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An intuitive guide to wavelets for economists 

Bank of Finland Research 
Discussion Papers 1/2005 

Patrick M Crowley 
Monetary Policy and Research Department 
 
 
Abstract 

Wavelet analysis, although used extensively in disciplines such as signal 
processing, engineering, medical sciences, physics and astronomy, has not yet 
fully entered the economics discipline. In this discussion paper, wavelet analysis 
is introduced in an intuitive manner, and the existing economics and finance 
literature that utilises wavelets is explored. Extensive examples of exploratory 
wavelet analysis are given, many using Canadian, US and Finnish industrial 
production data. Finally, potential future applications for wavelet analysis in 
economics are also discussed and explored. 
 
Key words: statistical methodology, multiresolution analysis, wavelets, business 
cycles, economic growth 
 
JEL classification numbers: C19, C65, C87, E32 
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Aallokkeiden teoriaa ekonomisteille 

Suomen Pankin tutkimus 
Keskustelualoitteita 1/2005 

Patrick M. Crowley 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Aallokkeiden teoriana tunnettu analyysimenetelmä ei ole vielä täysin saanut ase-
maa taloustieteissä, vaikka sitä käytetään laajasti signaaliprosessoinnissa, insi-
nööri- ja lääketieteessä, fysiikassa ja astronomiassa. Tässä tutkimuksessa käydään 
läpi menetelmän perusideoita ja sen sovelluksa taloustieteissä ja rahoitus-
tutkimuksessa. Lisäksi analyysivälineen käyttöä havainnollistetaan lukuisilla esi-
merkeillä, joista monessa menetelmää käytetään teollisuustuotannon kasvun taus-
talla vaikuttavien eripituisten syklien tunnistamiseen Kanadassa, Suomessa ja 
Yhdysvalloissa. Lopuksi pohditaan menetelmän tulevaisuutta ja mahdollisisia 
muita sovelluksia taloustieteissä. 
 
Avainsanat: tilastollinen menetelmä, multiresoluutioanalyysi, allokkeet, suh-
dannevaihtelut, taloudellinen kasvu 
 
JEL-luokittelu: C19, C65, C87, E32 
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1 Introduction

The wavelet literature has rapidly expanded over the past 15 years, with
over 1600 articles and papers now published using this methodology in a
wide variety of disciplines. Applications using wavelets in disciplines other
than economics are extensive, with many papers published in areas such as
acoustics, astronomy, engineering, medicine, forensics, and physics. Economics
(and to a lesser degree, finance) is conspicuous in its absence from this list,
largely because for some reason the potential for using wavelets in economic
applications has been overlooked. Although some enterprising economists have
attempted to use wavelet analysis, given the discipline’s fixation on traditional
time-series methods, these papers have not been widely cited and have in fact
been largely ignored. The main aim of this discussion paper is to shed new
light on wavelet analysis, to highlight the work that has already been done
using this approach, and to suggest future areas where wavelet analysis might
be able to make a contribution to our discipline. To maximise accessibility to
this material, the discussion paper is pitched at a less technical level than most
other introductions to wavelets, although a fairly complete list of references is
provided for those who might wish to obtain a more technical introduction.

So, what are wavelets? Wavelets are, by definition, small waves. That
is, they begin at a finite point in time and die out at a later finite point in
time. As such they must, whatever their shape, have a defined number of
oscillations and last through a certain period of time or space. Clearly these
small wavelike functions are ideally suited to locally approximating variables
in time or space as they have the ability to be manipulated by being either
‘stretched’ or ‘squeezed’ so as to mimic the series under investigation.

Wavelets possess many desirable properties, some of which are useful in
economics and finance, but many of which are not. In this paper the focus
is placed on the ability of wavelet analysis to deal with both stationary
and non-stationary data, their localization in time, and on their ability to
decompose and analyse the fluctuation in a variable (or in signal processing,
what is called a ‘signal’).

In economics, while providing a review of the possible future contributions
of wavelets to the economics discipline, (Ramsey 2000) explored four ways in
which wavelets might be used to enhance the empirical toolkit of our profession.
These are as follows:

• exploratory analysis — time scale versus frequency: in economics and
finance an examination of data to assess the presence and ebb and flow
of frequency components is potentially valuable.

• density estimation and local inhomogeneity: wavelets estimators are
superior to kernel estimators whenever local inhomogeneity is present (eg
modelling impact of minimumwage legislation, tax legistlation, rigidities,
innovation)

• time scale decomposition: recognition that relationships between
economic variables can possibly be found at the disaggregate (scale) level
rather than at an aggregate level.
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• forecasting: disaggregate forecasting, establishing global versus local
aspects of series, therefore whether forecasting is really possible.

As shall soon be apparent, in this paper the focus is on the first and third
areas of empirical analysis. The second and fourth areas have certainly gained
popularity and are still largely unexplored. For those more mathematically
inclined, they should refer to the mathematics literature where Debauchies
(1992) andWalnut (2002) are good starting points. Other perhaps less intuitive
but nonetheless technically sound introductions to wavelets can be found in
Walker (1999), Percival et al (2000) and Addison (2002). There are three other
entry points to this literature that are specifically aimed at economists — the
excellent book by Gensay et al (2002), an article by Ramsey (2002) which
provides a nice rationale for wavelets in economics, and the discussion paper
by Schleicher (2002).

2 What are wavelets?

Wavelet analysis has various points of similarity and contrast with Fourier
analysis. The Fourier transform is based on the usage of the sum of sine
and cosine functions at various wavelengths to represent a given function.
One of the drawbacks of Fourier transforms though is that they assume
that the frequency content of the function is stationary along the time axis.
Imagine a minimalist symphony (say John Adams or Steve Reich) — the
analogue here would be each instrument playing a note, with a specific
loudness: a0+ a1 cos t+ a2 cos 2t+ ... — to represent this signal one would only
need the list of amplitudes (a0, a1, a2, ...) and the corresponding frequencies
(0, 1, 2, ...). In this sense Fourier analysis involves the projection of a signal
onto an orthonormal1 set of components which are trigonometric in the case
of the Fourier approach. The Fourier transform makes particular sense when
projecting over the range (0, 2π), as Fourier series have infinite energy (they
do not die out) and finite power (they cannot change over time).

Windowed Fourier analysis extends basic Fourier analysis by transforming
short segments of the signal (or ‘symphony’) separately. In other words there
are breaks where we just repeat the exercise above. In a visual world we see
an edge — in an economics world we see regime shifts. Once again these are
just separate sets of orthonormal components — one set for each window.

Wavelets are localized in both time and scale. They thus provide a
convenient and efficient way of representing complex variables or signals,
as wavelets can cut data up into different frequency components. They
are especially useful where a variable or signal lasts only for a finite time,
or shows markedly different behavior in different time periods. Using the
symphonic analogy, wavelets can be thought of representing the symphony by
transformations of a basic wavelet, w(t). So at t = 0, if cellos played the same
tune twice as fast as the double basses, then the cello would be playing c1w(2t)

1
An orthonormal tranform is one which preserves the energy of the series and is not

affected by shifts in the data.
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while the double basses play b1w(t), presumably with b1 ≥ c1. At t = 1, the
next bass plays b2w(t − 1), and the next cello plays c2w(2t − 1) starting at
t = 0.5. Notice that we need twice as many cellos to complete the symphony
as double basses, as long as each cello plays the phrase once. If violas played
twice as fast as cellos and violins twice as fast as violas, then obviously this
would be 8 times as fast as double basses, and if there were such an instrument
as a hyper-violin, then it would play 16 times faster than a double bass. In
general the n-violins play ‘translations’ of w(2nt).

In wavelet analysis, we only need to store the list of amplitudes, as the
translations automatically double the frequency. With Fourier analysis a single
disturbance affects all frequencies for the entire length of the series, so that
although one can try and mimic a signal (or the symphony) with a complex
combination of waves, the signal is still assumed to be ‘homogeneous over time’.
In contrast, wavelets have finite energy and only last for a short period of time.
It is in this sense that wavelets are not homogeous over time and have ‘compact
support’. In wavelet analysis to approximate series that continue over a long
period, functions with compact support are strung together over the period
required, each indexed by location. In other words at each point in time,
several wavelets can be analysing the same variable or signal. The difference
between Fourier analysis and wavelet anaysis is shown in diagrammatic form
in figure 1.

2.1 Elementary wavelets

Wavelets have genders: there are father wavelets φ and mother wavelets ψ.
The father wavelet integrates to 1 and the mother wavelet integrates to 0:

∫
φ(t)dt = 1 (2.1)

∫
ψ(t)dt = 0 (2.2)

The father wavelet (or scaling function) essentially represents the smooth,
trend (low-frequency) part of the signal, whereas the mother wavelets represent
the detailed (high frequency) parts by scale by noting the amount of stretching
of the wavelet or ‘dilation’. In diagrammatic terms, father and mother wavelets
can be illustrated for the Debechies wavelet, as shown in figure 2.

Wavelets also come in various shapes, some are discrete (as in the Haar
wavelet — the first wavelet to be proposed many decades ago, which is a square
wavelet with compact support), some are symmetric (such as the Mexican hat

9



Figure 1: Fourier vs Wavelet analysis
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wavelet, symmlets and coiflets), and some are asymmetric (such as daublets)2.
Four are illustrated in figure 3.

All the wavelets given in figure 3 are mother wavelets. The upper left hand
wavelet is a Haar wavelet, and this is a discrete symmetric wavelet. The upper
right hand box contains a daublet, which is asymmetric, the lower left hand
box contains a symmlet and the lower right hand box a coiflet. The latter two
wavelets are nearly symmetric.

