecast equity premium and the CER for an investor who uses the HM

benchmark for forecasting. The di�erence is multiplied by 12, which allows to interpret it as

the annual portfolio management fee that an investor would accept to pay to have access to

the alternative forecasting model versus the historical average forecast.
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4 Out-of-sample forecasting performance

4.1 Statistical performance

The second and fourth columns of table 3 report the R2
OS statistics for each predictor using

di�erent model speci�cations versus the HM, for the entire OOS period (1990:01-2018:12).

The standard time series analysis (second column) con�rms Goyal and Welch (2008) results,

i.e. that traditional predictors perform badly OOS. As regards the WAV model, some pre-

dictors still underperform the HM benchmark (R2
OS < 0). However, there are �ve variables

for which the R2
OSs are positive and statistically signi�cant. This means that some of the eq-

uity premium predictors with reported poor performance in the literature have nevertheless

predictability power, as long as their frequencies are properly chosen and used.

The weights of the frequency components (δ1−δ7) are listed in columns six to twelve of table 3.

Regardless of the predictor used, the lowest frequency component is always included (δ7 > 0).

This �nding is in line with recent empirical evidence that shows that the level and price of

aggregate risk in equity markets are strongly linked to low-frequency economic �uctuations

(e.g. Dew-Becker and Giglio, 2016) and also that there are low-frequency, decades-long

shifts in asset values relative to measures of macroeconomic fundamentals in the US (e.g.

Bianchi et al., 2017). For some predictors, it is also bene�cial to include some high frequency

�uctuations (δ1), whereas shorter business cycle frequencies (especially δ3 and δ4) are usually

less important. Finally, considering the entire spectrum of predictors/frequencies, more than

50% of the frequencies have zero weight. This means that a lot of information needs to be

removed from the predictive regressions in order to improve the forecastability of the equity

premium.

Column thirteen of table 3 reports the R2
OSs of the WAV model with respect to the TS model.

Consistent with previously presented R2
OSs of both the TS and WAV models with respect to
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the HM, results clearly indicate that the OOS forecasting performance of the WAV model is

always better than that of the time series analysis.

To evaluate the consistency over time of the OOS performance of the forecasting model, we

report the dynamics of the di�erence between the cumulative square forecasting error for

the HM forecasting model and the cumulative square forecasting error when the TS or the

WAV model for each predictor is used. Results, plotted in �gure 2, should be read as follows.

When the line increases/decreases, the predictive regression of the WAV model (in blue) or

of the TS model (in black) outperforms/underperforms that of the HM. A forecasting model

that consistently outperforms the HM will thus always have a positively sloped curve.

In the time series analysis (black lines), all predictors underperform the HM, so their corre-

sponding lines are almost always below zero. Looking at the WAV models (blue lines), it is

possible to broadly classify the predictors into four di�erent groups as regards the consistency

of their OOS performance over time. The �rst group includes predictors (DP, DY, NTIS,

TBL and DFY) with an OOS performance close to that of the HM most of the time (i.e.

the lines are relatively stable around zero). A second group includes predictors (RVOL and

LTY) with an erratic forecasting performance, as the slopes of their plotted graphs swing

between positive and negative values. A third group includes predictors (EP, DE, BM, DFR

and INFL) which post a strong OOS outperformance versus the HM only during the last

NBER-dated recession. Finally, two predictors (LTR and TMS) post a consistent positive

outperformance throughout the entire OOS period (except for the �rst 5 years), with their

corresponding lines featuring smooth upward-sloping trends.

4.2 Economic performance

In the previous sub-section we have shown that the proposed wavelet-based forecasting

method delivers statistically signi�cant gains. We now analyze the performance of this
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method from an asset allocation perspective. Results are reported in the third, �fth and

last columns of table 3.

Eleven out of fourteen predictors deliver positive CER gains (compared to the HM) with the

WAV model, with the highest utility gains (570 basis points) being obtained when using the

term spread (TMS). More importantly, the CER gains using the WAV forecasting method

are usually larger than those in the TS analysis (last column).

Figure 3 provides a dynamic perspective of the portfolio and cumulative wealth for an investor

that uses the HM model, the WAV model for the dividend-payout ratio (DE) and for the

term spread (TMS), which obtain the highest R2
OS and CER gains in the OOS sample period

under analysis, respectively.

