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Bank of Finland Research 
Discussion Papers 20/2007 

Mikael Bask 
Monetary Policy and Research Department 
 
 
Abstract 

The difference between market risk and potential market risk is emphasized and a 
measure of the latter risk is proposed. Specifically, it is argued that the spectrum 
of smooth Lyapunov exponents can be utilized in what we call (λ, σ2)-analysis, 
which is a method to monitor the aforementioned risk measures. The reason is that 
these exponents focus on the stability properties (λ) of the stochastic dynamic 
system generating asset returns, while more traditional risk measures such as 
value-at-risk are concerned with the distribution of returns (σ2). 
 
Keywords: market risk, potential market risk, smooth Lyapunov exponents, 
stochastic dynamic system, value-at-risk 
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Menetelmä potentiaalisen markkinariskin 
määrittämiseksi 

Suomen Pankin keskustelualoitteita 20/2007 

Mikael Bask 
Rahapolitiikka- ja tutkimusosasto 
 
 
Tiivistelmä 

Tutkimuksessa tarkastellaan markkinariskin ja potentiaalisen markkinariskin eroa 
ja tarkasteluissa esitellään keino jälkimmäisen mittaamiseksi. Täsmällisesti ottaen 
työssä esitetään, että sileiden Lyapunovin eksponenttien spektriä voidaan hyödyn-
tää ns. (λ, σ2)-analyysissa, jota menetelmää käytetään markkinariskin ja poten-
tiaalisen markkinariskin tarkkailussa. Analyysin soveltuvuus näiden riskien seu-
rantaan johtuu siitä, että sileät Lyapunovin eksponentit korostavat rahoitusvaatei-
den tuottoja synnyttävän stokastisen dynaamisen järjestelmän vakausominaisuuk-
sia (λ), kun perinteisissä riskimittareissa, kuten value-at-risk, kyse on sen sijaan 
tuottojen jakaumasta (σ2). 
 
Avainsanat: markkinariski, potentiaalinen markkinariski, sileät Lyapunovin 
eksponentit, stokastinen dynaaminen järjestelmä, value-at-risk 
 
JEL-luokittelu: G11 
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1 Measuring market risk

Financial market risk reflects the chance that the actual return on an asset or
a portfolio of assets may be very different than the expected return. For this
reason, a measure of market risk is necessary to carry through a successful risk
management.
Nowadays, financial investors often use value-at-risk to assess the market

risk in their portfolio since they would like to ensure that the value of the
portfolio does not fall below some minimum level that would expose the
investor to insolvency. The value-at-risk is the level of loss on a portfolio
that is expected to be equaled or exceeded with a given small probability.
This risk measure can, therefore, be seen as a forecast of a given percentile,
usually in the lower tail, of the probability distribution of returns.1

Of course, the probability distribution of returns is not constant since asset
returns depend on the underlying economic structure.2 To be more precise,
quantities such as moneys and interest rates interact with each other through
time, and, therefore, constitute a dynamic system, meaning that the stability of
the system generating asset returns is crucial for the variance of these returns.
That is, a less stable dynamic system is associated with more variable asset
returns, meaning that an asset is potentially more risky than another asset, if
the returns of the former asset is generated by a less stable system.
To clarify this further, let σ2 denote the conditional variance of asset

returns, and (for reasons explained below) let λ denote the stability of the
dynamic system generating these returns. Then,

σ2 = σ2 (λ, ε) (1.1)

where ε is exogenous shocks to the dynamic system, meaning that the
conditional variance (σ2) is not only affected by the system’s stability (λ),
it is also affected by shocks to the system (ε). Specifically, the conditional
variance of asset returns increases when the dynamic system is less stable,
but also when the variance of the shocks increases. Thus, because of shocks
to the system, there is no one-to-one correspondence between the conditional
variance of asset returns and the stability of the dynamic system generating
these returns, meaning that λ is not a measure of market risk. Instead, λ is a
measure of potential market risk, while σ2 is a measure of market risk.
In other words, a change in an asset’s potential market risk may or may

not change its market risk since it depends on how much the variance of the
shocks to the dynamic system generating asset returns has changed, if there
has been any change at all. Thus, the variance of the shocks distinguishes

1 The importance of value-at-risk as a measure of financial market risk is emphasized
by the fact that the Basel Committee on Banking Supervision at the Bank for
International Settlements imposes financial institutions to meet capital requirements based
on value-at-risk. The widespread use of value-at-risk as a measure of market risk also owes
much to Dennis Weatherstone, former chairman of JP Morgan & Co., who demanded to
know the market risk of the company at 4:15 P.M. every day. Weatherstone’s request was
met with a daily value-at-risk report.

