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On the Estimation of Euler Equations in the Presence
of a Potential Regime Shift

Bank of Finland Discussion Papers 6/99

Pentti Saikkonen
University of Helsinki

Antti Ripatti
Research Department

Abstract

The concept of a peso problem is formalized in terms of a linear Euler equation
and a nonlinear marginal model describing the dynamics of the exogenous driving
process. It is shown that, using a threshold autoregressive model as a marginal
model, it is possible to produce time-varying peso premia. A Monte Carlo method
and a method based on the numerical solution of integral equations are considered
as tools for computing conditional future expectations in the marginal model. A
Monte Carlo study illustrates the poor performance of the generalized method of
moment (GMM) estimator in small and even relatively large samples. The poor
performance is particularly acute in the presence of a peso problem but is also
serious in the simple linear case.

Keywords: peso problem, Euler equations, GMM, threshold autoregressive
models
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Eulerin yhtälöiden estimoinnista mahdollisten
regiimin muutosten tapauksessa

Suomen Pankin keskustelualoitteita 6/99

Pentti Saikkonen
Helsingin yliopisto

Antti Ripatti
Tutkimusosasto

Tiivistelmä

Tutkimuksessa muotoillaan peso-ongelma lineaarisen Eulerin yhtälön ja epäli-
neaarisen, eksogeenista ohjausprosessia kuvaavan marginaalimallin avulla. Ajassa
vaihteleva pesopreemio syntyy mm. silloin, kun marginaalimalli on muodoltaan
autoregressiivinen kynnysmalli. Tutkimuksessa tarkastellaan lisäksi Monte Carlo
-menetelmää ja integraaliyhtälöiden numeeriseen ratkaisuun perustuvaa menetel-
mää laskea marginaalimallin ennusteet. Tutkimuksessa muotoiltuun malliin nojaa-
vat Monte Carlo -kokeet viittaavat siihen, että yleistettyyn momenttimenetel-
mään, GMM:ään, perustuvat estimaattorit toimivat huonosti pienissä otoksissa.
Tämä pätee paitsi peso-ongelmaisiin malleihin myös tavallisiin lineaarisiin
malleihin.

Asiasanat: peso-ongelma, Eulerin yhtälö, GMM, autoregressiiviset kynnysmallit
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1 Introduction

Euler equations appear in a variety of modern dynamic economic models
developed in areas such as consumption, investment and inflation to name a few.
Well-known examples are Hall’s (1978) life cycle -permanent income model,
Abel’s (1982) model of investment with adjustment costs and Cagan’s (1956)
hyperinflation model. In a simple special case an Euler equation states that the
current value of a variable of interest is a linear function of its future rational
expected value and the current value of a so called forcing variable. The
econometric analysis of an Euler equation often suffers from a problem
commonly referred to as a peso problem. This means a situation where the
potential of a regime shift in the forcing variable affects agents’ expectations.
From a statistical point of view the probability of such a regime shift has to be
small because it is assumed that no regime shift has actually occurred during the
sample period. However, if the potential of a regime shift has still affected agents’
expectations ignoring this in the econometric analysis means using a misspecified
model and, consequently, inefficient or even invalid econometric methods. This in
turn can lead to seriously misleading conclusions.

This paper is concerned with some econometric aspects related to Euler
equations in the presence of a peso problem. There are two conceivable
extensions of conventional linear time series models which could be entertained to
model the forcing variable and thereby expectations based on it in this situation.
The first one is an autoregressive model in which the mean value changes
between two regimes according to a Markov chain. This model, discussed by
Hamilton (1993, 1994, chapter 22), has recently been employed in various
contexts but, at least in its simplest form, turns out to be unsuitable for our
purposes. As a second model we shall therefore consider a threshold
autoregressive model in which the intercept term can switch between two regimes.
This model seems to be capable of allowing for the peso problem and will
therefore be explored in some detail.

The plan of the paper is as follows. Section 2 introduces the problem and
discusses the above mentioned models. In order to make the main points easy to
follow several simplifying assumptions will be made. Section 3 deals with the
computation and properties of conditional expectations in the case where a
threshold autoregressive model is assumed for the forcing variable. These results
are employed in Section 4 where Gaussian maximum likelihood estimation of the
parameters in both the Euler equation and the threshold autoregressive model of
the forcing variable is discussed. The same set-up is used in Section 5 to study the
generalized method of moments (GMM) estimation of the parameters in the Euler
equation. Section 6 studies small sample properties of various GMM estimators
by Monte Carlo simulation. Conclusions are given in Section 7.
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2 Model

Consider the two variables yt and xt related by the simple Euler equation

t1t
*
tt xyEy β+α+ν= + (2.1)

where *
tE  denotes the conditional expectation with respect to a information set

available to economic agents at time t. Assuming that 0 < α < 1 equation (2.1) can
be solved as

jt
*
t

0j

j
t xEmy +

∞

=
∑αβ+= (2.2)

where m = ν/(1−α) and tt
*
t xxE = . For econometric analysis we often have to

replace the information set used to define *
tE  by a smaller counterpart available to

the econometrician. Since we assume that the two variables yt and xt are only
observed this information set is here {ys, xs; s ≤ t}. Instead of (2.2) we then have

tjtt
0j

j
t xEmy ε+αβ+= +

∞

=
∑ (2.3)

where Et is the conditional expectation with respect to the information set
{y t, xt; s ≤ t} and

.xExE jtt
1j

j
jt

*
t

1j

j
t +

∞

=
+

∞

=
∑∑ αβ−αβ=ε (2.4)

Clearly, εt has the martingale difference property

.0E tt =ε (2.5)

For simplicity, we also assume that there is no Granger causality from current and
lagged values of yt to xt so that

.1j),ts;xx(E)ts;x,yx(E sjts1sjt ≥≤=≤ +++ (2.6)

We are interested in modelling the effects of the peso problem so that the potential
of a regime shift affects the agents' expectations about the forcing variable xt

although no regime shift has occurred during the sample period t = 1, …, T. It is
fairly obvious that conventional linear models cannot be used to allow for this
feature. A conceivable possibility might be to assume that the forcing variable xt

follows an autoregressive (AR) process whose mean value changes between two
regimes according to a (homogeneous) Markov chain in such a way that the
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probability of a shift to the higher level regime is very small (see eg Hamilton
(1993) or (1994, chapter 22) for the this model). Specifically, one might specify

tst zx
t

+µ= (2.7)

where zt is a zero mean stationary AR process and st is a two-state Markov chain,
independent of the zt process. The transition probabilities of st are

P{st = 1 | st-1 = 1} = p11

P{st = 2 | st-1 = 1} = p12

P{st = 1 | st-1 = 2} = p21

P{st = 2 | st-1 = 2} = p22

where st = 1 indicates the regime from which the observations have been obtained
and st = 2 indicates the higher level regime to which the process can potentially
shift. Thus, 21 µ<µ  and the probabilities p11 and p12 are close to one and zero,
respectively.

Even though the above model may look suitable for our purposes it does not
work because we assume that no regime shift has occurred during the sample
period and information of this is available. Indeed, under these assumptions the
conditional expectations in (2.3) have to be calculated conditional on the known
regime and, since we have assumed (2.6), the calculations in Hamilton (1993, p.
253) show that the infinite sum in (2.3) is the same as in the case where xt follows
a linear AR process except for an additive constant.1 This constant is induced by
the changing mean value tsµ  in (2.7) and it describes the effect of the peso

problem in this model. However, this effect cannot be estimated or taken into
account because it cannot be separated from the intercept term m in (2.3). Thus, in
this approach the effect of the peso problem is not identified. The situation might
change if the homogeneity assumption of the Markov chain used to model the
potential regime shift were abondoned and the transition probabilities were made
dependent on observable variables. This would probably make the resulting model
and its application rather complex so that another approach will be considered
below.