Panel A presents the dynamic equity weights (constrained to lie between -0.5 and 1.5) for

those three alternative portfolios. Two results stand out. First, the equity exposure of the

HM portfolio (black line) changes more smoothly than in the alternative portfolios under

analysis. Second, changes in the equity allocation in a portfolio based on the WAV TMS

(blue line) are smoother than those on the WAV DE (red line). This can be explained by the

fact that the WAV TMS only considers the lowest frequency (i.e. the long run) of the TMS,

while the WAV DE considers both higher and lower frequencies of the DE.

Panel B shows the log cumulative wealth for an investor that invests 1$ in January 1990

and reinvests all proceeds. Both strategies based on the WAV models clearly outperform

the strategy based on the HM, with that outperformance being particularly strong during

recession periods. This is essentially due to the improved market timing of both WAV model

based strategies versus the HM based strategy, as illustrated in Panel A.
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5 Robustness tests

We run two tests to evaluate the robustness of the wavelet-based equity premium forecast

methodology. We �rst analyze the forecasting performance in di�erent sample periods (sub-

section 5.1), and then run the forecasting exercise using quarterly data (sub-section 5.2).

5.1 Di�erent sample periods

5.1.1 Great moderation and great �nancial crisis

We divide the OOS period into two sub-periods: from January 1990 to December 2006,

which broadly corresponds to the so-called great moderation period, and from January 2007

onward, which corresponds to the great �nancial crisis and aftermath.

Table 4 reports the R2
OS and the CER gains (compared to the HM) for all predictors. Re-

gardless of the forecasting method used (TS or WAV), the OOS predictability in the �rst

period is usually weaker than in the second period.10 In any case, in both sample periods

there are signi�cant OOS forecasting improvements for almost all predictors using the WAV

forecasting model. In the �rst period, �ve variables yield positive and statistically signi�cant

R2
OSs using the WAV model, while in the time series analysis no predictor outperforms the

HM benchmark in a statistically signi�cant way. A similar pattern is visible in the second

period. Interestingly, with the WAV model two predictors (dividend-payout ratio and term

spread) outperform the HM benchmark in both sub-sample periods. Very similar conclu-

sions arise from the utility gains analysis. The maximum CER gains obtained are 499 and

786 basis points in the �rst and second sub-sample periods (term spread and in�ation with

WAV model, respectively), which are signi�cantly higher than the gains achieved in the time

10 Regarding the WAV model, for each predictor and for each sub-sample period, we use the same weights
for the frequencies as the ones in the full OOS period (reported in table 3). This is a conservative approach,
as we would expect to improve the performance of the WAV models by choosing the optimal weights of
di�erent frequencies for each predictor and for each sub-sample period.
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series analysis (115 and 129 basis points for Treasury bill rate and default return spread,

respectively).

5.1.2 Bad, normal, and good growth periods

A typical �nding in the equity premium forecasting literature is that there is no (or very weak)

predictability during expansions or good times (see e.g. Henkel et al., 2011 and Neely et al.,

2014) using standard single variable predictive regressions.11 Accordingly, and following

Rapach et al. (2010), we evaluate the forecasts during periods of bad, normal, and good

economic growth. Those regimes are de�ned as the bottom, middle, and top third of sorted

growth rates of industrial production in the US, respectively.12 We report the R2
OSs and the

CER gains (compared to the HM) for each regime in table 5.

Looking at the R2
OS during bad growth periods, no predictor variable is statistically signi�cant

in the time series analysis, whereas �ve predictors are statistically signi�cant and obtain

expressive CER gains when using the WAV models. In particular, the maximum R2
OS and

CER gains are 7.07% and 1080 basis points, respectively, both achieved using the dividend-

payout ratio.

The same qualitative conclusions can be extended to the normal growth period, even if for

this regime only two predictors are statistically signi�cant using the WAV model. Although

the maximum R2
OSs and CER gains are usually lower than during bad periods, the levels are

still quite high: the maximum R2
OS and CER gains are 2.11% and 470 basis points using the

term spread.

As regards the good period regime, two predictors (earnings-price ratio and term spread)

11 Dangl and Halling (2012) and Huang et al. (2017) �nd positive and statistically signi�cant levels of OOS
predictability during expansions using time-varying coe�cients regression and state-dependent predictive
regression models, respectively.

12 The data for the industrial production in the US was downloaded from Federal Reserve Economic Data
at http://research.stlouisfed.org/fred2/.
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are statistically signi�cant when using the WAV model, with R2
OSs of 2.72% and 1.01%,

respectively. From an utility perspective, results are also strong, as their annualized CER

gains are 583 and 507 basis points, respectively.