The dilation or scaling property of wavelets is particulary important in
exploratory analysis of time series. Consider a double sequence of functions:

ψ(t) =
1√
s
ψ

(
t− u

s

)
(2.3)

where s is a sequence of scales. The term 1√
s
ensures that the norm of

ψ(.) is equal to one. The function ψ(.) is then centered at u with scale s.
In wavelet language, we would say that the energy of ψ(.) is concentrated
in a neighbourhood of u with size proportional to s. As s increases, the
length of support in terms of t increases. So, for example, when u = 0, the
support of ψ(.) for s = 1 is [d,−d]. As s is increased, the support widens to
[sd,−sd].3 Dilation is particularly useful in the time domain, as the choice
of scale indicates the ‘packets’ used to represent any given variable or signal.
A broad support wavelet yields information on variable or signal variations
on a large scale, whereas a small support wavelet yields information on signal
variations on a small scale. The important point here is that as projections are
orthogonal, wavelets at a given scale are not affected by features of a signal at
scales that require narrower support4. Lastly, using the language introduced
above, if a wavelet is shifted on the time line, this is referred to as translation
or shift of u. An example of the dilation and translation property of wavelets
is shown in figure 4.

The left hand box contains symmlet of dilation 8, scale 1, shifted 2 to the
right, while the right hand box contains the same symmlet with scale 2 and
no translation.

2.2 Multiresolution decomposition

The main feature of wavelet analysis is that it enables the researcher to separate
out a variable or signal into its constituent multiresolution components. In
order to retain tractability (— many wavelets have an extremely complicated
functional form), assume we are dealing with symmlets, then the father and
mother pair can be given respectively by the pair of functions:

2Other wavelets also exist — notably Morlets, DOGS, Pauls, and bi-orthogonal wavelet

functions.
3The rescaling characteristic of wavelets in the time domain is thus equivalent to the

rescaling of frequencies in Fourier analysis.
4It is only true in the simplest of cases, however, that large scale wavelets are associated

with low frequencies. Consider for example, a given scale, say 2
3, or 8 months, and that

the signal has components at that scale. It could still be true that the signal could contain

projections that oscillate with any period greater than 8 months as well.
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φj,k = 2−
j

2φ(
t− 2jk

2j
) (2.4)

ψj,k = 2−
j

2ψ(
t− 2jk

2j
) (2.5)

where j indexes the scale, and k indexes the translation. It is not hard to
show that any series x(t) can be built up as a sequence of projections onto
father and mother wavelets indexed by both j, the scale, and k, the number
of translations of the wavelet for any given scale, where k is often assumed
to be dyadic. As shown in Bruce et al (1996), if the wavelet coefficients are
approximately given by the integrals:

sJ,k ≈
∫

x(t)φJ,k(t)dt (2.6)

dj,k ≈
∫

x(t)ψj,k(t)dt (2.7)

j = 1, 2, ...J such that J is the maximum scale sustainable with the data to
hand, then a multiresolution representation of the signal x(t) can be given by:

x(t) =
∑
k

sJ,kφJ,k(t)+
∑
k

dJ,kψJ,k(t)+
∑
k

dJ−1,kψJ−1,k(t)+...+
∑
k

d1,kψ1,k(t)

(2.8)

where the basis functions φJ,k(t) and ψJ,k(t) are assumed to be orthogonal,
that is:

∫
φJ,k(t)φJ,k

′ (t) = δk,k′∫
ψJ,k(t)φJ,k

′ (t) = 0∫
ψJ,k(t)ψJ

′

,k
′ (t) = δk,k′ δj,j′

(2.9)

where δi,j = 1 if i = j and δi,j = 1 if i �= j. Note that when the number of
observations is dyadic, the number of coefficients of each type is given by:

• at the finest scale 21 :there are n

2
coefficients labelled d1,k.

• at the next scale 22 :there are n
22
coefficients labelled d2,k.

• at the coarsest scale 2J :there are n

2J
coefficients dJ,k and SJ,k

In wavelet language, each of these coefficients is called an ‘atom’ and the
coefficients for each scale are termed a ‘crystal’5. The multiresolution
decomposition (MRD) of the variable or signal x(t) is then given by:

5Hence the atoms make up the crystal for each scale of the wavelet resolution.
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{SJ , DJ , DJ−1, ...D1} (2.10)

For ease of exposition, the informal description above assumes a continuous
variable or signal, which in signal processing is usually the case, but in
economics although variables we use for analysis represent continuous ‘real
time signals’, they are invariably sampled at pre-ordained points in time.
The continuous version of the wavelet transform (known as the CWT)
assumes an underlying continuous signal, whereas a discrete wavelet transform
(DWT) assumes a variable or signal consisting of observations sampled at
evenly-spaced points in time. Apart from a later section in the paper, only the
DWT (or variations on the DWT) will be used from this point onwards.

The interpretation of the MRD using the DWT is of interest in terms of
understanding the frequency at which activity in the time series occurs. For
example with a monthly or daily time series table 1 shows the interpretation
of the different scale crystals:

Scale

crystals

Annual

frequency

resolution

Monthly

frequency

resolution

Daily

frequency

resolution

d1 1—2 1—2 1—2

d2 2—4 2—4 2—4

d3 4—8 4—8 4—8

d4 8—16 8—16=8m—1yr4m 8—16

d5 16—32 16—32=1yr4m—2yr8m 4—8=4d—1wk 3d

d6 32—64 64—128=6yrs—10yr8m 32—64=6wks 2d—12wks 4d

d7 64—128 128—256=10yr8m—21yr4m 64—128=12wks 4d—25wks 3d

d8 128—256 etc etc

Table 1: Frequency interpretation of MRD scale levels

Note four things from table 1:

i) the number of observations dictates the number of scale crystals that
can be produced — only j scales can be used given that the number
of observations, N ≥ 2j. Using the example given in this paper
of industrial production, we have 1024 monthly observations, so the
maximum number of scales is in theory j = 9, although in practice
to obtain reasonable resolution only 7 or 8 scales would be used. If
there are only 255 observations, then no more then 7 crystals can be
produced, but as the highest scale (lowest frequency crystal) can only
just be properly resolved, it is usually recommended that only 6 crystals
be produced. With 512 observations, although the d7 crystal can be
produced, the trend crystal (or ‘wavelet smooth’), denoted s7 will yield
further fluctuations from trend for all periodicities above a 256 month
period.

ii) the choice of wavelet used in the analysis also figures into the number of
scale crystals that can be produced. Say you have a choice between an ‘s4’

14



and an ‘s8’ wavelet for the MRD analysis. An ‘s4’ wavelet means that the
symmetric wavelet starts with a width of 4 observations for its support
— this corresponds to the wavelet used to obtain the d1 crystals.6 Using
an s4 wavelet with annual or quarterly data will still capture the correct
periodicities, but will enable the researcher to decompose to higher order
scales. Clearly the higher the frequency of data, the more likely the
researcher is to use a longer supported wavelet though, as very short
wavelets are unlikely to yield any additional information.

iii) wavelet MRD analysis assumes that data is sampled at equally spaced
intervals. The frequency resolution interpretation is more difficult with
daily data, as daily (or hourly or even more frequently sampled) data is
not evenly sampled. Note that with yearly data the resolution limit on
a d3 crystal is half the time period on the minimum frequency picked
up by a d4 crystal. Clearly this would not be the case when using daily
data though.

iv) existing stylized facts need to be taken into account when applying an
MRD to economic data. For example as economists know that business
usually last for a decade at the most, it does not make sense to decompose
a series beyond this level — so with annual data it wouldn’t make sense
to use anything more than the d4 scale crystals — doing so would cause
‘redundancy’. So for example, with monthly economic data, if business
cycles and their sub-cycles are to be identified, then it is desirable to
have at least 512 observations.

Obviously the first and fourth point noted above pose major constraints for
MRD with economic data, as few annual economic time series contain more
than 100 observations, and very few quarterly data series contain more than
200 observations. In finance, when using high frequency data, the MRD yields
more information on activity at many different scale levels in the data, perhaps
explaining the more frequent usage of wavelet analysis in this domain. With
most economic and finance data of a reasonable time span, choice of wavelet
type doesn’t make a significant difference to the MRD (— perhaps the notable
exception being the Haar wavelet).

2.3 Examples

2.3.1 Continuous variable: a noisy doppler

A doppler signal7 is defined by:

x(t) =
√

t(1− t) sin(
2.1π

t + 0.05
) (2.11)

6Care should be taken not to confuse what the letter ‘d’ means here. The d4 crystal

refers to the detail crystal at the 4th scale, where as a d4 wavelet refers to a Debauchies

wavelet of length 4.
7The ‘waning’ of a signal heard when for example passing a police siren.
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Hence a doppler is sinusoid with a changing amplitude and decreasing
frequency. If we now generate a doppler signal with 1024 datapoints and add
white noise to the doppler signal the MRD plot using a symmlet is obtained
in figure 5.

The first line gives the signal, then the plots labelled D1—D4 plot the
crystals (or detail signals) associated with the scale of resolution, while the
final plot gives the coarseset approximation of the signal. Clearly the MRD
separates out the noise in the D1—D4 plots, with most of the action appearing
within the first 200 observations of the plot. Beyond this, crystals D1 and D2
contain mostly white noise, while D3 and D4 contain hardly any of the signal
and S4 contains the majority.

2.3.2 Discretely sampled variable: Canadian industrial production

Canadian industrial production data is available on a monthly basis from 1919
to 2004 by splicing together three Statistics Canada series. The data was
used in annual percent change format, giving 1014 datapoints. Because of the
advantages of using dyadic series in wavelet analysis, the series was padded
with extra data (— the August 2004 value was continued through to the end
of the series) so as to render 1024 datapoints. The data is shown in appendix
A, together with data for US and Finnish industrial production. It can be
immediately seen that the index was extremely volatile during the inter-war
years, and then also during the second world war, but stabilised in the late
1940s.

Spectral analysis reveals that there appears to be more than one cycle
active in this series, and using a spectral analysis of autocovariances this
is confirmed for both the Canadian industrial production series and the US
industrial production series, as shown in figure 6. Inspection of the figures
shows that i) there appears to be activity at 5 different frequencies in the
series, and that ii) clearly the US industrial production series also exhibits the
same frequency patterns.

When wavelet MRD analysis is used for the Canadian series, 7 scales are
used, which then encompasses business cycles with frequencies of up to nearly
11 years. The results are illustrated in figure 8 which indicates that small scale
frequency changes mostly took place at the beginning of the series in the 1920s
and 1930s but that other cycles have been active in the data since.the 1920s
and 30s.