We shall assume that xt follows the threshold autoregressive (TAR) process

t1tptp1t1t )cx(Ixxx η+≥δ+φ++φ+µ= −−− � (2.8)

where the indicator function I(.) takes the value one when the indicated statement
is true and zero otherwise and ηt is a martingale difference sequence satisfying

.0)ts;x(E st =<η (2.9)

                                                
1 Hamilton (1993) only considers a first order AR process but his treatment can easily be extended
to any finite order AR process.
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It is also assumed that the zeros of the polynomial 1−φz−…−φpz
p lie outside the

unit circle. This assumption and some reasonably mild additional conditions on
the error term ηt imply that xt is geometrically ergodic and strong mixing with
geometrically decaying mixing coefficients (see Masry and Tjøstheim (1995,
Lemma 3.1)). For instance, assuming that ηt is Gaussian white noise is sufficient
in this respect.

From (2.6), (2.8) and (2.9) one readily finds that E(ηt|ys, xs−1; s ≤ t) = 0 which
in conjunction with (2.3) yields Eεtηt+j = 0, j > 0. On the other hand, since (2.5)
and (2.8) give Eεtηt−j = 0, j ≥ 0, our assumptions imply that the error terms εt and
ηs are uncorrelated for all t and s.

In the TAR process (2.8) possible regime shifts are modelled by the indicator
function I(xt−1 ≥ c) and related parameter δ which is assumed to take on positive
values. Our previous assumption that the observations of xt all come from one
regime means that the observed series x1,…,xT and also the initial values
x−p+1,…,x0 are such that xt < c for all t = −p+1,…,T. Thus, within the sample the
TAR model (2.8) actually reduces to a conventional linear AR model. However,
at any point of time xt−1 ≥ c could have occurred and, since δ > 0, a jump to a
higher level regime could have occurred too. With suitable parameter values the
probability of such a regime shift can be small and, consequently, it is possible to
observe even fairly long realizations of xt without a shift to the higher regime.
This feature is illustrated in Figure 1 which shows realizations of the TAR process
(2.8) and related probabilities of a regime shift. Even though the probability of a
regime shift or the event xt−1 ≥ c is small it affects the conditional expectations
Etxt+j and thereby the behavior of yt (see (2.3)). In particular, it is intuitively fairly
obvious from (2.8) that when the value of xt−1 increases close to c the conditional
expectations of future values of xt also increase and, if the value of the parameter
δ is large, the effect of this can be substantial and it differs from an additive
constant. This fact can be seen in the simulated realizations of Figure 2 and it will
also be seen formally in the next section.

If δ = 0 a priori (2.8) reduces to a linear AR model and, as is well known, an
analytic expression can be obtained for Etxt+j and the infinite sum in (2.3).
However, when δ > 0 the situation is much more complicated and no analytic
expressions are generally available. Computation of these conditional
expectations is required, however, if maximum likelihood (ML) estimation of the
parameters in (2.3) and (2.8), based on a chosen distributional assumption of the
errors, is considered. The same is true if one wants to generate simulated data to
see whether the idea used in the TAR model (2.8) appears reasonable. In the next
section these computational issues are discussed in more detail. For this purpose,
as well as for ML estimation, the martingale difference assumptions so far made
of the error terms εt and ηt are not sufficient. Unless otherwise stated it will
therefore be convenient to assume throughout the rest of this paper that [εt ηt]' is a
sequence of independent and identically distributed (iid) random vectors.
Sometimes a normal distribution will also be assumed to make the exposition
more concrete.
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Figure 1. Threshold Autoregressive Model and the
Probability of Regime Shift

The left panel shows three realization of the process xt with ηt∼N(0, 0.001) and T = 100.
The parameter values are ν = 0, α = 1/1.05, β = 1, µ = 0, φ1 = 1.1, φ2 = –0.28 (the roots
are 0.7 and 0.4), δ = 0.25 and c = 0.193. The right panel reports the probability of a
regime shift before the period measured in horizontal axis. These probabilities are
obtained by simulation and graphed for various choices of the threshold value.
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Figure 2. Realizations of the xt and the yt and the Time-
Varying Peso Premia

The xt process is simulated with ηt∼N(0, 0.001) and T = 100. The parameter values are
ν = 0, α = 1/1.05, β = 1, µ = 0, φ1 = 1.1, φ2 = –0.28, δ = {0, 0.5} and c = 0.193. When
computing the yt process, the simulation method proposed by Clements and Smith (1997)
is applied in the computation of Etxt+j (j = 1, …).
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3 Computation of conditional expectations

Consider the TAR model (2.8) with given parameter values. A simple way to
compute the conditional expectations needed in (2.3) is to use the simulation
method proposed by Clements and Smith (1997). In this approach Etxt+j is
replaced by a simulated counterpart for j = 1,…,J and the value of J so large that
the infinite sum can be truncated at j = J with only a negligible error. The first step
of this method is to simulate values of the error term ηt, which makes clear that
the distribution of the errors has to be specified. Of course, for j = 1 it is not
necessary to use simulation because

),cx(Ix...xxE tp1tpt11tt ≥δ+φ++φ+µ= −++ (3.1)

as is obvious from (2.8).
Even though the simulation method is simple to apply it is also reasonable to

consider analytic methods because it is useful to understand analytic properties of
the conditional expectations in (2.3). Here we assume that the initial values of xt

are taken from the stationary distribution and employ the companion form of
(2.8). For simplicity, we also assume that µ = 0 a priori. This means no loss of
generality because in (2.8) we can use the transformations ∗µ−→ tt xx  and

∗µ−→ cc where )1/( p1 φ−−φ−µ=µ∗ � . Thus, instead of (2.8) we can consider
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t1t111tt N)cXe(IeAXX +≥′δ+= −− (3.2a)

t1t Xex ′= (3.2b)

where e1 = [1 0 … 0]' (px1) and the rest of the notation is obvious. To simplify,
write (3.2a) as

.N)X(hX t1tt += − (3.3)

Thus, since ηt is a sequence of iid random variables, Xt is a Markov chain over Üp.
Denoting E(Xt+j|Xt) = Kj(Xt) (j ≥ 1) we can therefore conclude from the Chapman-
Kolmogorov relation the recursion

�,3,2j,dz)z(p)z(K)X(K
tX1tX1jtj ==

+

∞

∞−
−∫ (3.4)
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where )z(p
tX1tX +

 signifies the conditional density function of Xt+1 given Xt (see

Tong, 1990, section 6.2.1).2 The relation of this to the conditional expectations
needed in (2.3) is seen from the identify 1j),X(KexE tj1jtt ≥′=+ . For j = 2 the

right hand side of (3.4) depends on

)cze(IeAz)z(h)z(K 111 ≥′δ+== (3.5)

where the first equality is justified by (3.3) and the second one by (3.2a).
Equation (3.1) gives an expression of Etxt+j for j = 1. Since we assume that

xt < c the result is the same as in the case of a linear AR model. To see what
happens when j = 2, note that from (3.4) and (3.5) it follows that

1t11

c

1tt2 dz))X(hez(ge)X(Ah)X(K ′−δ+= ∫
∞

(3.6)

where z1 signifies the first component of the vector z and g(.) is the density
function of ηt (cf. Tong, 1990, section 6.2.1). If we assume for concreteness that

),0(N~ 2
t ηση  (3.6) yields











σ

−′
Φδ+′=

η
+

c)X(he
)X(AhexE t1

t12tt (3.7)

where Φ(.) is the cumulative distribution function of the standard normal
distribution. The assumption xt < c implies that h(Xt) = AXt and the first term on
the right hand side of (3.7) is the same as in the case where xt follows a linear AR
process. However, since δ > 0 is assumed the second term on the right hand side
of (3.7) is nonzero and gives an additional contribution to Etxt+2 even though
h(Xt) = AXt holds, as in the linear case. In particular, when

1ptpt1t1 xx)X(he +−φ++φ=′ �  gets close to the value of the threshold parameter c

the value of Etxt+2 gets larger than in the corresponding linear case. The larger the
value of the parameter δ the stronger this effect is and it is clearly nonconstant.
This provides a formal explanation for the similar intuitive conclusion given in the
previous section.