Overall, for some predictors the wavelet-based forecasting method allows to improve the OOS

forecast performance also when splitting the OOS period in bad, normal, and good growth

periods.

5.2 Quarterly data

At last, we test the robustness of the wavelet-based equity premium forecasting method

using quarterly data. As before, the OOS forecasts are made using a sequence of expanding

windows. To have a su�ciently large initial sample period, we use data from 1952:Q1. The

initial in-sample period is 1952:Q1 to 1989:Q4, and the full OOS period spans from 1990:Q1

to 2018:Q4. As in the analysis using monthly data, we set J to 6 but we perform the MODWT

MRA using the Daubechies �lter with length 8 and re�ecting boundary conditions. We adopt

this �lter, instead of the Haar �lter used with monthly data, as it is more suited for (and

more commonly used with) quarterly data (see e.g. Gallegati and Ramsey, 2013).

We consider sixteen predictors: the same fourteen predictors used in the monthly data anal-

ysis plus the (lagged) investment to capital ratio (IK) and the consumption-wealth ratio

(CAY).13 Table 6 reports the R2
OSs for each predictor for both the time series analysis and

the WAV model speci�cation. The main conclusion is that the wavelet-based equity premium

forecasting method is robust towards the use of quarterly data. In particular, results in the

last column of the table show that there are indeed signi�cant OOS forecasting improvements

for almost all predictors using the WAV forecasting model when compared to the TS analy-

13 The quarterly time series of the IK and the CAY are available from the Goyal and Welch (2008)
updated database. These variables, which are brie�y explained in appendix 1, have been used as equity
premium predictors when using quarterly data (see e.g. Rapach et al., 2010, Lettau and Ludvigson, 2001).

19



sis. Furthermore, four variables (earnings-price ratio, dividend-payout ratio, long-term yield

and investment rate) yield positive and statistically signi�cant R2
OSs using the WAV model,

while in the time series analysis only investment rate outperforms the HM benchmark in a

statistically signi�cant way.

6 Concluding remarks

Goyal and Welch (2008) and subsequent research have documented the poor out-of-sample

(OOS) equity premium forecasting performance of an extensive list of economic and �nancial

variables. In this paper we propose a wavelet-based method to forecast the equity premium.

The series are decomposed into their time-frequency components, forecasted separately, and

then aggregated to obtain the forecast of the equity premium. Regardless of the predic-

tor variable used, the OOS period, and the frequency of the data considered, this method

signi�cantly improves upon the OOS forecast done using traditional time series tools. The

proposed wavelet-based method allows for a more granular analysis, leading to its strong

and robust empirical performance. In particular, the crucial step to improve the forecasting

performance of the predictors is to retain the frequencies that have the greatest predictive

power and to exclude the noisy frequencies.

The proposed wavelet-based forecasting method could, in principle, be helpful to improve

the forecast of other �nancial variables (e.g. equity market volatility) and returns in other

markets such as �xed income, currency and commodities. Moreover, given the role that

the equity premium forecast has in asset allocation decisions, the proposed method may

bring relevant insights about the frequency-domain implications in the optimal dynamic asset

allocation decisions. At last, this forecasting method can also be useful for policymakers in

their attempt of anticipating possible �over-heated� equity markets that could, ultimately,

pose a threat to macroeconomic and �nancial stability.
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mean median min max std. dev. AR(1)

Equity premium (%) 0.42 0.84 -24.8 14.9 4.40 0.04

DP -3.64 -3.65 -4.52 -2.75 0.43 0.99
DY -3.64 -3.64 -4.53 -2.75 0.43 1.00
EP -2.84 -2.88 -4.84 -1.90 0.48 0.99
DE -0.80 -0.85 -1.24 1.38 0.33 0.99

RVOL (ann.) 0.14 0.14 0.05 0.32 0.05 0.96
BM 0.47 0.35 0.12 1.21 0.28 1.00
NTIS 0.01 0.01 -0.06 0.05 0.02 0.98

TBL (%, ann.) 4.68 4.95 0.01 16.3 3.50 0.99
LTY (%, ann.) 6.77 6.76 1.75 14.8 2.91 1.00

LTR (%) 0.69 0.72 -11.2 15.2 3.10 0.05
TMS (%, ann.) 2.09 2.24 -3.65 4.55 1.46 0.95
DFY (%, ann.) 1.09 0.95 0.55 3.38 0.46 0.96