2 For this reason, Engle’s (1982) ARCH model and subsequent developments of the model
are invaluable tools since they can be used to estimate and predict conditional moments
characterizing the probability distribution of returns.
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between an asset’s market risk and its potential market risk. Therefore, the
stability of the dynamic system generating asset returns should be contrasted
with the volatility of these returns, and this is accomplished in what we call
(λ, σ2)-analysis.

2 λ: a measure of potential market risk

The purpose of this section is twofold: (i) to define the Lyapunov exponents of
a stochastic dynamic system; and (ii) to motivate why these exponents provide
a measure of a system’s stability, meaning that they also provide a measure of
potential market risk.

Definition of λ

Bask and de Luna (2002) argue that the spectrum of smooth Lyapunov
exponents can be used in the determination of the stability of a stochastic
dynamic system. Specifically, assume that the dynamic system, f : Rn → Rn,
generating asset returns is

St+1 = f (St) + εst+1 (2.1)

where St and εst are the state of the system and a shock to the system,
respectively, both at time t ∈ [1, 2, . . . ,∞]. For an n-dimensional system
as in (2.1), there are n Lyapunov exponents that are ranked from the largest
to the smallest exponent

λ1 ≥ λ2 ≥ . . . ≥ λn (2.2)

and it is these exponents that provide information on the stability properties
of the system f .
Then, how are the Lyapunov exponents defined? Assume temporarily that

there are no shocks to the system f , and consider how it amplifies a small
difference between the initial states S0 and S00

Sj − S0j = f j (S0)− f j (S00) ' Df j (S0) (S0 − S00) (2.3)

where f j (S0) = f (· · · f (f (S0)) · · · ) denotes j successive iterations of the
system starting at state S0, and Df is the Jacobian of the system

Df j (S0) = Df (Sj−1)Df (Sj−2) · · ·Df (S0) (2.4)

Then, associated with each Lyapunov exponent, λi, i ∈ [1, 2, . . . , n], there are
nested subspaces U i ⊂ Rn of dimension n+ 1− i with the property that

λi ≡ lim
j→∞

loge kDf j (S0)k
j

= lim
j→∞

1

j

j−1X
k=0

loge kDf (Sk)k (2.5)

for all S0 ∈ U i − U i+1. Due to Oseledec’s multiplicative ergodic theorem, the
limits in (2.5) exist and are independent of S0 almost surely with respect to
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the measure induced by the process {St}∞t=1.3 Then, allow for shocks to the
system f , meaning that the measure is induced by a stochastic process. In this
case, the Lyapunov exponents have been named smooth Lyapunov exponents
in the literature.

Motivation of λ

The reason why the spectrum of smooth Lyapunov exponents provides
information on the stability properties of a stochastic dynamic system may
be seen by considering two different starting values of a system, where the
difference is an exogenous shock at time t = 0. The largest smooth Lyapunov
exponent, λ1, measures the slowest exponential rate of convergence of two
trajectories of the dynamic system starting at these different starting values
at time t = 0, but with identical exogenous shocks at times t > 0.4 In fact, λ1
measures the convergence of a shock in the direction defined by the eigenvector
corresponding to this exponent. However, if the difference between the two
starting values lies in another direction of Rn, then the convergence is faster.
Thus, λ1 measures a ‘worst case scenario’.
The average of the smooth Lyapunov exponents

λ ≡ 1

n

nX
i=1

λi (2.6)

measures the exponential rate of convergence in a geometrical average
direction. That is, the convergence of two trajectories of the dynamic
system in the geometrical average of the directions defined by the eigenvectors
corresponding to the different exponents. Thus, λ measures an ‘average
scenario’. We can, therefore, compare the stability of two stochastic dynamic
systems via the smooth Lyapunov exponents since a one-time shock has a
smaller effect on the dynamic system with a smaller λ than for the system
with a larger λ. Thus, since we are dealing with dissipative systems, meaning
that λ < 0 by definition, a dynamic system is more stable than another system,
if λ is more negative.
An extensive discussion of the spectrum of smooth Lyapunov exponents as

a measure of the stability of a stochastic dynamic system is provided in Bask
and de Luna (2002). As an illustration, it is shown therein that the decrease in
volatility of the exchange rates between the Swedish Krona and the ECU/Euro,
after the launch of the Euro, is due to a decrease in the volatility of the shocks
to the dynamic system generating these exchange rates and not to a more
stable system. Thus, one can say that the market risk decreased, but that the
potential market risk was unchanged.