Above we have seen how the nonlinearity of the TAR model (2.8) affects the
conditional expectations Etxt+j when j = 1, 2. This can be pursued further to see a
similar effect on the infinite sum in (2.3). To this end, we first notice that the first
term on the right hand side of (3.6) equals AK1(Xt). This suggests the recursion

�,3,2j),X(ke)X(AK)X(K tj1t1jtj =δ+= − (3.8a)

1t112ptt11jtj dz))X(hez(g)x,x,z(k)X(k ′−= +−

∞

∞−
−∫ � (3.8b)

                                                
2 Here, as well as later, the existence of the stated density function is assumed.
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where K1(Xt) is obtained from (3.5) and )cze(I)z(k 11 ≥′=  (cf. (3.6)). The validity
of this recursion can be readily checked by induction (see the appendix). Equation
(3.8a) can be solved to yield

.2j),X(keA)X(KA)X(K tij1

2j

0i

i
t1

1j
tj ≥δ+= −

−

=

− ∑

Since )X(KexE tj1jtt ′=+  and since K1(Xt) = AXt is assumed it follows from this

that

).X(keAeX)AI(e

)X(keAeXAeAXeXexE

tj1
2j

ji

0i

i
1t

1
p1

tij1

2j

0i

i

2j

j
1t

j

2j

j
1t1t1jtt

0j

j

∑∑

∑∑∑∑
∞

=

∞

=

−

−

−

=

∞

=

∞

=
+

∞

=

αα′δ+α−′=

α′δ+α′+′α+′=α

Thus, we can write

).X(ke)AI(eX)AI(exE t
2j

j1
1

p1t
1

p1jtt
0j

j ∑∑
∞

=

−−
+

∞

=

α−′δ+α−′=α (3.9)

The latter term on the right hand side is due to the nonlinearity of the TAR model
(2.8) and can be interpreted as a measure of the peso problem in model (2.3).

Arguments used to obtain (3.6) from (3.4) and (3.5) can also be used to obtain

3ttt31 xE)X(Ke +=′  and furthermore jtttj1 xE)X(Ke +=′  for j ≥ 4. Obviously, these

results will get involved and cannot be given in closed form. However, even if the
above derivations are not used for practical computation they can be used to study
analytic properties of the infinite sum in model (2.3). This is needed to justify the
application of conventional ML estimation theory, as will be discussed in the next
section.

We close this section with a remark on the infinite sum on the right hand side
of (3.9). Multiplying both sides of equation (3.8b) by αj, summing over j ≥ 2 and
using the definition )cze(I)z(k 11 ≥′=  we find that

.dz))X(hez(g

dz))X(hez(g)x,,x,z(k)X(k

1t11

c

2

1t112ptt1
2j

jtj
2j

j

′−α+

′−α=α

∫

∫ ∑∑
∞

+−

∞

∞−

∞

=

∞

=

�

(3.10)

Thus, we have an integral equation for the infinite sum on the right hand side of
(3.9). One could try to solve this integral equation directly and, as equation (3.9)
shows, thereby be able to compute the infinite sum in model (2.3) without
computing the individual summands Etxt+j. Finding out the feasibility of this
approach requires expertize on numerical solution of integral equations, a topic
outside the scope of this paper. For a comprehensive reference, see Baker (1977).
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4 ML estimation

The discussion in the previous section shows that the infinite sum in (2.3) is a
function of the vector Xt−1, the parameters of the xt process in (2.8) and the
parameter α. Thus, we can write

),c,,,;X(fxE 2
1t

*
jtt

0j

j
η−+

∞

=

σδγα=α∑ (4.1)

where 2
t

2 Eη=ση  and the parameter vector γ = [µ, φ1, …, φp]' contains the

regression coefficients in (2.8) which can be estimated from this model even if
xt < c is assumed. We can thus consider (2.3) as a nonlinear regression model

T,,1t,),,;X(fy t
2

1tt �=ε+σγψ= η− (4.2)

where ψ = [m β α δ c]' and ),c,,,;X(fm),,;X(f 2
1t

*2
1t η−η− σδγαβ+=σγψ . For

simplicity, we shall use the notation f(Xt−1; .) = ft−1(.) and similarly for f*(Xt−1; .)
when there is no need to be explicit about the vector Xt−1.

For ML estimation we have to supplement (4.1) by a model of the xt process
and a distributional assumption. Since xt < c is assumed in the data (2.8) implies

T,,1t,zx ttt �=η+γ′= (4.3)

where ]X1[]'xx1[z 1tpt1tt −−− ′==′ �  and observations of the presample values

x−p+1, …, x0 are supposed to be available. Note that, unlike in the linear case, the
regression function in (4.2) does not only depend on the regression coefficients in
(4.3) but also on the error variance 2ησ . This means that there are rather

complicated cross equation restrictions in the model which have to be taken into
account in full ML estimation.

For concretness, the distributional assumption we make in the ML estimation
is that the error terms εt and ηt have a joint normal distribution. (It is not difficult
to see how the subsequent discussion should be modified if other distributions are
employed.) Since we saw in the previous section that εt and ηt are uncorrelated the
normality assumption entails that they are independent Gaussian processes. Thus,
the conditional log-likelihood function of the data with x−p+1, …, x0 given is (apart
from a constant)

∑

∑

=η
η

=
η−

γ′−
σ

−σ−

σγψ−
σ

−σ−=θ

T

1t

2
tt2

2

T

1t

22
1tt2

2
T

)zx(
2
1

log
2
T

)),,(fy(
2
1

log
2
T

)(l

(4.4)
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where 2
t

2 Eε=σ  and ]'[ 22 σσγ′ψ′=θ η  is the vector of all unknown parameters.

When a procedure of computing the infinite sum in (2.3) is available it is possible
to compute the value of the function ),,(f 2

1t η− σγψ  and hence the value of the log-

likelihood function lT(θ) for any given parameter values. Thus, numerical methods
can be used to find a ML estimator of θ. Since analytic derivatives of the function

),c,,,(f 2*
1t η− σδγα  are not available it is necessary to consider numerical methods

which do not require analytical derivatives (or all of them). That the log-
likelihood function has first and second order partial derivatives will be
demonstrated below.

Since we have assumed that ),0(N~ 2
t ηση  and xt < c for t = −p+1, …, T it

follows from (3.1) and (3.7) that Etxt+j, j = 1, 2, are twice confinuously
differentiable with respect to the parameters δσφφµ η,,,,, 2

p1 �  and c. (Notice that

differentiability with respect to c requires the assumption xt−1 < c and that
differentiability with respect to µ in the case j = 2 can readily be shown even
though (3.6) involves the a priori assumption µ = 0.) From (3.8) it can further be
seen by induction that the same result holds for )X(KexE tj1jtt ′=+  with j ≥ 3.

Thus, the function ),c,,,(f 2*
1t η− σδγα  defined in (4.1) is twice continuously

differentiable from which the same result can be obtained for ),,(f 2
1t η− σγψ  and

further for the log-likelihood function lT(θ).
Thus, since the likelihood function satisfies conventional smoothness

conditions and stationary variables are involved one would expect that usual large
sample results hold for the ML estimator of θ. This, however, also requires
identifiability of the parameter θ as well as more technical conditions, often
formulated in terms of uniform convergence of T−1lT(θ) and its Hessian. No
attempt is made to discuss technicalities of this kind here. From a practical point
of view the identifiability issue is of importance but not easy to deal with
precisely because no analytic expression of the infinite sum in (4.1) is available.
From equations (2.3) and (2.8) it can immediately be seen that identifiability fails
if any of the parameters α, β or δ takes the value zero. In the case of α and δ this
has already been ruled out by assumption and the same can also be done in the
case of β. The parameters γ and 2

ησ  can be uniquely determined from (4.3) so that

they are identified while the identifiability of α, m, β, σ2 seems clear by equations
(4.1) and (4.2) and the fact that the conditional expectations in (4.1) do not depend
on α. The indentifiability of the parameter δ can be explained by equation (3.9)
and the definition of kj(Xt) in (3.8b). By equation (3.9) and the fact

)/)cAXe()X(k t1t2 ησ−′Φ=  there seems to be no reason to suspect that the

identifiability of the parameter c would fail either. Thus, on the basis of these
informal considerations the identifiability of the whole parameter vector θ seems
credible.