DFR (%) 0.01 0.05 -9.75 7.37 1.49 -0.04
INFL (%) 0.32 0.30 -1.92 1.81 0.38 0.61

Table 1: Summary statistics

This table reports summary statistics for the (log) equity premium and for the set of predictive

variables. The sample period is from 1973:01 to 2018:12. Equity premium, LTR, DFR, and INFL

(TBL, LTY, TMS, and DFY) are measured in percent (annual percent).
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D1 D2 D3 D4 D5 D6 D7

Equity premium 48 26 12 7 4 2 2

DP 0 0 1 2 3 5 89
DY 0 0 1 2 3 5 89
EP 1 1 3 7 11 11 66
DE 1 2 8 19 29 26 15

RVOL 2 3 6 14 24 27 24
BM 0 0 1 2 2 4 91
NTIS 1 2 4 10 18 17 48
TBL 0 1 2 3 6 10 79
LTY 0 0 1 1 3 5 90
LTR 47 28 13 6 3 1 1
TMS 3 4 7 11 20 31 25
DFY 2 4 7 13 18 18 38
DFR 52 26 11 6 3 1 0
INFL 19 19 15 7 5 5 29

Table 2: Energy decomposition (%)

This table reports the variance decomposition by frequency for the time series under analysis. The

sample period is from 1973:01 to 2018:12. Percentages may not add up to 100 because of rounding.
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TS vs HM WAV vs HM WAV vs TS
R2

OS CER gains R2
OS CER gains δ1 δ2 δ3 δ4 δ5 δ6 δ7 R2

OS CER gains

DP -1.90 -2.79 -0.38 0.00 0 0 0 0 0 0 0.5 1.49*** 2.79
DY -2.03 -2.60 -0.38 0.06 0 0 0 0 0 0.5 0.5 1.61*** 2.67
EP -1.05 -0.34 2.47** 3.97 0 0.5 1 0.25 0 0 0.75 3.49*** 4.31
DE -2.06 -0.93 2.69*** 3.87 1 0 0.25 0.5 0 0 1 4.65*** 4.81

RVOL -0.78 -2.16 -0.12 1.21 0 0 0 0 0.5 0 0.75 0.66** 3.37
BM -0.52 -0.68 0.16 1.10 0 0 0 0 1 1 0.5 0.68** 1.79
NTIS -2.95 -2.17 -0.15 0.52 0.75 1 0 0 0 0 0.5 2.72*** 2.69
TBL -0.35 0.81 -0.23 0.64 0 0 0 0 0 1 0.75 0.12 -0.17
LTY -0.29 0.11 -0.14 0.54 0 0 0.25 1 0.25 1 0.5 0.15 0.43
LTR -0.34 -0.47 0.91** 2.56 0 0.25 0 0.5 0 0 1 1.25** 3.03
TMS -0.72 0.23 1.83*** 5.70 0 0 0 0 0 0 1 2.53*** 5.48
DFY -2.84 -4.37 -0.62 -0.44 0 0 0 0 0 0 0.75 2.16*** 3.93
DFR -1.83 1.10 0.43 1.11 1 0 0 0 0.75 1 0.25 2.22* 0.02
INFL -0.66 -0.61 1.64** 3.76 0.75 1 0 0.25 1 1 0.75 2.28** 4.37

Table 3: Out-of-sample R-squares (R2
OS) and annualized CER gains

This table reports the out-of-sample R-squares (in percentage) for the equity premium forecasts at monthly (non-overlapping)

frequencies from the model as given by equation (3) for each of the original predictors (TS, second column) and from the WAV model

(equation 5, fourth column) for each predictor, where the frequency components used and corresponding weights (δj , j = 1, 2, . . . , 7)
are listed in columns six to twelve. The out-of-sample R-squares

(
R2

OS

)
measures the proportional reduction in the mean squared

forecast error for the predictive model relative to the forecast based on the historical mean (HM). The 1-month ahead out-of-sample

forecast of equity premium is generated using a sequence of expanding windows. In columns three and �ve are reported the annualized

certainty equivalent return (CER) gain (in percent) for an investor who allocates her wealth between equities and risk free bills

according to the rule (6), using stock return forecasts from models in equations (3) and (5) instead of the forecasts based on the