In figure 8, as wavelets for each scale are convolved with the data, crystal
values are given at increasingly large intervals — these are the ‘spikes’ that
appear in the multiresolution decomposition in the stack plot, where the
crystals at each scale level are plotted in ascending order. The crystals d1, d2
contain mostly noise, d3 appears to have contained some explanatory power
during the 20s and 30s, but now most variability is to be found in crystals
d4 to d7 and s7. The cyclical interpretation of these crystals corroborates
the spectra obtained in figure 7 as 4 separate cycles are identified (crystals
d4, d5, d6 and d7), with crystals d1 to d3 containing mostly noise. Crystal s7 is
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Figure 9:

interpreted as a trend or drift variable, and does not capture any distinct cycles
in the data.

There are various ways of looking at the resulting DWT in graphical terms
as shown in figure ??.

First, a in the upper left plot, a time-frequency graph shows activity in
each scale through time. The y-axis is the inverse of scale — so large-scale
(dilated) wavelets are given by flat wide boxes, and small-scale (very compact)
wavelets are given by tall thin boxes. Each box should have the same area. This
illustrates the localization in time of both large-scale and small-scale wavelets.
Figure 10 shows this idea schematically.

The colour of the boxes reflects the size of the crystal coefficients — in this
schema green, black and brown represent increasingly large coefficient sizes.
Second, in the upper right hand panel, a dot chart shows the percentage of
energy by crystal for scale j, Ej, which is given by:

Ed
j =

1

E

n

2j∑
k=1

d2j,k (2.12)

where d refers to the detail crystals, but the same can be done for the
smoothness crystal. Orthogonal wavelets are energy (variance) preserving,
so that:

E = Es
j +

j∑
i=1

Ed
j (2.13)
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Figure 10: The time-frequency plot

As already noted, crystals d4, d5, d6 d7 and s7 contain most of the series
energy. For the bottom left hand panel, a box plot should be self explanatory,
and here the width of the boxes represent the number of data points or
coefficients. Lastly the bottom right hand figure shows an energy plot which
provides the cumulative energy function for the data and the DWT. Clearly
the DWT contains the salient information about the series much better than
the original untransformed data, which helps to explain why wavelets are so
popular as a means of data compression.

Extracting information about individual crystals is also possible and easily
implemented. For example in this instance, we have confirmed interest in
crystals d4, d5 and d6. For example a panel plot for crystal d4 is illustrated in
figure 11. The upper left hand plot gives the d4 coefficients together with the
reconstructed compoenent signal D4. The upper right hand plot is an ACF
for the d4 coefficients with 95% confidence intervals. The bottom left hand
plot is a quantile-quantile plot of the d4 coefficients versus those for a normal
distribution. Clearly the distribution is fat-tailed at one end, which perhaps
emphasises the role that the d4 crystal played in representing the increased
volatility in the series in the earlier part of the series.

2.4 Multiresolution analysis (MRA)

The sequence of partial sums of crystals:

Sj−1(t) = SJ(t) +DJ(t) +DJ−1(t) + ...+Dj(t) (2.14)

provides a multiresolution approximation (MRA) to the variable. This works
by building up the variable from the highest numbered (coarsest) scale
downwards. An MRA therefore could be viewed as a filtered version of the
series which retains the most important parts of the series, but de-noises the
series to a greater or lesser degree. Indeed, because wavelet analysis essentially
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filters certain information at different scales, many of those involved in the
development of wavelets label them filters (of limited bandwidth)8. To show
how the inverse discrete wavelet transform (IDWT) can approximate the series
by acting as a band-pass filter, a smooth MRA representation of the data using
the 4-6 scale crystals is calculated as follows:

S4 = S6 +D4 +D5 +D6 (2.15)

Clearly one could also reconstruct the signal again by adding lower scale
crystals to equation 2.15. One interesting application for wavelet analysis,
given that we have determined which crystals are most relevant for describing
the Canadian industrial production, would be to invert the wavelet transform
so as to reconstruct the series using an MRA. If this is done, figure 12 shows
what is obtained. S7 represents both the s7 and d7 crystals combined, and
then when d6 is superimposed, S6 is obtained etc.

Putting the wavelet analysis of the Canadian industrial production series
together, it is now quite apparent (from figures 8, ?? and 12) that crystals
d7, d6, d5, and d4 largely show the movement of the series. Adding d3 (to
get S3 in figure 12), adds very little to explaining any movement in the series
(except perhaps towards the beginning), and if shorter term fluctuations are
desired, then clearly s2 captures some more of the noise but adds very little to
the analysis. The real value added here is the recognition that there appear to
be 5 different sources of variation in the series — one longer term, two medium
term, one shorter term, and lastly very short-term ‘noise’ variations, the latter
appearing not to be cyclical in nature.

3 How does a DWT work?

The principle behind the notion of the wavelet transform is deceptively simple,
and originated in the pioneering work of Mallat (1989) in signal processing.
The core of this approach is the usage of a ‘pyramid algorithm’ which uses 2
filters at each stage (or scale) of analysis. Figure 13 represents the pyramid
algorithm approach for MRD, where L represents a low-band filter and H
represents a high-band filter.

If the input to the algorithm is X = (x1, x2, ...xn) and then define a filter
to be F = (f1, f2, ...fm),then the convolution of the filter and variable is given
by9:

yt =
m∑
i=1

fixt (3.1)

8In this parallel literature the mother wavelet is usually called a ‘wavelet filter’ and the
father wavelet is called a ‘scale filter’, and a DWT can be thought of as an ‘octave band’
filter bank (see Bruce et al 1995)

9An interesting applet showing convolution is located at
http://www.jhu.edu/~signals/discreteconv/ on the web.
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Figure 13: Mallat’s DWT Pyramid Algorithm

If we use two filters, one low-pass (— a father wavelet) and one high-pass
(mother wavelet) filter, then this will produce two series. Now drop every
other data point in terms of the output from these two filters to get:

yt =
m∑
i=1

fix2t+i−2 (3.2)

The output will be s1 for the low-pass filter and d1 for the high-pass filter.
These details coefficients are kept, and s1 is now put through a further
high-pass and low-pass filter, etc, to finally produce:

dj = WH,↓(sj−1) (3.3)

a set of j detail coefficients and:

sj = WL,↓(sj−1) (3.4)

a set of level j smooth coefficients. The choice of filter obviously aligns with
the choice of wavelet here. This is the output given by the MRD of a variable.
To construct an MRA an inverse DWT needs to be performed. In algorithm
terms, this is shown as figure 14. Here the crystals are taken and convolved
with a synthesis filter, and at the same time ‘upsampled’ by inserting zeros
between every other value of the filter input. The smoothed coefficients for
scale j − 1 are obtained as:

sj−1 = WL,↑(sj) +WH,↑(dj) (3.5)

where WF,↑ is an upsampling convolution operator for filter F .

4 Wavelet packet transforms

One important extension to wavelet analysis was introduced by Ronald
Coifman and others (1990). Wavelet packets are a generalisation of wavelets,
as they take a wavelet of a specific scale and add oscillations. Following
the notation used above, in mathematical terms they can be represented as
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Figure 14: The IDWT (MRA) algorithm

functions Wj,b,kwhere j corresponds to the scale/resolution level, k corresponds
to the shift and b indicates the number of oscillations10. A discrete wavelet
packet table is shown schematically in figure 15, unfortunately using slightly
different notation than used in previous sections The first line of the figure

Figure 15: Wavelet packet tree

gives the original data or variable. The data is first filtered (convolved) with
a high level filter to get A1and a low level filter to get D1. The wavelet packet
transform then departs with the DWT by continue to apply high level and
low level filters to these crystals, with the result that wavelets with oscillations
are introduced. Mathematically these wavelet packet basis functions can be
written as:

Wj,b,k = 2−j/2Wb(2
−jt− k) (4.1)

and the theoretical wavelet packet coefficients can be given as approximately:

wj,b,k ≈
∫

Wj,b,k(t)f(t)dt (4.2)

Put another way, a wavelet packet crystal wj,b can be written as a vector:

10Only for the Haar wavelet does b represent the number of zero crossings — for other

wavelets the number of zero crossings is usually larger than b.
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wj,b = (wj,b,1, wj,b,2, ..., wj,b, n
2j
)′ (4.3)

where wj,b is the result of selecting n linearly independent rows from a matrix
W, such that:

w = Wx (4.4)

where x is the original signal/series.
Wavelet packet functions are illustrated in figure 16.
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Figure 16: Debauchies wavelet packet functions

The first step in doing wavelet packet analysis is to use a wavelet packet
table. Suppose the series of interest has n observations, where n is a muliple
of 2j(ie dyadic), then the wavelet packet table will have J +1 resolution levels
where J is the maximum resolution level. If the (J + 1) resolution levels are
stacked in order a table of n ∗ (J + 1) coefficients is obtained. At level J
the table has n coefficients divided into 2jcoefficient blocs (crystals). In other
words, each row represents a certain scale, and as you read across the wavelet
packet table you see wavelet filters with increasing large numbers of oscillations
at that scale. To illustrate, a generated linear chirp signal of 1024 datapoints is
analysed in a wavelet packet table in figure 17 and then the Canadian industrial
production series is also analysed in figure 18.

Figure 17 shows the crystals for each wavelet basis in a box bordered by
dots. The series is well represented by certain wavelets, and notably those
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wavelets that have a lower number of oscillations, although the higher the
scale level, the more larger oscillation wavelets appear to have crystal values
significantly different from zero. Take level 2 for example: here there are
4 crystals, w2,0, w2,1, w2,2, w2,3 — as the chirp oscillates more rapidly so the
coefficients in w2,0seem to wane, only for the coefficients in w2,1 to provide
a better fit. Clearly w2,2,and w2,3 have little explanatory power, although
towards the end of the series the values of these wavelet coefficients appear to
start to respond.