The above discussion suggests that it is reasonable to apply standard large
sample estimation and hypothesis testing results to the model defined by

equations (4.2) and (4.3). In particular, if θ̂  denotes the ML estimator of θ its
distribution is approximately N(θ,(−∂2lT(θ)/∂θ∂θ')−1) and Wald tests can be

constructed in the usual way after the Hessian of lT(θ) at θ=θ ˆ  has been
computed. (This again has to be done numerically.) Of course, corresponding
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likelihood ratio and Lagrange multiplier tests can also be used. Two things are
worth noting here, however. First, since the error variance 2

ησ  also appears in the

regression function (4.2) its ML estimator is not asymptotically independent of the
regression coefficient estimators, which is the case in ordinary nonlinear
regression models. Second, the null hypothesis δ = 0 cannot be tested in the usual
way. The reason is that the threshold parameter c is not identified under this null
hypothesis so that usual large sample results do not hold. Special measures are
therefore called for the develop a (likelihood based) test in this case (see Hansen,
1996, and the references therein). Of course, the same is also true for the null
hypotheses α = 0 and β = 0 but they are hardly of any practical interest. The
reason why the hypothesis δ = 0 could be of interest is that it implies that a
conventional linear AR model can be used to model the forcing variable xt and the
more complicated TAR model (2.8) is not needed. When no likelihood based test
is available for this purpose one may consider the familiar RESET test and less
formal procedures like residual plots.

An interesting feature in the present estimation problem is that conventional
large sample results are justified even though a threshold model is considered.
This is due to the assumption xt < c (within the sample) which implies the
conventional smoothness of the likelihood function. In proper threshold models
the likelihood function is not differentiable with respect to the threshold parameter
so that the estimation problem becomes nonstandard (see Tong, 1990).

Since the full ML procedure discussed above is iterative it is desirable to have
good initial estimates for the parameters. As far as the parameters γ and 2

ησ  are

concerned, an obvious way is to apply least squares to equation (4.3). Initial
estimates for the parameters m (= ν/(1−α)), α and β are also easily obtained by a
simple GMM procedure to be discussed in more detail in the next section. If
initial estimates of the parameters δ and c are also available an initial estimate of
the error variance σ2 can be obtained from the residuals of equation (4.2) in the
usual way. Unfortunately, however, there seems to be no simple estimation
procedure which could be used to obtain initial estimates for the parameters δ and
c, although some rough ideas will be discussed in the next section. If pure initial
guesses are employed any ideas of the possible values of δ and c should be made
use of. In the case of the parameter c the condition c > max {xt, t = −p+1, …, T}
should particularly be taken into account.

5 GMM estimation

Since the ML estimation discussed in the previous section is rather complicated
we shall here take a closer look at simpler alternatives based on the GMM
approach. The idea is to estimate the parameters ν, α and β in (2.1) by applying
GMM or, equivalently, instrumental variables estimation to the equation

tt1tt uxyy +β+α+ν= + (5.1)

where )yEy(u 1tt1tt +
∗

+ −α−=  is a martingale difference sequence satisfying
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0uE t
*
t = (5.2)

Obviously, equation (5.1) is obtained from (2.1) by replacing the unknown
conditional expectation 1t

*
t yE +  by the observable variable yt+1. Although (5.2)

implies that the errors in (5.1) are serially uncorrelated it does not rule out
conditional heteroskedasticity. In subsequent developments conditional
homoskedasticity would not be a necessary assumption but, since it simplifies
matters, it will be assumed. Thus, we make the additional assumption that

2
u

2
t

2
t

*
t EuuE σ== , say.

Now consider the choice of instruments needed in the GMM estimation of the
parameters in (5.1). By (5.2) instruments are only needed for the variable yt+1.
Valid instruments include xt and yt as well as their lagged values and any
functions of these. A general form of the GMM estimator can be defined as
follows. First, denote wt = [1 yt+1 xt]' and let 1ty~ +  be the least squares fit in an

auxiliary regression of yt+1 on chosen instruments collected in the vector qt.
Although not necessary it may be helpful in subsequent discussions to assume that
these instruments include 1, xt and some additional variable(s). Now, if
λ = [ν α β]' is the parameter vector to be estimated from (5.1) and

]'xy~1[w~ t1tt +=  GMM yields the estimator
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 ′=λ (5.3)

(cf. Hamilton, 1994, p. 420). As is well known and easy to check, the estimator λ~

can be obtained by minimizing the function
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Under suitable reqularity conditions (including conditional homoskedasticity) the

estimator λ~  can be treated as approximately normally distributed with mean value
λ and estimated covariance matrix

1

t
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 ′σ=λ ∑ (5.4)

where ( )∑
=

− λ′−=σ
T

1t

2

tt
12

u w
~

yT~  is an estimator of 2
uσ . This result can be used to

construct Wald type tests on the parameter vector γ in the usual way.

Above the estimator λ~  implicitly assumed that the instruments used for yt+1

were taken from the set {1, xt, xt−1, …, xt−h, yt, yt−1, …,  yt−h}. Since the errors in
(5.1) are serially uncorrelated it is possible to use a result of Tauchen (1986) and
consider an optimal choice to instruments. Here optimality means obtaining a
GMM estimator whose limiting distribution has a minimum covariance matrix
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when the relevant information set is that of the econometrician, ie, {ys, xs; s ≤ t}.
Since conditional homoskedasticity has been assumed Tauchen's (1986) result
implies that an optimal choice of instruments is given by the vector [1 Etyt+1 xt]'.
From a practical point of view this result is of course infeasible because the
conditional expectation Etyt+1 depends on unknown parameters. However, it can
still be helpful when one tries to understand the estimation problem and also to
find good instruments.

The above discussion implies that an optimal instrument of yt+1 is

j1tt
0j

j
1tt xEmyE ++

∞

=
+ ∑αβ+= (5.5)

where the equality is based on (2.2). When the forcing variable xt is assumed to
follow the TAR process (2.8) the right hand side of (5.5) also depends on the
nonlinear parameters δ and c which, under our assumptions, cannot be estimated
from (2.8) alone. Trying to make the optimal instrument of yt+1 feasible by using
an estimated counterpart is therefore not easy. However, if the values of the
parameters δ and c are fixed the optimal instrument can be made feasible by
replacing other parameters on the right hand side of (5.5) by estimates discussed
in the previous section and simulating the conditional expectations for j = 1, …, J
and J large. This could be repeated for various values of δ and c and those giving
a minimum of the GMM objective function QT(λ) could be chosen. In this way a
rough feasible version of the optimal instrument as well as rough initial estimates
of the parameters δ and c can be obtained.