HM. The last two columns report the R2
OSs and CER gains of the WAV model compared to the TS model. The sample period is

from 1973:01 to 2018:12. The full out-of-sample forecasting period is from 1990:01 to 2018:12, monthly frequency. Asterisks denote

signi�cance of the out-of-sample MSFE-adjusted statistic of Clark and West (2007). ***, ** and * denote signi�cance at the 1%,

5% and 10% levels, respectively.
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1990:01 - 2006:12 2007:01 - 2018:12
TS vs HM WAV vs HM TS vs HM WAV vs HM

R2
OS CER gains R2

OS CER gains R2
OS CER gains R2

OS CER gains

DP -3.29 -4.49 -0.37 -0.04 -0.14 -0.39 -0.39 0.07
DY -3.61 -4.36 -0.27 0.33 -0.04 -0.12 -0.53 -0.29
EP -1.05 -1.02 0.94* 2.81 -1.06 0.63 4.39 5.60
DE -1.82 -1.60 0.88* 2.18 -2.36 0.01 4.97* 6.26

RVOL -1.73 -3.02 1.60** 4.12 0.41 -0.94 -2.28 -2.86
BM -0.86 -1.14 0.06 0.70 -0.09 -0.05 0.29 1.67
NTIS -2.84 -1.59 0.13 1.56 -3.09 -2.99 -0.50 -0.93
TBL -0.49 1.15 -0.38 0.06 -0.18 0.32 -0.04 1.46
LTY -0.41 -0.33 -0.49 -0.31 -0.15 0.73 0.29 1.74
LTR -0.83 -0.98 0.83* 2.14 0.28 0.23 1.01 3.15
TMS -1.11 1.05 1.52*** 4.99 -0.22 -0.95 2.22*** 6.70
DFY -3.37 -4.43 -0.42 -0.20 -2.17 -4.29 -0.88 -0.78
DFR -2.64 0.96 0.20 0.95 -0.80 1.29 0.72 1.35
INFL -0.37 0.56 -0.51 0.86 -1.04 -2.25 4.33** 7.86

Table 4: Out-of-sample R-squares (R2
OS) and annualized CER gains

This table reports the out-of-sample R-squares (in percentage) for equity premium forecasts at

monthly (non-overlapping) frequencies from the model as given by equation (3) for each of the

original predictors (TS) and from the WAV model in equation (5) for each predictor, where the

frequency components used and corresponding weights (δj , j = 1, 2, . . . , 7) are listed in columns

six to twelve of Table 3. The out-of-sample R-squares
(
R2

OS

)
measures the proportional reduction

in the mean squared forecast error for the predictive model relative to the forecast based on the

historical mean (HM). The 1-month ahead out-of-sample forecast of equity premium is generated

using a sequence of expanding windows. It is also reported the annualized certainty equivalent return

(CER) gain (in percent) for an investor who allocates her wealth between equities and risk free bills

according to the rule (6), using stock return forecasts from above mentioned models in equations

(3) and (5) instead of forecasts based on the HM. The sample period is from 1973:01 to 2018:12.

Two out-of-sample forecasting periods are considered: from 1990:01 to 2006:12 and from 2007:01

to 2018:12, monthly frequency. Asterisks denote signi�cance of the out-of-sample MSFE-adjusted

statistic of Clark and West (2007). ***, ** and * denote signi�cance at the 1%, 5% and 10% levels,

respectively.
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Bad Normal Good
TS vs HM WAV vs HM TS vs HM WAV vs HM TS vs HM WAV vs HM

R2
OS CER gains R2

OS CER gains R2
OS CER gains R2

OS CER gains R2
OS CER gains R2

OS CER gains

DP -1.26 -2.34 -0.61 -0.79 -2.02 -2.75 0.13 0.57 -2.52 -3.27 -0.52 0.24
DY -1.38 -2.07 -0.60 -0.55 -2.13 -2.68 0.46 1.11 -2.70 -3.04 -0.82 -0.36
EP -1.83 -0.75 6.72* 9.11 0.28 0.52 -3.79 -2.95 -1.26 -0.76 2.72** 5.83
DE -2.67 0.63 7.07*** 10.8 -2.48 -2.87 -2.55 -3.29 -1.04 -0.55 1.97 4.21