When turning to Canadian industrial production data, figure 18 tends to
suggest that the zero oscillation wavelets characterise the series fairly well, so
the improvement over a DWT by using a packet transformmight be significant,
as the DWT uses single oscillation wavelets at all scales. One of the more
interesting uses of wavelet packet transforms is to characterise series in terms
of a particular set of crystals of a certain scale. So for example, using an inverse
wavelet packet transform with say level 4 crystals, a reconstruction of a series
can be made. This is done in figure 19 for the Canadian industrial production
series.

Figure 20 presents the time-frequency plot for the level 4 packet transform
for the Canadian industrial production series, and compares it with the original
time-frequency plot for the DWT. First note that in the left hand plot in the
panel, the boxes are exactly the same size — that is because all the crystals are
level 4, but representing different numbers of oscillations. In figure 19 there
are 16 crystals, and these are stacked up in the left hand panel of figure 20 —
once again, wavelets with large numbers of oscillations tend to have significant
coefficients only for the first part of the series.

5 Optimal transforms

Coifman and Wickerhauser (1992) developed a ‘best basis’ algorithm for
selecting the most suitable bases for signal representation using a wavelet
packet table. The best basis algorithm finds the wavelet packet transforms
W that minimises a cost function E:

E(W ) =
∑
j,b∈I

E(wj,b) (5.1)

where I is the set of index pairs (j, b)of the crystals in the transform W.
Typically, the entropy cost function is used, in which case the cost function is
of the form:

Eentropy

j,b =
∑
k

[
wj,b,k

‖w0,0‖2

]2
log

{[
wj,b,k

‖w0,0‖2

]2}
(5.2)

where wj,b,k represents the crystal coefficients and ‖‖
2
is the L2 norm of the

matrix w defined above in equation (equation 4.3). Other cost functions are
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Figure 21: Wavelet packet tables for Canadian industrial production: a) DWT;
b) best basis using entropy cost function; c) scale level 4 basis; d) entropy cost
function basis

also used in wavelet analysis, such as the threshold function (— which takes
the coefficients with values greater than a certain threshold), Stein’s unbiased
risk estimate (SURE) function and the Lp.norm cost function. The entropy
cost function essentially applies higher costs to packets with higher energy,
thus favouring large crystal coefficients in packets with lower levels of energy.
Once the cost function is applied to the series in question, a best basis plot is
obtained. Of course, as the algorithm for choosing the best representation of
the series uses orthogonal wavelet transforms, so the the choice of best wavelets
must not overlap at each scale. This is shown in the wavelet packet table as a
series of shaded boxes such that every column in the table is covered by one
crystal so the series can be reconstructed, while at the same time no column
has more than one crystal. To compare the best basis with a DWT and an
arbitrary choice of crystal to represent the series (d4 here), figure 21 plots the
best basis cost function for the Canadian series (lower right hand plot) with
the wavelet packet representations for three other cases (top left hand plot:
WPT; top right: best basis; bottom left: scale 4 crystals).

The best basis transform for Canadian industrial production clearly shows
the best basis packets emanating from the crystals at scales 4 to 7, with scale
4 actually being more strongly represented than might have been suggested
by the DWT. Once the best basis transform has been found the original
series can be plotted with an indication of which crystals best represent the
variable/signal over various periods of time. The coefficients in figure 22 are
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ordered roughly by oscillation and scale.
Another way to view packet wavelet transforms is to display them in the

form of a tree plot — the tree plots for the best basis, the level 4 basis and the
DWT are shown in figure 23. The length of the arc denotes the cost savings by
using the alternative transforms (the two left hand plots) compared with the
DWT (right hand plot). There are clearly considerable cost savings by using
the best basis as compared with the DWT in this instance, as the higher scales
crystals are not particularly relevant for the series in question here.

6 Other useful wavelets and wavelet transforms

6.1 Bi-orthogonal wavelets

These are wavelets that are not orthogonal but are symmetric, and were
introduced by Cohen et al (1992). Biorthogonal wavelets are characterised

by wavelets of four types: φ, ψ, φ̃ and ψ̃, where φ and ψ are the usual father
and mother wavelets respectively, but biorthogonal wavelets necessitate the
introduction of two new types of wavelets, φ̃ and ψ̃, which are called the
‘dual’ wavelets. These dual wavelets have different lengths of support so that
while the original mother and father wavelets analyze the variable in question
the dual wavelets act to synthesize the wavelets through time. The wavelet
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Figure 23: Tree plots for Canadian industrial production: a) best basis; b)
level 4 crystal; c) DWT

approximation can be expressed as a variation on the DWT, but using the
dual wavelet functions, as in equation 6.1:

f(t) =
∑
k

sJ,kφ̃J,k(t)+
∑
k

dJ,kψ̃J,k(t)+
∑
k

dJ−1,kφ̃J−1,k(t)+...+
∑
k

d1,kψ̃1,k(t)

(6.1)

Biorthogonal wavelets satisfy the following conditions:

∫
φJ,k(t)φ̃J,k

′ (t) = δk,k′∫
ψJ,k(t)φ̃J,k

′ (t) = 0∫
ψJ,k(t)ψ̃J

′

,k
′ (t) = δk,k′ δj,j′

(6.2)

so that is, there is orthogonality between the father and mother dual wavelets
(and vice-versa), but not between the mother and dual or father and dual.
Note from equation 6.1 that if either of the duals are set equal to the
usual father and mother wavelet, then we revert back to a DWT (as given
by equation 2.8. There are two popular forms of bi-orthogonal wavelets,
namely B-spline and S-spline wavelets — with the former based on a simple
polynomial spline function and the latter designed specifically to try and
mimic an orthogonal wavelet. Examples of biorthogonal wavelets are given
in figure 24. Bi-orthogonal wavelets are used in storing information in JPEG
file formats.

6.2 Maximal-overlap DWT (MODWT)

Although extremely popular due to its intuitive approach, the classic DWT
suffers from two drawbacks: dyadic length requirements and the fact that the
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Figure 24: Examples of biorthogonal wavelets

DWT is non-shift invariant. In order to address these two drawbacks, the
maximal-overlap DWT (MODWT)11 gives up the orthogonality property of
the DWT to gain other features, given in Percival and Mofjeld (1997) as:

• the ability to handle any sample size regardless of whether dyadic or not;

• increased resolution at coarser scales as the MODWT oversamples the
data;

• translation-invariance — in other words the MODWT crystal coefficients
do not change if the time series is shifted in a ‘circular’ fashion; and

• the MODWT produces a more asymptotically efficient wavelet variance
estimator than the DWT.

Both Gencay et al (2001) and Percival and Walden (2000) give a description
of the matrix algebra involved in the MODWT, but for our purposes the
MODWT can be described simply by referring back to figure 13. In contrast
to the DWT the MODWT simply skips the downsampling after filtering the
data, and everything else described in the section on MRDs using DWTs above
follows through, including the energy (variance) preserving property and the
ability to reconstruct the data using MRA with an inverse MODWT. A simple

11As Percival and Walden (2000) note, the MODWT is also commonly referred to
by various names in the wavelet literature. Equivalent labels for this transform are
non-decimated DWT, time-invariant DWT, undecimated DWT, translation-invariant DWT
and stationary DWT. The term ‘maximal overlap’ comes from its relationship with the
literature on the Allan variance (the variation of time-keeping by atomic clocks) — see
Greenhall (1991).
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Figure 25: MODWT for Canadian industrial production

derivation of the MODWT following both Gencay et al (2001) and Percival
and Walden (2000) can be found in appendix C.

Figure 25 shows the MODWT for Canadian industrial production. Clearly
the resolution dramatically increases for the coarser scales, and now the
intermediate cycles are more clearly apparent in the data.

One of the problems with the DWT is that the calculations of crystals
occurs at roughly half the length of the wavelet basis (length) into the series
at any given scale. Thus in figure 8 crystal coefficients start further and
further along the time axis as the scale level increases. As the MODWT is
shift invariant, the MRD will not change with a circular shift in the time
series, so that each scale crystal can be appropriately shifted so that the
coefficients approximately line up with the original data (known as ‘zero phase’
in the signalling literature). This is done by shifting the scales to the left by
increasingly large amounts as the scale order increases, as the y-axis of figure
25 shows.

Although the MODWT has a number of highly desirable properties, the
transform leads to a large amount of ‘redundancy’, as even though the
transform is energy preserving, the distribution of energy is clearly inferior
to the original data. Similar analysis can be done with MODWTs as with
DWTs and appendix C shows an example of a MODWPT, which as expected
yields almost exactly the same results as obtained for its discrete counterpart.

6.3 ‘à trous’ WT

For smaller time series, the scale crystals obtained may contain few data
points, so another simpler approach sometimes used in wavelet analysis which
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Figure 26:

pre-dates the MODWT is called the à trous non-decimated wavelet approach.
The algorithm over-samples at coarser scales so as to provide better spatial
resolution but it does this by calculating the detail coefficients as simple
differences between the smooth coefficients at different levels:

dj,k = sj−1,k − sj,k (6.3)

While this is computationally simpler, the MODWT possesses other properties
which make it superior in most cases to the à trous, such as the shift invariance
property referred to above. Figure 26 shows the construction of the à trous

WT in diagrammatic terms.

6.4 Matching pursuit decompositions

This is another form of non-orthogonal wavelet decomposition, but using
so-called waveform ‘dictionaries’. The original idea here was to represent a
series using linear combinations of a small number of wave-like functions
(waveforms) selected from a large and redundant collection of functions. The
original work on this algorithm started with Mallat and Zhang (1993) who used
either wavlet packet tables, cosine packet tables, or gabor function tables to
generate non-orthogonal ‘dictionaries’ of waveforms to fit to any given series.
The algorithm essentially takes each part of the series and attempts to fit a
waveform to that part (— many wave shapes are used). The approximation to
the actual series can be expressed as:

f(t) =
N∑
n=1

αngγ
n
(t) +RN(t) (6.4)

where gγn(t) are a list of waveforms coming from a dictionary, αn is
the matching pursuit coefficient, and RN(t) is the residual which is still
unexplained once the best waveforms have been located. The best fitting
waveforms from the dictionary are then preserved in a list, and are called
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Figure 27: Matching pursuit decomposition for Canadian industrial production

‘atoms’. Figure 27 shows the best 100 atom coefficients for the Canadian
industrial production series.