In order to study the above optimal instrument given in (5.5) more closely,
suppose again that µ = 0 a priori and note that from (2.3) and (3.9) one readily
finds that

)X(ke)AI(e

xX)AI(emyE

tj
2j

j
1

1
p1

tt
1

p11tt

∑
∞

=

−

−
+

αα−′δ
α
β+

α
β−α−′

α
β+=

(5.6)

where the notation is as before. When the instruments used for yt+1 include 1, xt
and a third variable the GMM estimator in (5.3) is invariant to nonsingular linear
transformations of the vector tw~ . From this fact and (5.6) it follows that in the

linear case (ie δ = 0) it is optimal to choose the instruments as
}X)AI(e,x,1{ t

1
p1t

−α−′ . (Note that this requires the condition p ≥ 2.) This choice

can easily be made feasible because the estimation of the parameters δ and c is not
required. Of course, these instruments are also applicable in the nonlinear case (ie
δ > 0) although they are then no more optimal because the last term on the right
hand side of (5.6) is erroneously ignored. This can be thought of as the effect of
the peso problem on the GMM estimation in our set-up. Since no analytic
expression of the infinite sum on the right hand side of (5.6) is available it is
difficult to give analytic results about this effect on estimation efficiency.
Apparently, the size of the parameters δ is a major factor in this respect (to a
lesser extent maybe also the size of the parameter c). On the other hand, it is
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worth noting that, when δ > 0, instruments of yt+1 better than given by
}X)AI(e,x,1{ t

1
p1t

−α−′  may also be found among “conventional” instruments. In

particular, since the variables yt and yt−1 also contain information about the
nonlinear features of the forcing variable they may provide such instruments.

Since the optimal intrument given by (5.6) is generally rather difficult to
apply we shall briefly discuss some simple alternatives which may be of interest.
One possibility is to replace the infinite series on the right hand side of (5.6) by an
approximation, like a truncated power series or trigonometric series, which is
linear in parameters. Terms of such an approximation could then be included in
the instrument set to supplement conventional instruments (a feasible version of

t
1

p1 X)AI(e −α−′  may also be considered here). As the definition of kj(Xt) in (3.8b)

shows, this quantity depends on Xt only through t1AXe′  and xt, …, xt−p+2 so that

the above mentioned series approximation could also be based on these variables
or maybe only on the first one because, when ηt is assumed to be Gaussian, the
“leading” term )/)cAXe(()X(k t1t2 ησ−′Φ=  depends on Xt only through t1AXe′ .

The idea of using a series approximation to approximate optimal instruments
is well known and discussed by Newey (1993) in the iid case. Although it may
always be possible to find an accurate approximation the number of needed
instruments may increase so large that the finite sample properties of the resulting
estimator suffer (cf. the simulation results of Tauchen (1986)). Instead of
approximating the whole series on the right hand side of (5.6) one might therefore
consider using its first term only. Specifically, assuming normality of ηt we have

).X(k
cAXe

)X(k t
3j

j
t1

t
2j

j ∑∑
∞

=η

∞

=

+









σ

−′
Φ= (5.7)

Replacing A and ση by estimates based on (4.3) the first term of the right hand
side of (5.7) becomes nonlinear in the parameter c only. Thus, if the latter term on
the right hand side of (5.7) is ignored and the value of c is fixed an instrument for
yt+1 can be based on constant, xt, t

1
p1 X)AI(e −α−′  and ))/)cAXe(( t1 ησ−′Φ  with

α, A and ση replaced by previously discussed estimates. Trying various values of
c one can then choose the one which minimizes the GMM objective function
QT(λ). Since a search over the values of the single parameter c is only needed here
the number of potential values may be larger than in the similar previously
discussed procedure where also the parameter δ was involved. Of course, obvious
modifications of this approach can be obtained by approximating the series on the
right hand side of (5.7) in the same way as discussed in the case of (5.6) or by
using also conventional instruments. To facilitate computations, a logistic
function or some other approximation may be used to approximate the cumulative
distribution function Φ(.).

One would expect that the approach based on (5.7) is effective when the first
term on the right hand side can describe the essential or major part of the
nonlinearity in Etyt+1. As a byproduct one also obtains a preliminary estimate for
the parameter c. From (5.6) and (5.7) it can be seen that one can also obtain an

estimate of 1
1

p1 e)AI(e −α−′δ
β
α

. Since α, β and A can here be replaced by
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estimates it is also possible to obtain a preliminary estimate for δ. Of course, these
preliminary estimates are not efficient and can be very poor if the second term on
the right hand side of (5.7) is not negligible. However, they can still be better than
purely guessed initial values.

Since the performance of the various GMM estimators discussed in this
section cannot be studied analytically the only possibility is to resort to
simulation. This is also of interest because the employed optimality arguments are
asymptotic and, as seen in Tauchen's (1986) simulation study, optimal instruments
may not be the best ones in finite samples. A further motivation for such
simulation experiments is to see how much the peso problem desribed by the TAR
process (2.8) actually affects conventional GMM estimators.

We close this section by noting that the discussion given of the GMM
estimation may be useful even if the TAR process (2.8) only provides a
reasonable approximation of the main characteristics of the peso problem. In
particular, the essential point may here be that the potential regime shifts in the
forcing variable are related to nonlinearity which is of such a type that the
conditional expectations in (2.3) behave roughly in the way implied by the TAR
process (2.8). Then optimal instruments of yt+1 are also nonlinear functions of the
forcing variable and the ideas used in the context of equations (5.6) and (5.7) may
prove useful even if the true nonlinearity is not precisely of the type implied by
the TAR process (2.8).

6 Simulation results

In order to study properties of the proposed estimators, we perform Monte Carlo
simulation experiments. The computing3 difficulties with the maximum likelihood
estimation are still unsolved4 for the parameter set that we are studying. Hence,
we restrict the simulation experiments to study only the GMM estimators.

The processes studied are as follows:

T,...,1txyEy t1ttt =β+α+ν= + (6.1)

).,0(NID~)cx(Ixxx 2
tt1t2t21t1t σηη+≥δ+φ+φ+µ= −−− (6.2)

The parameters of the yt process take the following values: ν = 0, α = 1/1.05,
β = 1. The process xt is run with the following parameter values: µ = 0, φ1 = 1.1,
φ2 = –0.28 (the roots are 0.7 and 0.4), δ = {0, 0.5, 1}, c = 0.193,5 σ2 = 0.001. We
vary the sample size as follows T = {50, 100, 1000}. We let xt run 100 extra

                                                
3 The computations were done using Gauss 3.2.37 in 266 MHz Pentium II with Windows NT 4.0
operating system.
4 Given the present computer technology and algorithms at hand, the maximum likelihood
estimation turned out to be too time consuming for Monte Carlo experiments.
5 We use the following formula to determine c = ν/(1–φ1–φ2) +
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1 . Based on this value of c, the probability of

regime shift within 100 period is less than 10 per cent.
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observations to avoid the impact of the choice of initial values (in our case 0).
Note also that we study three choices of δ. The first one, zero, corresponds to the
standard, simple linear case; the second one we label as a “mild” peso case and
the third one as a “strong” peso case.

In computing the itt0i

i
t xE)1/(y +

∞

=∑ αβ+α−ν=  process we need to forecast

the future values of xt. We follow the procedure suggested by Clements and Smith
(1997), which is based on Monte Carlo simulation of future paths of the xt

process. At each point of yt we replicate the future path of xt+i (i = 1,…,400) 500
times.6 Note that within the sample the xt processes involve no regime shifts, ie
realizations with xt < c (t = 1,…,T) are only accepted. Regime shifts are, however,
possible in the forecasts of xt when the value of the parameter δ in (6.2) differs
from zero. Hence future paths of xt may contain regime shifts. Our forecasting
procedure takes this possibility into account. Figure 2 illustrates well how the
existence of a peso problem of a TAR form produces time-varying peso premium.

The choice of the instrument set is a crucial part of GMM estimation. We vary
the instrument set in our simulations as follows:

1. Constant, xt, xt–1. Note that in the case of δ = 0 this instrument set is optimal,
since the yt process is a linear combination of the above instruments. We call
this linear instrument set.

2. Constant, xt, xt–1, 
2
tx , 2

1tx − , 3
tx , 3

1tx − . In the second set we augment the first

set with second and third power of xt and xt–1. This is called polynomial
instrument set.