3 See Guckenheimer and Holmes (1983) for a careful definition of the Lyapunov exponents
and their properties.

4 When λ1 > 0, the trajectories diverge from each other, and for a bounded stochastic
dynamic system, this is an operational definition of chaotic dynamics.
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3 Testing for a change in λ

Contrary to risk measures like value-at-risk, potential market risk does not
have a straightforward economic interpretation. However, it is not level of
potential market risk that is of interest. Instead, it is the change in this risk,
∆λ, since we are interested in the potential change in market risk.
The purpose of this section is, therefore, twofold: (i) to show how the

smooth Lyapunov exponents can be estimated from time series data; and (ii)
to discuss how hypothesis tests of these exponents can be constructed. In
other words, the purpose is to show how an asset’s potential market risk can
be estimated from an asset return series, and to discuss how to test for a change
in this risk.

Estimation of λ

Since the actual form of the dynamic system f is not known, it may seem like
an impossible task to determine the stability of the system. However, it is
possible to reconstruct the dynamics of the system using only a scalar time
series, and, thereafter, to measure the stability of this reconstructed system.
Therefore, associate the system f with an observer function, g : Rn → R, that
generates observed asset returns

st = g (St) + εmt (3.1)

where st ∈ St and εmt are the asset return and a measurement error,
respectively, both at time t. Thus, (3.1) means that the asset return series

{st}Nt=1 (3.2)

is observed, which is used to reconstruct the dynamics of the system f , where
N is the number of consecutive returns in the time series.
Specifically, the observations in a scalar time series, like the asset return

series in (3.2), contain information about unobserved state variables that can
be used to define a state in present time. Therefore, let

T = (T1, T2, . . . , TM)
0 (3.3)

be the reconstructed trajectory, where Tt is the reconstructed state at time
t and M is the number of states on the reconstructed trajectory. Each Tt is
given by

Tt = {st, st+1, . . . , st+m−1} (3.4)

wherem is the embedding dimension and time t ∈ [1, 2, . . . , N −m+ 1]. Thus,
T is an M ×m matrix and the constants M , m and N are related as M =
N −m+ 1.
Takens (1981) proved that the map

Φ (St) =
©
g
¡
f0 (St)

¢
, g
¡
f1 (St)

¢
, . . . , g

¡
fm−1 (St)

¢ª
(3.5)
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which maps the n-dimensional state St onto the m-dimensional state Tt, is
an embedding if m > 2n.5 This means that the map is a smooth map that
performs a one-to-one coordinate transformation and has a smooth inverse.
A map that is an embedding preserves topological information about the
unknown dynamic system, like the smooth Lyapunov exponents, and, in
particular, the map induces a function, h : Rm → Rm, on the reconstructed
trajectory

Tt+1 = h (Tt) (3.6)

which is topologically conjugate to the unknown system f . That is

hj (Tt) = Φ ◦ f j ◦ Φ−1 (Tt) (3.7)

Thus, h is a reconstructed dynamic system that has the same smooth Lyapunov
exponents as the unknown system f .6

Then, to estimate the smooth Lyapunov exponents of the system f
generating asset returns, one must first estimate h. However, since

h :

⎛⎜⎜⎜⎝
st
st+1
...

st+m−1

⎞⎟⎟⎟⎠ −→
⎛⎜⎜⎜⎝

st+1
st+2
...

v (st, st+1, . . . , st+m−1)

⎞⎟⎟⎟⎠ (3.8)