RVOL -0.82 -3.21 -0.87 -0.06 -0.65 -2.09 1.94** 4.45 -0.85 -1.20 -0.94 -0.74
BM -0.69 -1.54 0.23 1.58 0.04 -0.25 0.24 0.63 -0.79 -0.27 0.01 1.09
NTIS -4.62 -4.47 1.27 3.17 -1.15 -0.42 -2.07 -3.04 -2.53 -1.61 -0.21 1.48
TBL 0.18 0.96 -0.06 1.20 -0.19 0.97 -0.09 0.54 -1.08 0.47 -0.53 0.19
LTY -0.13 -0.11 -0.21 0.29 0.05 0.22 0.44 1.33 -0.76 0.21 -0.54 0.01
LTR 0.20 -0.33 1.73** 5.02 -1.20 -0.64 0.24 0.49 -0.26 -0.46 0.51 2.18
TMS 0.33 0.13 2.35*** 7.33 -1.79 0.45 2.11*** 4.70 -1.04 0.09 1.01* 5.07
DFY -2.81 -4.64 -0.85 -1.21 -3.76 -5.18 0.02 0.30 -2.13 -3.27 -0.88 -0.41
DFR -11.40 -2.24 -1.90 1.18 1.11 1.59 1.50 1.63 6.62 3.95 2.20 0.55
INFL -0.80 -0.85 2.90** 5.70 0.34 0.42 -0.02 -0.07 -1.32 -1.42 1.55 5.65

Table 5: Out-of-sample R-squares (R2
OS) and annualized CER gains

This table reports the out-of-sample R-squares (in percentage) for equity premium forecasts at monthly (non-overlapping) frequencies

from the model as given by equation (3) for each of the original predictors (TS) and from the WAV model in equation (5) for each

predictor, where the frequency components used and corresponding weights (δj , j = 1, 2, . . . , 7) are listed in columns six to twelve

of Table 3. The out-of-sample R-squares
(
R2

OS

)
measures the proportional reduction in the mean squared forecast error for the

predictive model relative to the forecast based on the historical mean (HM). The 1-month ahead out-of-sample forecast of equity

premium is generated using a sequence of expanding windows. It is also reported the annualized certainty equivalent return (CER)

gain (in percent) for an investor who allocates her wealth between equities and risk free bills according to the rule (6), using stock

return forecasts from above mentioned models in equations (3) and (5) instead of forecasts based on the HM. The sample period is

from 1973:01 to 2018:12. Three out-of-sample forecasting periods are considered, each with 108 monthly observations: bad growth,

normal growth and good growth. Those regimes are de�ned as the bottom, middle and top third of sorted growth rates of industrial

production in the US, respectively. Asterisks denote signi�cance of the out-of-sample MSFE-adjusted statistic of Clark and West

(2007). ***, ** and * denote signi�cance at the 1%, 5% and 10% levels, respectively.
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TS vs HM WAV vs HM WAV vs TS
R2

OS R2
OS δ1 δ2 δ3 δ4 δ5 δ6 δ7 R2

OS

DP -4.63 -1.47 0 0 0 0 1 0 0.5 3.01**
DY -6.42 -1.29 0 0 0 0 1 0.25 0.5 4.82**
EP -2.38 6.48** 0.75 0 0 0 0.25 0 0.5 8.65**
DE -4.24 2.27* 0 0.5 0 0 0 0 1 6.25***

RVOL -4.67 -2.67 0 0 0 0 0 0 0.75 1.91
BM -1.06 0.23 0 0 1 1 0 0 0.5 1.27
NTIS -5.22 -1.42 0 0.5 0 0 0 0 0.75 3.61**
TBL -1.16 -0.59 1 0.25 0 0 0 0 0.75 0.56
LTY 0.06 1.96* 1 1 0 1 0.75 0 0.75 1.90*
LTR -2.37 0.79 1 0 0.25 0 1 0 1 3.08*
TMS -3.18 0.00 0 0 0 0 0 0.25 0.75 3.08*
DFY -1.87 -1.41 1 0 0 0 0 0 0.5 0.45
DFR -2.36 -0.55 0 0 0.25 0.5 0.25 0 0.5 1.77*
INFL 1.73 1.65 0 0 0.25 1 1 1 0.75 -0.08
IK 1.89* 3.20* 0 0.75 0.5 0 0 0 1 1.34
CAY -1.97 -0.05 0 0 0 0 1 0 0.5 1.88*

Table 6: Out-of-sample R-squares (R2
OS) using quarterly data

This table reports the out-of-sample R-squares (in percentage) for the equity premium forecasts at

quarterly (non-overlapping) frequencies from the model as given by equation (3) for each of the

original predictors (TS, second column) and from the WAV model (equation 5, third column) for

each predictor where the frequency components used and corresponding weights (δj , j = 1, 2, . . . , 7)
are listed in columns four to ten. The out-of-sample R-squares