3. Constant, xt, Etyt+1. This is an optimal instrument set in each case, since it
contains the optimal instrument of Etxt+1. As described in the previous
sections it is computed from the solution (or numerical approximation of the
solution) of Euler equation (6.1). It is based on the true parameter values of
the processes and is therefore infeasible in practice.

4. Constant, xt, E[yt+1  information at t and estimated parameter values]. The
set is as above but the optimal instrument is not based on true parameter
values but values estimated from data. The parameters of equation (6.1) are
estimated using GMM and the parameter α is restricted to be between zero
and unity. A grid search is applied. The linear part of equation (6.2) is
estimated by OLS. The value of the parameter c is 0.0001 plus the maximum
value of xt and that of δ is computed as the absolute value of the difference of
the mean of yt and xt. This is labeled as estimated optimal instrument set.

5. Constant, xt, approximated Etyt+1. In this case the computation of the
conditional expectation of yt+1 is based on the equation (5.6) with the infinite
sum approximated by the first term of the right hand side of (5.7). This means
that instead of computing a large number of future values of xt we compute
only two of them. This could give a reasonable approximation to Etyt+1, eg
when the value of α is close to zero but not necessarily otherwise. This is
called approximated optimal instrument set.

                                                
6 This is the most time consuming part in the computations involved by this study.
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In the following simulations we vary four dimensions of the system: We have five
choices for instrument sets; T = {50, 100, 1000}; δ = {0, 0.5, 1}; α is estimated
freely or restricted between zero and one. Since the parameter δ takes the value
zero, our simulations also cover the non-peso case, ie the standard linear case. The
simulation results for non-restricted α are summarized in Figures 3–5. In each
graph, a smoothed histogram, ie a kernel estimate of the empirical density
function of the parameter estimator is computed. This is repeated for different
values of the regime shift parameter δ = {0, 0.5, 1}. The sample size
(T = {50, 100, 1000}) varies across the rows of the graphs and the instrument set
(as described above) across the columns.

The empirical density functions of the estimator of the intercept term, ν, are
presented in Figure 3. The GMM estimate is fairly precise in the absence of peso
problem. The bias is also very small. However, in peso cases the bias may be
substantial and uncertainties are large. In these cases the differences between
instrument sets are small. It also seems that the use of polynomial instruments
(instrument set 2) leads in many cases to marginally smaller biases than the use of
other instrument sets.

The most interesting parameter is the discount factor, α. The empirical
densities of its estimators are presented in Figure 4. Only in the standard linear
case the median is within the feasible range α ∈ (0,1). Even in such a case there is
a high probability of estimating values above one. This demonstrates the failure of
achieving a reasonable estimate of the discount factor in many applications of
GMM to Euler equation estimation. In the peso case the results are very poor. The
median is above one regardless of the choice of the instrument set. This is true
even in the largest sample size, T = 1000. However, when the sample size is 50 or
100 and the polynomial instrument set is used, the median between zero and one
is obtained. The variance of the estimator based on the polynomial instruments is
also the smallest among the choices of instrument set. These features are not
without cost: They are not preserved in the largest sample size; The bias of the
GMM estimator of β is larger with the polynomial instrument set than with other
instrument sets. The optimal instrument set (whether based on true or estimated
parameter values) has undesirable properties. The variance is large and a major
share of the probability mass is located in values above one. This finding is the
same as reported by Tauchen (1986). However, the consistency of the optimal
instrument is visible, particularly in the standard linear case: the larger the sample
size the smaller the variance and the smaller the bias of the estimator.

The problem of obtaining estimates of α above unity might be due to the fact
that the GMM estimator, as applied here, does not punish the objective function
when the value of the discount factor exceeds unity. To overcome this problem
the value of the discount factor may be fixed to an appropriate level or restricted,
in course of optimization, into a feasible range.7 We experimented8 restricting the
value of the discount factor between zero and one. This did not solve the problem
since typically more than 50 per cent of the probability mass was placed on the
(upper) boundary value.

The empirical densities of the estimator of ”the fundament effect”, ie the
parameter β, are reported in Figure 5. The poor performance of the GMM

                                                
7 This is an ”infinite punishment” to the objective function.
8 We performed a grid search.
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estimator is demonstrated also here. The peso problem leads to a very high
variance of the GMM estimator compared to the standard linear case. In the
standard, non-peso case, the use of the polynomial instrument set leads to an
estimator with a low variance. However, the bias increases substantially. Note that
contrary to the other sets this instrument set contains more instruments than the
number of parameters. Consequently, this finding corresponds to that of Tauchen
(1986): The larger the number of instruments the smaller the variance of the
estimator but the larger the bias. The performance of the optimal instruments is
statisfactory in the non-peso case.

The results concerning the peso cases are generally not improved when the
value of the parameter α is restricted to lie between zero and one. In the peso
cases the GMM estimator of β has still undesirable properties. The median is very
much higher than the true value. Even the first percentile is above unity. There is,
however, one interesting exception: In the standard linear case, the variance of the
estimator of β is very low compared to the situation where the value of α is not
restricted. Hence, the estimation of parameter β could benefit of restricting the
discount factor, α. However, the bias is not a monotonic function of the sample
size.

The poor small sample properties of the GMM estimators are not due to the
poor choice of model. To measure the goodness of fit, we study the ratio between
the variance of the expectational error ut ≡ –α(yt+1 – Etyt+1) and the variance of yt.

9

This variance ratio depends only on the values of the parameters of the system.
Our choice of parameter values implies the value 0.25 of this ratio10 in the linear
case.

We may summarize the simulation results as follows: First of all, the small
sample properties of the GMM estimator – as applied here – are generally poor. It
may even be possible that the estimator does not have finite moments for any
finite sample size.11 A second feature is that it is very difficult to estimate the
discount factor, α, even in the very simple linear case. This might explain results
of many empirical studies where GMM is applied to Euler equation estimation:
The value of the discount factor is usually fixed. The simulations illustrate that
one cannot only blame a wrong model, but rather the estimation method. The
restricted estimation leaks the problem into the estimates of parameter β. The
third, slightly promising, feature is that the use of polynomial instruments might
marginally improve the generally hopeless results.

                                                
9 Note that the multiple correlation coefficient is based on the same variance ratio, R2 = 1 –
 Var(ut)/Var(yt).
10 This value corresponds R2 = 0.75. Note, however, that in these models R2 can be negative
because yt+1 and ut can be (negatively) correlated.
11 The existence of moments of instrumental variable estimators attracted research up to early
1980s. The main results are summarized, eg, in Davidson–MacKinnon (1993) and Judge et al.
(1985). In the case of two-stage least squares, it is known that the number of finite moments (in
finite sample sizes) is one less than the number of instruments minus the number of explanatory
variables. Hence, in the case when the number of instruments equals the number of explanatory
variables, no finite moments exists.
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Figure 3. Estimated Density of GMM Estimator of ν Based
on 500 Draws

The true parameter values are ν = 0, α = 1/1.05, β = 1, T = {50, 100, 1000}, µ = 0, φ1 = 1.1, φ2 = 
–0.28 (the roots are 0.7 and 0.4), δ = {0, 0.5, 1}, c = 0.193 and σ2 = 0.001. The instruments sets
vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Figure 4. Estimated Density of GMM Estimator of α Based
on 500 Draws

The true parameter values are ν = 0, α = 1/1.05, β = 1, T = {50, 100, 1000}, µ = 0, φ1 = 1.1, φ2 = 
–0.28 (the roots are 0.7 and 0.4), δ = {0, 0.5, 1}, c = 0.193 and σ2 = 0.001. The instruments sets
vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Figure 5. Estimated Density of GMM Estimator of β Based
on 500 Draws