Most of the atoms are once again in the 4th to 7th crystals, and indeed if
split down in terms of energy, 42% of the total energy is located in the scale
level 4 atoms. It is noteworthy that the matching pursuit actually gives the
scale 3 atoms 18% of the energy and scale 5 and 6 around 15% each, which is
a somewhat different result that we obtained when using the DWT, as with
the DWT the level 3 crystal had little explanatory power but the level 7 had
significant explanatory power. Figure 28 compares the top 15 crystals from
the matching pursuit algorithm with the top 15 from the DWT.

Clearly the matching pursuit algorithm does a better job of matching
waveforms to the series than the DWT. It uses a much richer collection of
waveforms than the DWT, which is always limited to one particular wavelet
form.

6.5 Wavelet shrinkage

Donoho and Johnstone (1995) first introduced the idea of wavelet shrinkage in
order to denoise a time series. The basic idea here is to shrink wavelet crystal
coefficients, either proportionately, or selectively, so as to remove certain
features of the time series. The initial version of the waveshrink algorithm was
able to de-noise signals by shrinking the detail coefficients in the lower-order
scales, and then applying the inverse DWT to recover a de-noised version of
the series. This idea was then extended to different types of shrinkage function,
notably so-called ‘soft’ and ‘hard’ shrinkage (reviewed in Bruce and Gao
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Figure 28: Top 15 atoms for Canadian industrial production: a) matching
pursuit and b) DWT

(1995)). In mathematical terms, following the notation of Bruce, Hong-Ye and
Ragozin (1995) these different types of shrinkage can be defined by application
of a shrinkage function to the crystal coefficients such that:

d̃j = δjσ(x)dj (6.5)

where dj is a vector of scale j crystal coefficients and δjσ(x) is defined as a
shrinkage function which has as parameters the variance of the noise at level
j, σj, and the threshold defined within the shrinkage function. The threshold
argument can be defined in three different ways:

δSj (x) =

{
0 if |x| ≤ c̃

sign(x)(|x| − c̃) if |x| > c̃
(6.6)

δHj (x) =

{
0 if |x| ≤ ĉ
x if |x| > ĉ

(6.7)

δSSj (x) =

⎧⎨⎩
0 if |x| ≤ cL

sign(x) cU (|x|−cL)
cU−cL

if cL > |x| ≤ cU
x if |x| > cU

(6.8)

where δS(x) is a generic soft shrinkage function, δH(x) is a generic hard
shrinkage function and δSS(x) is a generic semi-soft shrink function for
coefficients of any scale crystal. δH(x) essentially sets all crystal coefficients
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to zero below a specified coefficient value c̃, δS(x) just lowers the crystal
coefficients above a defined scale by the same amount, and the semi-soft version
has the hard function property above scale cU and below scale cL but in between
these two scales adopts a linear combination of the two approaches. There
are a variety of ways of choosing c̃, ĉ or cLand cU , some based on statistical
theory and others rather more subjective. In some cases, such as the universal
threshold case (setting ĉ =

√
2 log n), the threshold is constant at all scale

levels, and in other cases such as the ‘adapt’ threshold, the threshold changes
according to scale level.

7 Extensions

7.1 Wavelet variance, covariance and correlation analysis

7.1.1 Basic analysis

Given that wavelet analysis can decompose a series into sets of crystals at
various scales, it is not such a big leap to then take each scale crystal
and use it as a basis for decomposing the variance of a given series into
variances at different scales. Here we follow a very simplified version according
to Constantine and Percival (2003) which is originally based on Whitcher,
Guttorp and Percival (2000a) (with full-blown mathematical background
provided in Whitcher, Guttorp and Percival (1999)). Other more technical
sources for this material are Percival and Walden (2000) and Gençay, Selçuk
and Whicher (2001).

Let xt be a (stationary or non-stationary) stochastic process, then the
time-varying wavelet variance is given by:

σ2

x,t(λj) =
1

2λj
V (wj,t) (7.1)

where λj represents the jth scale level, and wj,t is the jth scale level crystal.
The main complication here comes from making the wavelet variance time
independent, the calculation of the variance for different scale levels (because
of boundary problems) and accounting for when decimation occurs, as with
the DWT. For ease of exposition, assume we are dealing with an MODWT,
and assume that a finite, time-independent wavelet variance exists, then we
can write equation 7.1 as:

σ̃2

x,t(λj) =
1

Mj

N−1∑
t=Lj−1

d2j,t (7.2)

where Mj is the number of crystal coefficients left once the boundary
coefficients have been discarded. These boundary coefficients are obtained by
combining the beginning and end of the series to obtain the full set of MODWT
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Figure 29: Wavelet variance by scale for Canada and Finland industrial
production vs the US.

coefficients, but if these are included in the calculation of the variance this
would imply biasedness. If Lj is the width of the wavelet (filter) used at scale
j, then we can calculate Mj as (N − Lj + 1)12.

Calculation of confidence intervals is a little more tricky. Here the approach
is to first assume that dj ∼ iid(0, σ̃2

j) with a Gaussian distribution, so that the
sum of squares of dj is distributed as κχ2

η, and then to approximate what the
distribution would look like if the dj are correlated with each other (— as they
are likely to be). This is done by approximating η so that the random variable
(σ2

x,tχ
2

η)/η has roughly the same variance as σ̃2

x,t — hence η is not an actual
degrees of freedom parameter, but rather is known as an ‘equivalent degrees
of freedom’ or EDOF. There are three ways of estimating the EDOF in the
literature, and these can be summarised as i) based on large sample theory, ii)
based on a priori knowledge of the spectral density function and iii) based on
a band-pass approximation. Gençay, Selçuk and Whicher (2001) show that if
dj is not Gaussian distributed then by maintaining this assumption this can
lead to narrower confidence intervals than should be the case.

As an example of calculating wavelet variances for the three industrial
production series, figure 29 shows the variances and confidence intervals by
scale using a band-pass approximation to EDOF. The change in wavelet
variance by scale is quite similar for Canada and the US, but Finland’s wavelet
variance appears not to show a similar pattern, even when the US series is
adjusted so as to coincide with the Finnish IP period.

12
Lj = [(2j−1)(L−1)+1] as an L tap filter will clearly have a larger base at larger scales.
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Figure 30: Wavelet covariance by scale for Canadian and Finnish industrial
production vs the US.

Once the wavelet variance has been derived, the covariance between two
economic series can be derived, as shown by Whitcher, Guttorp and Percival
(2000a) (with mathematical background provided again in Whitcher, Guttorp
and Percival (1999)). The covariance of the series can be decomposed by
scale, and thus different ‘phases’ between the series can be detected. Figure
30 shows how the covariance between Canadian and US industrial production
series breaks down by scale and then figure 31 shows cross covariances between
the Canadian and Finnish series and the US equivalent.

Once covariance by scale has been obtained, the wavelet variances and
covariances can be used together to obtain scale correlations between series.
Once again, confidence intervals can be derived for the correlation coefficients
by scale (these are derived in Whitcher, Guttorp and Percival (2000a)). The
correlation between the Canadian and Finnish industrial production series and
their US counterpart are estimated and plotted in figure 32 by scale, and then
the cross-correlations for a 25 lag span are plotted in figure 33.

Several interesting points emerge from figures 32 and 33:

• First, even for time series that are not particularly highly correlated such
as that of Finland and the US, the cyclical nature of the co-correlation
at every scale implies that there is co-movement of business cycles at a
variety of different levels;

• Second, for Canada the co-correlation appears to increase as scale
increases — this would be perhaps be expected for series that are highly
correlated (or co-integrated) over time; whereas for Finland, beyond scale
4, the co-correlation doesn’t appear to follow any pattern by scale;
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Figure 31: Cross-covariances for Canadian and Finnish industrial production
series vs the US.
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vs the US.

• Thirdly, as we are comparing crystals for increasingly wide wavelet
support, we would expect the positive correlations to persist much longer
as lag length is increased — this is found to be the case here;

• Lastly, at the same lag length the co-correlation can be quite different
according to scale (— for example for Canada at a lag length of 12, scales
1—4 show negative co-correlation, scale 5 shows zero co-correlation and
scales 6 and 7 exhibit positive correlation).

7.1.2 Testing for homogeneity

Whitcher, Byers, Guttorp and Percival (1998) developed a framework for
applying a test for homogeneity of variance on a scale-by-scale basis to
long-memory processes. A good summary of the procedure is located in
Gençay, Selçuk and Whicher (2001). The test relies on the usual econometric
assumption that the crystals of coefficients, wj,t for scale j at time t have zero
mean and variance σ2

t (λj). This allows us to formulate a null hypothesis of:

H0 : σ
2

Lj
(λj) = σ2Lj+1

(λj) = .... = σ2N−1(λj) (7.3)

against an alternative hypothesis of:

HA : σ2Lj
(λj) = ... = σ2k(λj) �= σ2k+1(λj) = .... = σ2N−1(λj) (7.4)

where k is an unknown change point and Lj represents the scale once the
number of boundary coefficients have been discarded. The assumption is that
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the energy throughout the series builds up linearly over time, so that for any
crystal, if this is not the case, then the alternative hypothesis is true. The test
statistic used to test this is the D statistic, which has previously been used by
Inclan and Tiao (1994) for the purpose of detecting a change in variance in
time series. Define Pk as:

Pk =

∑k

j=1w
2
j∑N

j=1w
2
j

(7.5)

then define the D statistic as D = max(D+,D−) where D+ = (L̂ − Pk) and

D− = (Pk− L̂) where L̂ is the cumulative fraction of a given crystal coefficient
to the total number of coefficients in a given crystal. Percentage points for
the distribution of D can be obtained through Monte Carlo simulations, if the
number of coefficients is less than 128. Table 2 shows the results of applying
this test to the industrial production series at a 5% level of significance.