(
R2

OS

)
measures the proportional

reduction in the mean squared forecast error for the predictive model relative to the forecast based

on the historical mean (HM). The 1-quarter ahead out-of-sample forecast of equity premium is

generated using a sequence of expanding windows. The last column reports the R2
OSs of the WAV

model compared to the TS model. The sample period is from 1952:Q1 to 2018:Q4. The full out-

of-sample forecasting period is from 1990:Q1 to 2018:Q4, quarterly frequency. Asterisks denote

signi�cance of the out-of-sample MSFE-adjusted statistic of Clark and West (2007). ***, ** and *

denote signi�cance at the 1%, 5% and 10% levels, respectively.
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Figure 1: Equity premium, time series and wavelet decomposition

The time series of the (log) equity premium as proxied by the log S&P 500 index total return minus

the log return on a one-month Treasury bill is presented in the top left panel. In the remaining panels

are plotted the seven frequency components into which the equity premium time series is decomposed.

It is applied a J = 6 level wavelet decomposition which leads to six wavelet details (D1, D2, . . . , D6),
representing the higher-frequency characteristics of the series, and a wavelet smooth (D7), that
captures the low-frequency dynamics of the series. Sample period from 1973:01 to 2018:12, monthly

frequency.
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Figure 2: Di�erence between cumulative square forecasting error for the HM forecasting model and the cumulative square
forecasting error for the individual predictive regression forecasting model

This �gure reports the dynamics of the di�erence between the cumulative square forecasting error for the HM forecasting model and

the cumulative square forecasting error for the predictive regression forecasting based on the WAV model (5) for each predictor with

frequency components reported in table 3 (blue line), and when each predictor is considered in its original monthly time series (TS,

black line). The sample period is from 1973:01 to 2018:12. The full out-of-sample forecasting period is from 1990:01 to 2018:12,

monthly frequency.

33



A. Equity weights

B. Log cumulative wealth

Figure 3: Equity weights and log cumulative wealth

Panel A plots the dynamics of the equity weight for a mean-variance investor who allocates monthly

her wealth between equities and risk free bills according to the rule (6), using stock return forecasts

based on the HM benchmark (black line), on the forecast with the WAV model (5) for the TMS

(WAV TMS, blue line) and the DE (WAV DE). The equity weight is constrained to lie between -0.5

and 1.5. Panel B delineates the corresponding log cumulative wealth for the investor, assuming that

she begins with 1$ and reinvests all proceeds. Grey bars denote NBER-dated recessions. Sample

period from 1990:01 to 2018:12, monthly frequency.
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Appendix 1. De�nition of equity premium predictors

• Log dividend-price ratio (DP): di�erence between the log of dividends (12-month mov-

ing sums of dividends paid on S&P 500) and the log of prices (S&P 500 index).

• Log dividend yield (DY): di�erence between the log of dividends (12-month moving

sums of dividends paid on S&P 500) and the log of lagged prices (S&P 500 index).

• Log earnings-price ratio (EP): di�erence between the log of earnings (12-month moving

sums of earnings on S&P 500) and the log of prices (S&P 500 index price).

• Log dividend-payout ratio (DE): di�erence between the log of dividends (12-month

moving sums of dividends paid on S&P 500) and the log of earnings (12-month moving

sums of earnings on S&P 500).

• Excess stock return volatility (RVOL): calculated using a 12-month moving standard

deviation estimator.

• Book-to-market ratio (BM): ratio of book value to market value for the Dow Jones

Industrial Average.

• Net equity expansion (NTIS): ratio of 12-month moving sums of net equity issues by

NYSE-listed stocks to the total end-of-year NYSE market capitalization.

• Treasury bill rate (TBL): three-month Treasury bill rate.

• Long-term yield (LTY): long-term government bond yield.

• Long-term return (LTR): long-term government bond return.

35



• Term spread (TMS): di�erence between the long-term government bond yield and the

T-bill.

• Default yield spread (DFY): di�erence between Moody's BAA- and AAA-rated corpo-

rate bond yields.

• Default return spread (DFR): di�erence between long-term corporate bond and long-

term government bond returns.

• In�ation rate (INFL): calculated from the Consumer Price Index (CPI) for all urban

consumers.