The true parameter values are ν = 0, α = 1/1.05, β = 1, T = {50, 100, 1000}, µ = 0, φ1 = 1.1, φ2 = 
–0.28 (the roots are 0.7 and 0.4), δ = {0, 0.5, 1}, c = 0.193 and σ2 = 0.001. The instruments sets
vary across columns and sample sizes across rows. Monte Carlo simulations are based on 500
draws on normal distribution.
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Table 1. Descriptive Statistics when α is not Restricted,
Parameter ν

Sample
size

Instru-
ment set

δ True
value

Median Mean Std. dev. Biasa RMSEb Biasc MADd

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.0060
0.0030
0.0060
0.0020
0.0018

–0.4002
0.2959

–0.4343
–0.4002
–0.3430
–0.9077
0.6887

–0.8934
–0.9077
–0.9476
0.0088
0.0051
0.0088
0.0021
0.0021

–0.4537
0.0534

–0.8614
–0.4537
–0.7170
–1.0760
0.1161

–2.3730
–1.0760
–2.3130
0.0101
0.0093
0.0101
0.0026
0.0026

–0.5500
–0.5760
–1.7240
–0.5500
0.6296

–1.2710
–1.5590
–4.9940
–1.2710
1.3420

0.0055
0.0035
0.0055
0.0044
0.0020

–0.3780
0.3149

–11.4700
–0.3780

–16.6800
–1.1210
0.8315

–18.7600
–1.1210
–1.5420
0.0075
0.0064
0.0075
0.0042
0.0024

–0.3008
0.0790

–2.0970
–0.3008
5.8600

–2.5140
0.2309

–2.7290
–2.5140
–5.2880
0.0101
0.0093
0.0101
0.0062
0.0026

–0.5766
–0.5853
–3.3910
–0.5766
0.5821

–1.3530
–1.5080
–6.5220
–1.3530
2.0380

0.1598
0.0161
0.1598
0.0558
0.0084
6.9460
0.4408

267.6000
6.9460

204.9000
12.6700
1.1850

339.4000
12.6700
74.6600
0.0718
0.0126
0.0718
0.0427
0.0050
9.5560
0.5075

93.9100
9.5560

84.9500
33.9000
1.2790

54.1800
33.9000
90.8800
0.0043
0.0040
0.0043
0.0794
0.0155
0.1971
0.3162

24.4100
0.1971
7.1660
0.5015
0.8179
9.2720
0.5015

21.3800

0.0055
0.0035
0.0055
0.0044
0.0020

–0.3780
0.3149

–11.4700
–0.3780

–16.6800
–1.1210
0.8315

–18.7600
–1.1210
–1.5420
0.0075
0.0064
0.0075
0.0042
0.0024

–0.3008
0.0790

–2.0970
–0.3008
5.8600

–2.5140
0.2309

–2.7290
–2.5140
–5.2880
0.0101
0.0093
0.0101
0.0062
0.0026

–0.5766
–0.5853
–3.3910
–0.5766
0.5821

–1.3530
–1.5080
–6.5220
–1.3530
2.0380

0.1598
0.0161
0.1598
0.0558
0.0084
6.9460
0.4408

267.6000
6.9460

204.9000
12.6700
1.1850

339.4000
12.6700
74.6600
0.0718
0.0126
0.0718
0.0427
0.0050
9.5560
0.5075

93.9100
9.5560

84.9500
33.9000
1.2790

54.1800
33.9000
90.8800
0.0043
0.0040
0.0043
0.0794
0.0155
0.1971
0.3162

24.4100
0.1971
7.1660
0.5015
0.8179
9.2720
0.5015

21.3800

0.0060
0.0030
0.0060
0.0020
0.0018

–0.4002
0.2959

–0.4343
–0.4002
–0.3430
–0.9077
0.6887

–0.8934
–0.9077
–0.9476
0.0088
0.0051
0.0088
0.0021
0.0021

–0.4537
0.0534

–0.8614
–0.4537
–0.7170
–1.0760
0.1161

–2.3730
–1.0760
–2.3130
0.0101
0.0093
0.0101
0.0026
0.0026

–0.5500
–0.5760
–1.7240
–0.5500
0.6296

–1.2710
–1.5590
–4.9940
–1.2710
1.3420

0.0218
0.0091
0.0218
0.0068
0.0056
0.4663
0.3341
1.1980
0.4663
1.0830
1.0840
0.8038
2.9580
1.0840
3.2670
0.0134
0.0076
0.0134
0.0046
0.0034
0.4567
0.2845
1.3060
0.4567
1.6140
1.1020
0.7555
3.8000
1.1020
4.3730
0.0101
0.0093
0.0101
0.0033
0.0032
0.5499
0.5795
1.7240
0.5499
0.7324
1.2710
1.5530
4.9980
1.2710
1.6400

aMean – true value
bRoot mean square error
cMedian – true value
dMedian absolute deviation from true value
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Table 2. Descriptive Statistics when α is not Restricted,
Parameter α

Sample
size

Instru-
ment set

δ True
value

Median Mean Std. dev. Bias RMSE Bias MAD

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1

0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952
0.952

0.9160
0.3951
0.9160
0.1097
0.0690
1.5520
0.5897
1.6430
1.5520
1.5100
1.6290
0.4982
1.6080
1.6290
1.7370
1.0080
0.5743
1.0080
0.1435
0.0700
1.6640
0.8910
2.2100
1.6640
2.0540
1.7390
0.9208
2.6430
1.7390
2.6370
0.9966
0.9070
0.9966
0.1076
0.1151
1.7790
1.8220
3.4880
1.7790
0.1034
1.9050
2.1100
4.5580
1.9050
0.0489

1.3590
0.3781
1.3590
0.1372
0.0688
1.4930
0.5345

18.1600
1.4930

22.3500
1.7780
0.3928

13.9700
1.7780
1.9530
1.2040
0.5925
1.2040

–0.0818
0.0701
1.4440
0.8912
4.3210
1.4440

–6.6090
2.7920
0.8218
2.9150
2.7920
4.6000
1.0230
0.9181
1.0230
0.6631
0.1463
1.8250
1.8380
5.7590
1.8250
0.1693
1.9650
2.0740
5.6230
1.9650

–0.4388

7.2420
0.2171
7.2420
2.5980
0.0397

10.2000
0.6283

396.5000
10.2000

247.6000
8.7380
0.8494

232.1000
8.7380

50.2200
2.3280
0.1992
2.3280
3.8760
0.0257

13.3800
0.7029

134.7000
13.3800

113.2000
25.5700
0.9179

38.4700
25.5700
66.4500
0.1275
0.1037
0.1275

10.6400
2.1100
0.2743
0.4477

33.5300
0.2743

10.0100
0.3550
0.5800
6.5400
0.3550

15.0500

0.4065
–0.5743
0.4065

–0.8151
–0.8835
0.5411

–0.4179
17.2000
0.5411

21.3900
0.8260

–0.5596
13.0200
0.8260
1.0010
0.2515

–0.3599
0.2515

–1.0340
–0.8822
0.4920

–0.0611
3.3690
0.4920

–7.5610
1.8400

–0.1306
1.9630
1.8400
3.6470
0.0703

–0.0343
0.0703

–0.2893
–0.8061
0.8729
0.8858
4.8060
0.8729

–0.7831
1.0130
1.1220
4.6700
1.0130

–1.3910

7.2420
0.2171
7.2420
2.5980
0.0397

10.2000
0.6283

396.5000
10.2000

247.6000
8.7380
0.8494

232.1000
8.7380

50.2200
2.3280
0.1992
2.3280
3.8760
0.0257

13.3800
0.7029

134.7000
13.3800

113.2000
25.5700
0.9179

38.4700
25.5700
66.4500
0.1275
0.1037
0.1275

10.6400
2.1100
0.2743
0.4477

33.5300
0.2743

10.0100
0.3550
0.5800
6.5400
0.3550

15.0500

–0.0363
–0.5572
–0.0363
–0.8427
–0.8834
0.5997

–0.3627
0.6908
0.5997
0.5572
0.6764

–0.4542
0.6551
0.6764
0.7843
0.0556

–0.3780
0.0556

–0.8089
–0.8824
0.7114

–0.0614
1.2570
0.7114
1.1020
0.7868

–0.0316
1.6910
0.7868
1.6850
0.0442

–0.0454
0.0442

–0.8448
–0.8373
0.8266
0.8696
2.5350
0.8266

–0.8490
0.9522
1.1580
3.6060
0.9522

–0.9035

0.3208
0.5561
0.3208
0.8595
0.8833
0.7146
0.4570
1.7640
0.7146
1.5860
0.8145
0.5553
2.1480
0.8145
2.3820
0.2097
0.3790
0.2097
0.8613
0.8822
0.7136
0.4080
1.8610
0.7136
2.3720
0.8106
0.5274
2.8230
0.8106
3.1540
0.0747
0.0795
0.0747
0.8779
0.8795
0.8286
0.8716
2.5360
0.8286
1.0100
0.9524
1.1580
3.6200
0.9524
1.1310
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Table 3. Descriptive Statistics when α is not Restricted,
Parameter β