Scale Canada IP US IP Finnish IP
1 F F F
2 F F F
3 F F F
4 F F T
5 T F T
6 F F T
7 T T NA

Table 2: Testing for Homogeneity

Gençay, Selçuk and Whicher (2001) provide two examples of tests for
homogeneity of variance — one for an IBM stock price and another for multiple
changes in variance using methodology extending this framework which was
developed by Whitcher, Guttorp and Percival (2000b).

7.2 Wavelet analysis of fractionally differenced processes

Granger and Joyeux (1980) first developed the notion of a fractionally
differenced time series and in turn, Jensen (1999) and Jensen (2000) developed
the wavelet approach to estimating the parameters for this type of process. A
fractionally differenced process generalises the notion of an ARIMA model
by allowing the order of integration to assume a non-integer value, giving
what some econometricians refer to as an ARFIMA process. In the frequency
domain, this means that a fractionally differenced process has a spectral
density function that varies as a power law over certain ranges of frequencies
— implying that a fractionally differenced process will have a linear spectrum
when plotted with log scales. A fractionally differenced process (FDP) can be
defined as difference stationary if:
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(1−B)dxt =
d∑

k=0

(
d

k

)
(−1)kxt−k = εt (7.6)

where εt is a white-noise process, d is a real number and
(
d

k

)
= d!

k!(d−k)!
=

Γ(d+1)
Γ(k+1)Γ(d−k+1)

, Γ being Euler’s gamma function. Wavelets can be used to
estimate the fractional difference parameter, d, as the variance of an ARFIMA
type process can be expressed in the form:

σ2x(λj) ≈ σ2ε c̃(d̃)[λj]
2˜d−1 (7.7)

where c̃ is a power function of d̃ and d̃ = (d − 0.5). Equation 7.7 suggests

that to estimate d̃ a least squares regression could be done to the log of an
estimate of the wavelet variance obtained from an MODWT. This represents
the first way of estimating d̃, but there is a problem as here the MODWT
yields correlated crystals, so the estimate of d would likely be biased upwards.

Another way of estimating the parameters of the FDP is to go back to the
DWT, as the scale crystals are uncorrelated, and use the likelihood function
for the interior coefficients (— in other words after discarding the boundary
coefficients). Let dI be a vector of length M containing all the DWT wavelet
coefficients for all j scales (for which there are Mj elements for each scale),

then the liklihood function for σ2

ε and d̃ will be:

L(d̃, σ2

ε | dI) =
exp{(−d

′

IΣ
−1

dI
dI)/2}

(2π)M/2 |ΣdI
|1/2

(7.8)

where ΣdI
is the variance covariance matrix. Using the fact that the wavelet

coefficients at different scales are uncorrelated, we can use an approximation
to the variance Cj(d̃, σ

2

ε) so that equation 7.8 can be rewritten as:

L(d̃, σ2

ε | dI) =
J∏

j=1

Mj−1∏
t=0

exp{−d2j,t/2Cj(d̃, σ
2

ε)}
(2πCj(d̃, σ2ε))

1/2
(7.9)

where dj,t is once again a crystal coefficient. Equivalently we can estimate a
reduced log likelihood, such as:

�(d̃ | dI) = M ln(σ̃2ε(d̃)) +
J∑

j=1

Mj ln(Ĉj(d̃)) (7.10)

where σ̃2ε(d̃) = 1

M

∑J
j=1

1

̂Cj(˜d)

∑Mj−1
t=0 and Ĉj(d̃) = Cj(d̃, σ

2
ε)/σ

2
ε . Minimizing

equation 7.10 yields a maximum likelihood estimate for d̃,
̂̃
dMLE, which can

then be substituted into the definition of σ̃2
ε(d̃) to obtain an estimate for the
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Figure 34: Instantaneous difference parameter estimates using LS for
abs(GBP/USD)

variance. Percival and Walden (2000) devote a whole chapter to the issue
of FDPs and provide examples of MLEs for non-stationary processes, and
Constantine and Percival (2003) provide routines for chopping the series up
into blocks to obtain ‘instantaneous’ estimators for the FDP parameters.

To illustrate wavelets applied to a financial time series, take the British
pound daily series against the US dollar (details given in appendix D), and
after taking log differences of the series, take the absolute value of the log
differences and use an instantaneous parameter estimation of the difference
coefficient d̃. This series will likely have long memory as volatility appears in
clusters, so that the difference coefficient is unlikely to be an integer.

Figure 34 plots the instantaneous estimate of the difference coefficient
together with a 95% confidence interval band. The mean of the parameter
estimates is 0.236, and the mean of the variance estimates for the 10 scale
levels estimated is 0.1002.

7.3 Dual Tree WTs using wavelet pairs

This is relatively recent research and uses a so-called dual tree wavelet
transform (DTWT or complex wavelet transform), which was developed by
Kingsbury (see Kingsbury (1998) and Kingsbury (2000)) with particular
applications in image compression and reconstruction in mind. The DTWT
differs from a traditional DWT in two distinct ways:
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Figure 35: Dual Tree WT for Finnish Industrial Production

i) after the first application of a high filter (as in figure 13), then the data
are not decimated and are handed to two different banks of filters — the
even observations are passed to one set of filters that then convolve with
the data in the usual DWT process (with decimation), but the other
filter bank takes the odd numbered observations and convolves that set
of data with the filters coefficients reversed.

ii) the pair of filters have the character of ‘real’ and ‘imaginary’ parts of
an overall complex wavelet transform. If the mother wavelets are the
reverse of one another, they are called Hilbert wavelet pairs.

The big advantages of the DTWT are that they are shift invariant, without
the ‘redundancy’ associated with the MODWT. This is particularly useful for
data and image compression applications. Figure 35 shows the DTWT for
the Finnish industrial production series. The two branches of the DTWT
yield quite different results, as might be expected given the somewhat erratic
movements at the beginning of the series.

Kingsbury (2000) defines 4 types of biorthogonal filters for the first stage
of the DTWT and then another 4 types of so called ‘Q shift’ filters for the
subsequent stages of the process. Two of these filters, one from each set,
are shown in appendix B. Craigmile and Whitcher (2004) further extend the
DTWT to a maximal overlap version (MODHWT) in order to produce wavelet
based analogues for spectral analysis. This enables the frequency content
between two variables to be analysed simultaneously in both the time and
frequency domain.
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8 Frequency domain analysis

Wavelet analysis is neither strictly in the time domain nor the frequency
domain: it straddles both. It is therefore quite natural that wavelets
applications have also been developed in the frequency domain using spectral
analysis. Perhaps the best introduction into the theoretical side of this
literature can be found in Lau and Weng (1995) and Chiann and Morettin
(1998), while Torrence and Compo (1998) probably provides the most
illuminating examples of applications to time series from meteorology and the
atmospheric sciences.

Spectral analysis is perhaps the most commonly known frequency domain
tool used by economists (see Collard (1999), Camba Mendez and Kapetanios
(2001), Valle e Azevedo (2002), Kim and In (2003), Süssmuth (2002) and
Hallett and Richter (2004) for some examples), and therefore needs no
extended introduction here. In brief though, a representation of a covariance
stationary process in terms of its frequency components can be made using
Cramer’s representation, as follows:

xt = µ+

∫
π

−π

eiωtz(ω)dω (8.1)

where i =
√−1, µ is the mean of the process, ω is measured in radians

and z(ω)dω represents complex orthogonal increment processes with variance
fx(ω), where it can be shown that:

fx(ω) =
1

2π

(
γ(0) + 2

∞∑
τ=1

γ(τ) cos(ωτ)

)
(8.2)

where γ(τ) is the autocorrelation function. fx(ω) is also known as the
specturm of a series as it defines a series of orthogonal periodic functions
which essentially represent a decomposition of the variance of the series by an
infinite sum of waves of different frequencies. Given a large value for equation
(8.2), say at fx(ωi), this implies that frequency ωi is a particularly important
component of the series.

To intuitively derive the wavelet spectrum, recall using the definition of
a mother wavelet convolution from equation 2.5, that the convolution of the
wavelet with the series renders an expression such as that given in equation
3.1, and associated crystals given by equation 3.3, then a continuous wavelet
transform (CWT) for a frequency index k will analogously yield:

Wk(s) =
N∑
k=0

x̂tψ̂
∗

(sωk)e
iωkt∂t (8.3)

where x̂k is the discrete Fourier transform of xt:

x̂k =
1

(N + 1)

N∑
k=0

xt exp

{−2πikt

N + 1

}
(8.4)
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Figure 36: CWT 3D magnitude spectrum for US industrial production

so x̂k,represents the Fourier coefficients, Ω̂∗ is the Fourier transform of a
normalized scaling function defined as:

Ω∗ =

{
t

s

}0.5

Ω

[
t− µ

s

]
(8.5)

so that in the frequency domain the CWT Wk(s) is essentially the convolution

of the Fourier coefficients and the Fourier transform of Ω∗, Ω̂∗. The angular
frequency for ωk in equation 8.3 is given by:

ωk =

{
2πk

(N+1)
: k ≤ N+1

2

− 2πk
(N+1)

: k > N+1
2

(8.6)

The CWT, Wk(s), can now be split into a real and complex part, 	{Wk(s)} ,
and
{Wk(s)} , or amplitude/magnitude, |Wk(s)| and phase, tan−1

[
�{Wk(s)}
�{Wk(s)}

]
.

To show some examples of wavelet spectra, first figure 36 shows a
3-dimensional plot for the US industrial production series using a log frequency
scale and altering the reversing the time sequencing so as to show the evolution
of the spectrum to best effect.

This CWT spectral plot displays similar characteristics to that of the
time-frequency plots of figure 20, in that the high frequency content is
particularly marked in the earlier part of the 19th century, with mostly low
frequency content evident throughout the entire time period. As might be
expected, the ridge lines in the 3D magnitude plot for the series suggest that
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Figure 37: CWT 3D phase spectrum for US industrial production

there are roughly 5 distinct frequencies active in the series, as was already
confirmed with the use of a DWT. Figure 37 now plots the phase for the US
industrial production series — here the phasing pattern is very unclear.