For quarterly data, we also use:

• Investment to capital ratio (IK): ratio of aggregate (private nonresidential �xed) in-

vestment to aggregate capital for the whole economy.

• Consumption-wealth ratio (CAY): log consumer spending minus log asset wealth (total

household net worth) and minus log labor income, all measured on an aggregate basis.
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Figure 4: Monthly time series of the equity premium and the predictors
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Appendix 2

The discrete wavelet transform (DWT) multiresolution analysis (MRA) allows the decom-

position of a time series into its constituent multiresolution (frequency) components. There

are two types of wavelets: father wavelets (φ), which capture the smooth and low frequency

part of the series, and mother wavelets (ψ), which capture the high frequency components of

the series, where
∫
φ (t) dt = 1 and

∫
ψ (t) dt = 0.

Given a time series yt with a certain number of observations N, its wavelet multiresolution

representation is given by

yt =
∑
k

s
J,k
φ

J,k
(t) +

∑
k

d
J,k
ψ

J,k
(t) +

∑
k

d
J−1,k

ψ
J−1,k

(t) + · · ·+
∑
k

d
1,k
ψ

1,k
(t) , (7)

where J represents the number of multiresolution levels (or frequencies), k de�nes the length

of the �lter, φ
J,k

(t) and ψ
j,k

(t) are the wavelet functions and s
J,k
, d

J,k
, d

J−1,k
, . . . , d

1,k
are the

wavelet coe�cients.

The wavelet functions are generated from the father and mother wavelets through scaling

and translation as follows

φ
J,k

(t) = 2−J/2φ
(
2−Jt− k

)
ψ

j,k
(t) = 2−j/2ψ

(
2−jt− k

)
,
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while the wavelet coe�cients are given by

s
J,k

=

∫
ytφJ,k

(t) dt

d
j,k

=

∫
ytψj,k

(t) dt ,

where j = 1, 2, ..., J .

Due to the practical limitations of DWT in empirical applications, we perform wavelet

decomposition analysis here by applying the maximal overlap discrete wavelet transform

(MODWT). The MODWT is not restricted to a particular sample size, is translation-invariant

so that it is not sensitive to the choice of the starting point of the examined time series, and

does not introduce phase shifts in the wavelet coe�cients (so peaks or troughs in the orig-

inal time series are correctly aligned with similar events in the MODWT MRA). This last

property is especially relevant in the forecasting exercise.

39



Bank of Finland Research Discussion Papers 2020 
 
ISSN 1456-6184, online 
 
1/2020 Masashige Hamano – Francesco Pappadà   

Firm turnover in the export market and the case for fixed exchange rate regime  
ISBN 978-952-323-309-6, online 

 
2/2020 Gonçalo Faria – Fabio Verona 

Frequency-domain information for active portfolio management 
ISBN 978-952-323-310-2, online 

 
3/2020 Tomi Kortela – Jaakko Nelimarkka 

The effects of conventional and unconventional monetary policy: identification through the yield 
curve 
ISBN 978-952-323-311-9, online 

 
4/2020 Manuel M. F. Martins – Fabio Verona 

Forecasting inflation with the New Keynesian Phillips curve: Frequency matters 
ISBN 978-952-323-322-5, online 

 
5/2020 Gene Ambrocio 

Inflationary household uncertainty shocks 
ISBN 978-952-323-324-9, online 

 
6/2020 Gonçalo Faria – Fabio Verona 

Time-frequency forecast of the equity premium 
ISBN 978-952-323-325-6, online 

 
 
 


	BoF DP 6/2020
	Time-frequency forecast of the equity premium
	Abstract
	1 Introduction
	2 Related literature
	3 Data and methodology
	3.1 Wavelet multiresolution analysis
	3.2 Out-of-sample forecasts
	3.2.1 Single-variable predictive regression model: time series
	3.2.2 Wavelet-based forecasting model
	3.2.3 Forecast evaluation

	3.3 Asset allocation

	4 Out-of-sample forecasting performance
	4.1 Statistical performance
	4.2 Economic performance

	5 Robustness tests
	5.1 Different sample periods
	5.1.1 Great moderation and great financial crisis
	5.1.1 Great moderation and great financial crisis
	5.1.2 Bad, normal, and good growth periods

	5.2 Quarterly data

	6 Concluding remarks
	References
	Tables and figures
	Appendix 1
	Appendix 2
	Bank of Finland Research Discussion Papers 2020



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Kirjapaino'] [Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