Sample
size

Instru-
ment

set

δ True
value

Median Mean Std. dev. Bias RMSE Bias MAD

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50

100
100
100
100
100
100
100
100
100
100
100
100
100
100
100

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1
0
0
0
0
0

0.5
0.5
0.5
0.5
0.5

1
1
1
1
1

1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000
1.000

1.3560
2.8650
1.3560
3.5410
3.6500
1.0120
4.4080
0.9436
1.0120
1.3340
1.5650
6.2890
1.9000
1.5650
1.2060
1.0290
2.2300
1.0290
3.4260
3.6000
0.1022
3.0450

–1.6570
0.1022

–1.3210
0.1039
4.4010

–3.9380
0.1039

–3.8270
0.9967
1.2530
0.9967
3.4400
3.4350

–0.6619
–0.7828
–7.3260
–0.6619
5.9470

–1.1230
–2.0830

–15.3000
–1.1230
8.8110

0.3724
2.8840
0.3724
3.5060
3.6560
0.6637
4.6940

–142.4000
0.6637

–53.0200
0.7685
7.6140

–85.9300
0.7685
5.9110
0.4972
2.1950
0.4972
3.9670
3.5990
1.5540
3.1590

–2.1710
1.5540

33.7700
–4.7910
4.8900

–3.5380
–4.7910

–21.1500
0.9307
1.2200
0.9307
1.9420
3.3550

–0.8179
–0.8681

–17.2200
–0.8179
5.5510

–1.4500
–2.0690

–21.3600
–1.4500
11.6500

20.2600
0.5779

20.2600
6.6810
0.1576

27.6200
2.5670

3340.0000
27.6200

552.0000
46.4700
5.5500

1630.0000
46.4700

219.3000
6.3970
0.5721
6.3970
9.8360
0.0939

61.9600
3.0980

543.3000
61.9600

506.2000
113.5000

5.1730
230.1000
113.5000
334.2000

0.3562
0.2897
0.3562

29.1500
5.8080
1.1670
1.8700

145.3000
1.1670

43.0200
1.9490
3.2060

35.5000
1.9490

80.8800

–0.6276
1.8840

–0.6276
2.5060
2.6560

–0.3363
3.6940

–143.4000
–0.3363

–54.0200
–0.2315
6.6140

–86.9300
–0.2315
4.9110

–0.5028
1.1950

–0.5028
2.9670
2.5990
0.5535
2.1590

–3.1710
0.5535

32.7700
–5.7910
3.8900

–4.5380
–5.7910

–22.1500
–0.0693
0.2204

–0.0693
0.9416
2.3550

–1.8180
–1.8680

–18.2200
–1.8180
4.5510

–2.4500
–3.0690

–22.3600
–2.4500
10.6500

20.2600
0.5779

20.2600
6.6810
0.1576

27.6200
2.5670

3340.0000
27.6200

552.0000
46.4700
5.5500

1630.0000
46.4700

219.3000
6.3970
0.5721
6.3970
9.8360
0.0939

61.9600
3.0980

543.3000
61.9600

506.2000
113.5000

5.1730
230.1000
113.5000
334.2000

0.3562
0.2897
0.3562

29.1500
5.8080
1.1670
1.8700

145.3000
1.1670

43.0200
1.9490
3.2060

35.5000
1.9490

80.8800

0.3561
1.8650
0.3561
2.5410
2.6500
0.0121
3.4080

–0.0564
0.0121
0.3339
0.5655
5.2890
0.8997
0.5655
0.2062
0.0291
1.2300
0.0291
2.4260
2.6000

–0.8978
2.0450

–2.6570
–0.8978
–2.3210
–0.8961
3.4010

–4.9380
–0.8961
–4.8270
–0.0033
0.2532

–0.0033
2.4400
2.4350

–1.6620
–1.7830
–8.3260
–1.6620
4.9470

–2.1230
–3.0830

–16.3000
–2.1230
7.8110

1.0740
1.8650
1.0740
2.6160
2.6510
1.8530
3.4130
4.0990
1.8530
5.0260
3.2230
5.3270
7.6130
3.2230
9.1490
0.7271
1.2310
0.7271
2.4770
2.6000
1.5270
2.3020
5.2070
1.5270
7.3470
2.4840
3.9060

10.7700
2.4840

12.6100
0.1946
0.2825
0.1946
2.5450
2.5540
1.6600
1.8350
8.3190
1.6600
5.3150
2.1230
3.2300

16.3300
2.1230
8.4360
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7 Conclusions

This paper formalizes the concept of peso problem in terms of a linear Euler
equation and a nonlinear marginal model. It turns out that the threshold
autoregressive model as a marginal model is able to produce time-varying premia
– contrary to the widely applied markov switching model. However, due to a
nonlinear marginal model, there is no closed form solution to the system of
equations. We discuss possible choices of computing the discounted sum of
conditional future expectations of the marginal model.

Two estimation strategies emerge. The maximum likelihood is one possibility,
but it leads to the numerical approximation of the conditional expectations of the
marginal model. This is computationally burdensome and we can not give any
Monte Carlo results of the properties of the ML estimator. The second choice is to
apply GMM directly to Euler equation estimation. A clear advantage is that no
assumption of the marginal model needs to be done. However, the simulation
experiments illustrate that the GMM estimator, as applied here, has poor small
sample properties in general and particularly so in the peso case.

The main problem with GMM lies in the estimation of the discount factor.
The standard way to apply GMM to Euler equation estimation does not punish the
GMM criteria when the discount factor gets unfeasible values, eg, values above
unity. According to our simulations restricting the discount factor to lie between
zero and unity does not solve the problem. The boundary value is attained in more
than half of the cases. Improvements in the parameter β are marginal and concern
only the non-peso case.
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Appendix

Justification of equations (3.8a) and (3.8b)

First note that, for j = 2, (3.8a) and (3.8b) follow directly from (3.5) and (3.6).
Now suppose that these equations hold for j ≥ 3 and observe that

.dx)z(p)z(kedz)z(p)z(KA

dz)z(p)z(K)X(K

t1tt1t

t1t

XXj1XX1j

XXjt1j

++

+

∫∫

∫
∞

∞−

∞

∞−
−

∞

∞−
+

δ+=

=

Here the first equality is based on (3.4) The second one follows from the
induction assumption and the fact that, similarly to (3.5), also (3.6) and (3.8) hold
even if Xt is replaced by z. By (3.6) the first term is the last expression equals
AKj(Xt). As for the second one, notice that, conditional on Xt, the first component
of Xt+1 has the density function ))X(hez(g t11 ′−  while the remaining components

have a degenerate distribution at [xt … xt−p+2]′. Thus, the last integral equals

)X(kdx))X(hez(g)x,...,x,z(k t1j1t112ptt1j ++−

∞

∞−

=′−∫

as required.
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