It is probably a better strategy to project both 3D plots onto the magnitude
or phase axis, respectively, so as to view the plots in terms of their contours.
This is done in figure 38 first for the scale-averaged (or integrated) power
spectrum, |Wk(s)|2 , which, as expected, shows that the volatile short-term
fluctuations in the early part of the series tend to dominate and then in figure
39 for the phase contour plot. Figure 40 gives a CWT magnitude contour plot
(against log of frequency) using a Paul (complex) wavelet with initial width
of 6 months. This is an asymmetric wavelet, and so the frequency is only
roughly related to the scale of the wavelets, hence the approximation that s−1

is equivalent to the maximum of Ω̂ is not analytically correct13. The contour
plots point to several other features from the frequency domain, notably:

i) three areas of notable high frequency activity, two of which coincide with
the rebounds in production in the early 1920s and mid 1930s;

ii) the constant presence of a relatively low frequency pattern throughout
the period of the data;

iii) the disappearance of almost all high frequency activity since 1945 and the
dying out of a long medium frequency pattern over the period 1945—1980.

iv) a range of frequencies where phases interact quite frequently (the ‘fingers’
in the phase contour plot), sometimes at a large range of frequencies (the

13The relationship between scale and frequency depends on the form of the wavelet. For
more on this see the discussion in Torrence and Compo (1998) (p67).
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Figure 38: CWT scale-averaged wavelet power spectrum for US industrial
production

longer fingers) and sometimes over a smaller range (the smaller thinner
fingers).

Torrence and Compo (1998) rightly observe that one of the major drawbacks of
spectral analysis has been that significance testing was difficult to implement in
the frequency domain. But by assuming a ‘background’ spectra such as white
noise, or an AR(1) process, a null hypothesis is formed by subtracting a Monte
Carlo simulated background spectrum from the time series wavelet spectrum to
yield a ‘differenced’ spectrum. By assuming a gaussian distribution confidence
intervals can then be constructed, as any point on the differenced spectrum
should be distributed as 0.5Pkχ

2

2
where Pk is the Fourier power spectrum. Here

two different background spectra are assumed for the US industrial production
series. First, a random walk is assumed for the series, and then an AR(1) series,
which then allows for confidence intervals to be constructed for differences
between the two different spectra.

The largest (red) shaded areas for figure 41 shows the parts of the US
industrial production spectrum that are outside the 99% confidence interval14

for a white noise spectrum. Similarly, 42 shows the parts of the spectrum that
are outside the 99% confidence interval for a AR(1) process with coefficient
0.9515.

Clearly, as this series could easily be characterised as an AR(1) process,
only in the earlier parts of the period under study does the spectrum show a

14The software used here actually uses critical limits, such that a 95% critical limit means
that in only 1 in 20 similar size random data sets would the largest CWT spectral peak
attain this height.

15The estimated AR(1) coefficient obtained for this series was 0.96.
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Figure 39: CWT phase spectrum contour plot for US industrial production
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Figure 40: CWT magnitude contour plot using US industrial production
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Figure 41: CWT magnitude contour plot assuming white noise background
spectrum
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Figure 42: CWT magnitude contour plot assuming AR(1) process with 0.95
coefficient for background spectrum

51



significant departure from an AR(1) process, and this is only for the higher
frequencies. When testing against white noise, however, the departures are
significant in the higher frequencies during the early part of the series, but
continue to be significant in the lower frequency bands throughout the series.

Torrence and Compo (1998) also go on to use a similar approach to analyze
co-spectrum for use in multivariate time series analysis.

9 Economics and wavelet analysis

As with many applied statistical techniques, wavelet analysis undoubtedly has
unfulfilled potential in economics. Several pioneering economic researchers
should be recognized as having seen this potential16, and then devoting
considerable amounts of time and effort to understanding and using wavelets
in their work. As many of the advances in this area are not being made in
economics, but rather in signal and image processing, engineering, astronomy
and meteorology, it is perhaps understandable that the uptake by the
economics profession has not been swift. Like spectral analysis, wavelet
analysis will never dominate mainstream time-series econometrics, but it
should be seen as another useful mode of analysis in the applied economist’s
toolkit.

In this final section a brief list of practical issues is first presented and then
a description of the rapidly expanding literature on wavelets in economics is
provided.

9.1 Practical issues

These points are largely taken from Percival and Walden (2000) and Torrence
and Compo (1998) where, in the latter case the approach is related specifically
to atmospheric and oceanic research data.

1. Sufficient data is required given the observed nature of the time series.
This implies that in economics, if for example business cycles are to be
analysed, quite long time series are necessary if all appropriate scales are
to be properly resolved. Many economists believe that wavelet analysis
requires high frequency data, as the technique has been applied much
more frequently in finance.— this is not the case, as table 1 detailed.

2. Choice of wavelet function — issues arise such as whether to use
orthogonal or non-orthogonal, complex or real, and the choice of width
and type of wavelet function is also an issue. For analysis of economic
time series, clearly the Haar wavelet is not really appropriate, given
the discontinuous nature of its waveform, but beyond this, the choice
is largely one for the researcher, and is likely limited by the software
being used. Width of wavelet function is also very data dependent, but

16James Ramsay of New York University is particularly notable in this regard.
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as most economic time series are not high frequency, large numbers of
oscillations are usually not relevant.

3. Dyadic series — some wavelet applications require dyadic time series.
This is obviously not attractive for usage with economic time series as
it implies discarding data or padding series with extra data if the series
is not dyadic. In the examples used in this paper, the Canadian and US
time series were padded to 1024 datapoints, but the Finnish industrial
production series was left with 604 data points. Clearly the MODWT
and the DTWT show most promise here, as they do not require dyadic
series.

4. Boundary or cone of influence effects. With the DWT these are usually
labelled boundary effects, but with the CWT they are called cone of
influence effects. There are many different types of boundary treatment
rules, such as i) a periodic rule — assumption that the series is periodic,
that is for any xi = xi+nk, where k is an integer and i = 1, 2, 3, .., n;
ii) a reflection rule — assumption that xn is reflected at the boundaries
and then periodically extended; iii) a zero padding rule — at each step of
the filtering process the series is padded at the beginning and end with
zeros; iv) a polynomial extension — padding the beginning and end of the
series by repeating the beginning and end series values before and after
the series respectively; and v) an interval rule — using special ‘interval’
wavelets at the boundaries, whose filter coefficients are zero outside the
range of the data.

Obviously software is also an issue, as many of these procedures in wavelet
analysis are not easy to implement unless the researcher is an experienced
programmer. Appendix E provides a list of software resources for wavelet
analysis.

9.2 The wavelet literature in economics

There are relatively few contributions to economics that use wavelets in
the existing literature, although in recent months this list has expanded
considerably, which signals that wavelet analysis is at last being recognised as
a legitimate methodological approach in economics. The contributions located
to date are described in chronological order below:

a. Ramsey and Zhang (1995) analyses high-frequency foreign exchange rates
using waveform dictionaries and a matching pursuit algorithm and
determines that there is structure only at the lowest frequencies. At the
highest frequencies "chirp" like bursts of energy are distributed across
frequencies throughout the year.

b. Ramsey and Lampart (1998a) takes seasonally unadjusted monthly money
supply data and nominal personal income for the US from 1960—1998,
and then use Granger causality tests for each of the sets of crystals. They
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find that the relationship between money and income varies according to
scale, with money supply Granger causing income at higher scale levels,
and income Granger causing money supply at low scale levels.

c. Ramsey and Lampart (1998b) does the same thing as in a. except for
durable and non-durable expenditures and income.

d. Conway and Frame (2000) analyse different measures of the output gap in
New Zealand using time dependent spectra with wavelet analysis.

e. Tkacz (2000) uses the Jensen wavelet estimator Jensen (2000) to estimate
the fractional order of integration for Canadian and US interest rates. He
finds that US nominal interest rates likely follow long-memory processes,
and that Canadian rates also exhibit strong persistence, giving even a
larger order of integration than for the US.

f. Renaud, Starck and Murtagh (2003) propose a new forecasting method
based on wavelets whereby MRD crystals are used with a simple AR
process.

g. Atkins and Sun (2003) uses Jensen’s estimator of the long-memory
parameter coupled with Fisher regressions in the wavelet domain to show
that in the short run, there is no relationship between interest rates and
inflation for shorter time scales but is statistically significant at longer
time scales.

h. Kim and In (2003) investigate whether US financial variables have
predictive power over US industrial production data over various
frequency domains and time scales using spectral, wavelet analysis and
Granger causality tests. They find that the relationship between US
financial and real variables runs from financial variables to real at short
time scales and from real to financial at longer time scales.

i. Capobianco (2004) uses matching pursuit algorithms with waveform
dictionaries are used to scale decompose intra-day stock return dynamics.
Wavelet analysis helps to identify hidden intraday periodicities both at
the 1 minute and 5 minute timescale.

j. Crivellini, Gallegati, Gallegati and Palestrini (2004) scale decompose G6
(G7 minus Canada) industrial production data and then look at the
characteristics of the different scale cycles and do a rolling correlation
analysis of these scale components between countries17. Their results
indicated an increase in correlation of business cycles at all scales in the
1970s, a decrease in the 1980s at the medium and short run scales, and
in the 1990s relatively high long term correlations. The EU countries
also tended to have high medium term correlations in the 1990s, with
the UK an exception to this rule.

17One of the problems with the analysis here, is that the monthly industrial production

data is only analysed to the 6th scale level, which implies that longer business cycles are not

properly resolved.
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k. Dalkir (2004) scale decomposes personal income, sum and divisia monetary
aggregates for the US and uses Granger causality tests to review the
Ramsey and Lampart (1998a) results. The findings are that in the
majority of cases money Granger causes personal income, although this
relationship does reverse, usually during a shift in monetary policy
regime.

l. Fernandez (2004) looks at returns spillover in stockmarkets at different time
scales using wavelet analysis. She finds evidence of price spillovers from
North America to Latin America, emerging Asian and Far East markets,
and Pacific markets, and also evidence of spillovers from European
and Latin America to North American markets. In the latter part of
the paper she also controls for conditional heteroskadasticity and serial
correlation by using an asymmetric power GARCH model.

m. Lee (2004) uses wavelets to analyse the relationship between the South
Korean and US stockmarkets. Using MRA at different scales, it is
determined that there is strong evidence of price and volatility spillovers
from developed country to developing country stockmarkets.

n. Neumann and Greiber (2004) use scale decompositions of M3 money growth
and eurozone inflation to compare MRDs with other filters and also to
look at the relationship between M3 and inflation for the eurozone on a
scale by scale basis. They find that short- to medium-term fluctuations
of money growth with cycles of up to about 8 years were not signficant
causes of affecting trend inflation.

o. Vuorenmaa (2004) analyses Nokia share volatility using wavelet MRA
analysis.and finds that wavelet variance and covariance analysis reveals
a considerable amount about stock market activity at intra-day levels.
He then applies a local scaling law and long memory in volatility, and
finds that time-varying long-memory is supported over a medium term
period (months).

p. Gençay, Selçuk and Whitcher (2005) use wavelets with high-frequency
financial data and a hidden Markov tree model to establish a ‘new’
stylized fact about volatility — that low volatility at a long time horizon
is most likely followed by low volatility at shorter time horizons — the
reverse for high volatility doesn’t seem to be the case. The authors label
this phenomenon asymmetric vertical dependence.

10 Conclusions

Perhaps because economics does not usually deal with long data series with
‘natural’ periodicity, traditional spectral analysis never had a large amount to
offer the economics discipline. Time series analysis is probably much better
suited to analysis of shorter time series with variable ‘non-natural’ periodicity,
coupled with its emphasis on causation and underlying processes. Wavelet
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analysis, however, differs from spectral analysis in that it straddles both the
time and frequency domains, thereby allowing identification of both time
period and scale. In this sense, it likely has a lot more to offer economists.

Wavelet analysis has the potential to offer much to empirical economic
research. The potential is particularly apparent in two areas of economics:
that of business cycle analysis, which naturally lends itself to analysis of
periodicities, and where filtering has been a particularly controversial issue;
and in any part of macro or monetary economics where theoretical long-run
and short-run relationships can be distinguished. It’s ability to separate out the
dynamics in a time series over a variety of different time horizons, the number
of which being directly related to the type of time series and the number of
observations available, can reveal interesting insights into cycles at different
time scales. It’s ability to work with non-stationary data is particularly
advantageous, as most econometric methodology assumes stationarity, which
may or may not be apparent in economic data (either locally or globally).

In particular, wavelet analysis now offers economic researchers the
availability of the MODWT, so that time series can be decomposed into
identical numbers of scale-decomposed equivalent series, making statistical
testing and time series analysis possible for individual scale crystals. The
real challenge will be to integrate the wavelet approach with the traditional
time-series toolkit of the econometrician, as perhaps here the potential
contribution is greatest, and here there is also the greatest chance of impressing
upon the wavelet research community that this methodology has something to
offer outside of its most widely-applied research areas.
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Appendix

A. Industrial production indices

In the paper, three industrial production indices are used. These are as follows:

• Canadian industrial production — this is available in a monthly format
from January 1919, although it is necessary to construct a full data series
from three different Statistics Canada (CANSIM) series, and then splice
together. The series was seasonally adjusted by the Bank of Finland
using the Stamp programme. The resulting series gave 1014 percentage
year-over-year observations, just shy of a dyadic series of 1024 points.
The series was therefore padded by using the August 2004 value for the
percent change of the index over the remaining 10 months.

• US industrial production — this is available from the Bureau of Economic
Analysis (BEA) of the US Department of Commerce. The data is
available on the web, and was again seasonally adjusted by the Bank of
Finland. Again, only 1015 monthly data points were available obtained
when transformed to a percentage year-over-year series, so these were
padded using the last observation for September 2004.

• Finnish industrial production — the source was Statistics Finland,
seasonally unadjusted. The series was seasonally adjusted by the Bank
of Finland using the Stamp programme. As this was a non-dyadic series,
it is only used in the later sections of the paper.

The seasonally adjusted data are shown in figure 43 with right hand side plots
representing the industrial production index and the right hand side plots
representing the year-on-year change in the three indices.

The Finnish industrial production series starts in 1954 and so has a shorter
time-span than the other two series Figure 44 shows a spectral decomposition
for the Finnish series.

Note that the raw periodogram appears to be quite similar to the
periodograms for the Canadian and US series, which suggests that monthly
industrial production series tend to embed 5 frequencies.
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Figure 43: Canadian, US and Finnish Industrial Production Series

B. Wavelets as filters

For most purposes in practical applications wavelets only need to be defined
over a specific span of points in time. In place of actual wavelets sequences of
values representing the wavelet are used — these are commonly called wavelet
filters. The number of values in the series is called the length of the wavelet
filter and the number of values is known as the ‘tap’ of the filter. Given a
wavelet filter {hl} where l = 0, , , (L−1), the set of wavelet coefficients hl have
to satisfy:

∑
L−1

l=0
hl = 0∑

L−1

l=0
h2
l
= 1∑

L−1

l=0
hlhl+2k = 0

(10.1)

— in other words, the coefficients must sum to zero have unit energy and be
orthogonal to even shifts in the filter. The last two conditions in equation are
called the orthonormality conditions. This defines the father wavelet in filter
terms. To obtain a mother wavelet filter, which is known in the filter literature
as a ‘scaling wavelet’, the wavelet filter is converted using a quadrature mirror
filter so that the coefficients of the mother wavelet filter are given by:

gl = (−1)l+1hL−1−l (10.2)
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Figure 44: Finnish industrial production: a) series; b) annual % change; c)raw
periodogram; d) autocorrelation spectra.

The mother wavelet filter also satisfies the orthonormality condition but does
not have unit energy:

∑
L−1

l=0
gl =

√
2∑

L−1

l=0
g2
l
= 1∑

L−1

l=0
glgl+2k = 0

(10.3)

The shape of the wavelet filter is known in this literature as the ‘impulse
response’. There are several different types of wavelet filters, which all
correspond to a continuous wavelet counterparts discussed in the main part of
the text, but are referred to using filter terminology. Examples of these are as
follows:

1. Extremal phase filters — here energy increases rapidly — these are
asymmetric filters, which are also known as minimum phase filters or
‘daublets’, as they roughly correspond to Daubechies wavelets.

2. Least asymmetric filters — filters in this group are smoother and are
nearly symmetric — the magnitudes of their discrete fourier transforms
are the same, and they correspond to Symmlet wavelets.

3. Best localized filters — these filters are also nearly symmetric and they
also have the same gain functions.
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Figure 45: Squared gain function for Coiflet c6 filter

4. Coiflet filters — these filters approximate linear phase filters, and have
different gain functions from the other three types above — they clearly
correspond to a Coiflet wavelet.

A DWT simply corresponds to repeated application of a chosen filter, which is
often referred to as a ‘filter bank’. Obviously for any scale level J , an amplitude
reduced and dilated filter can be derived (using the pyramid algorithm) for
the original data to be convolved with, giving one filter for each level of the
transform. In this sense the filter bank acts as a bandpass filter, and the
frequency response of any combined filter can be obtained. For example, figure
45 shows the frequency response for a Coiflet 6 length filter at scale levels of
J = 1, 2, ..5.

For the DTWT, there are four types of scale filters and four types of wavelet
filters to select from. In figure 46 nearsyma and Qshiftc filters are shown. The
first row of figure 46 shows the filters that are applied to all of the data,
then the second row shows the filters that are applied to one tree and the
third row shows the filters that are applied to the second tree. Clearly the
frequency response for the Qshift scaling filter will be oriented towards the
higher frequency parts of the series and the nearsyma wavelet filters will be
oriented towards the lower frequency fluctuations of the series.
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Figure 46: DTWT filters. Top row — level 1 filters; middle row — tree A filters,
bottom row — tree B filters

C. MODWT

Here we use matrix notation. Let x be a vector of N observations. The vector
of MODWT coefficients is given by:

w̃ = W̃x (10.4)

where W̃ is the (J+1)NxNmatrix defining the MODWT, and so w̃ is a (J+1)N
vector of wavelet coefficients which result from the transform. Similarly to a
DWT, the MODWT matrix W̃ can be rewritten as:

W̃ =

⎡⎢⎢⎢⎢⎢⎣
W̃1

W̃2

...

W̃J

ṼJ

⎤⎥⎥⎥⎥⎥⎦ (10.5)

where W̃1 is an NxN matrix representing the filter components at each scale
level. But also each scale level in the matrix can be rewritten as:

W̃1 =
[
h̃
1

1
h̃
2

1
h̃
3

1
... h̃

N−2
1

h̃
N−1
1

h̃1

]T
(10.6)
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Figure 47: MODWPT for Canadian industrial production

for scale 1, where the vector of filter coefficients h̃k
1
represent the rescaled jth

scale filter coefficients:

h̃j =
hj

2j
(10.7)

where hj is the vector of DWT filter coefficients shifted k intergers to the right.
In other words, the MODWT essentially takes a DWT and shifts the

the wavelet filters one to the right to interweave with any given level of the
equivalent DWT submatrix W̃. In practice a pyramid algorithm is used, but
without the downsampling inherent in a DWT.

Figure 47 shows the MODWT packet table for Canadian industrial
production:
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Figure 48: USD/GBP exchange rate: a) daily exchange rate; b)
abs(diff(log(USD/GBP)))

D. British pound exchange rate

This daily series was taken from the Bank of England’s exchange rate database.
The series runs from 1975 to 26 October 2004, and contains 7540 datapoints.
The original series and the absolute value of the log differenced series are
plotted below in figure 48

E. Software sources

Software for wavelets is now quite widely available. Both SPLUS and Matlab

have modules for extensive wavelet analysis that can be separately purchased
from the publishers themselves, and a separate wavelet module is available as
freeware for use with the open source R statistical software. Apart from this,
software is available for specialist wavelet applications, for example Autosignal
implements the CWTs spectral analysis described in this paper, and freeware
is also available to implement this with Matlab. An additive package called
TSM is available forGAUSS as well, although this appears to only do a limited
degree of wavelet analysis.
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