5 An intuitive explanation of Takens’ (1981) embedding theorem may be in place due to
its importance in the estimation of λ. For the sake of the argument, assume that M1 ⊂M
andM2 ⊂M are two subspaces of dimension n1 and n2, respectively, whereM ∈ Rm is an
m-dimensional manifold representing phase space for the reconstructed dynamic system. In
general, two subspaces intersect in a subspace of dimension n1+n2−m, meaning that when
this expression is negative, there is no intersection of the two subspaces. Therefore, and of
greater interest, the self-intersection of an n-dimensional manifold with itself fails to occur
when m > 2n (see Sauer et al, 1991, for generalizations of Takens’, 1981, theorem).
A problem is that the dimension of the ‘true’ dynamic system is not known, meaning

that the required embedding dimension is not either known. This problem can, however, be
solved indirectly by making use of a generic property of a proper reconstruction, namely,
that the dynamics in original phase space must be completely unfolded in reconstructed
phase space. In other words, if the embedding dimension is too low, the dynamics is not
completely unfolded, meaning that distant states in original phase space are close states in
reconstructed phase space, and, therefore, are named false neighbors in phase space.
There are at least two methods to calculate the required embedding dimension from an

observed time series: (i) false nearest neighbors; and (ii) the saturation of invariants on the
reconstructed dynamics such as the saturation of the Lyapunov exponents. The first method
is based on the aforementioned generic property of a proper reconstruction, meaning that
by increasing the embedding dimension, the dynamics is completely unfolded when there
are no false neighbors in reconstructed phase space (see Kennel et al, 1992).
The second method, the saturation of invariants on the reconstructed dynamics, is based

on the fact that when the dynamics is completely unfolded, the Lyapunov exponents and
other invariants such as entropy and fractal dimension are independent of the embedding
dimension. If, however, the dynamics is not completely unfolded in reconstructed phase
space, these invariants depend on the embedding dimension. Therefore, by increasing the
embedding dimension, the dynamics is completely unfolded when the value of an invariant
stops changing (see Fernández-Rodríguez et al, 2005, for an example regarding the largest
Lyapunov exponent and a statistical test for chaotic dynamics).

6 Since them-dimensional system h has a larger dimension than the n-dimensional system
f , the number of smooth Lyapunov exponents that are spurious is m − n. This issue is
discussed in Dechert and Gencay (1996)—(2000) and Gencay and Dechert (1996).

11



the estimation of h reduces to the estimation of v

st+m = v (st, st+1, . . . , st+m−1) (3.9)

Moreover, since the Jacobian of h at the reconstructed state Tt is

Dh (Tt) =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
...

...
∂v
∂st

∂v
∂st+1

∂v
∂st+2

· · · ∂v
∂st+m−1

⎞⎟⎟⎟⎟⎟⎠ (3.10)

a feedforward neural network is a natural choice to estimate the above
derivatives to be able to calculate the smooth Lyapunov exponents (see Dechert
and Gencay, 1992, Gencay and Dechert, 1992, McCaffrey et al, 1992, and
Nychka et al, 1992), and this is because Hornik et al (1990) have shown that a
map and its derivatives of any unknown functional form can be approximated
arbitrarily accurately by such a network.

Inference of λ

Shintani and Linton (2004) derive the asymptotic distribution of a neural
network estimator of the smooth Lyapunov exponents

√
M
³bλiM − λi

´
=⇒ N (0, Vi) (3.11)

where bλiM is the estimator of the i:th exponent, based on theM reconstructed
states on the trajectory, Vi is the variance of the i:th exponent, and i ∈
[1, 2, . . . , n].7 When it comes to the average of the smooth Lyapunov exponents,
our conjecture is that asymptotic normality holds for a neural network
estimator of 1

n

Pn
i=1 λi since the eigenvectors corresponding to the different

exponents are pairwise orthogonal

√
M
³bλMn − λ

´
=⇒ N (0, Vn) (3.12)

where bλMn is the estimator of 1n
Pn

i=1 λi, based on the M reconstructed states
on the trajectory, and Vn is the variance of 1

n

Pn
i=1 λi. If this conjecture is

correct, it is possible to make inference of a change in potential market risk.

7 It is, therefore, possible to test for the presence of chaotic dynamics in an observed
scalar time series since λ1 > 0 is an operational definition of chaos (see Bask et al, 2007, for
an application using electricity prices, who find evidence of complicated dynamics).
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4
¡
λ, σ2

¢
-analysis

The origin of (λ, σ2)-analysis is found in Bask and de Luna (2002) since it is
argued therein that when the volatility of a variable modelled is of interest, one
should also consider the stability properties of the same model. Specifically,
a parametric model in the form of a polynomial autoregression on a projected
space is fitted to the observed time series, which is utilized to measure the
stability and volatility of the variable of interest (see Bask and de Luna, 2002,
and de Luna, 1998, for details).8

However, when a successful risk management is in focus, it is necessary to
measure the stability of the ‘true’ stochastic dynamic system generating asset
returns, and not the stability of the model fitted to these returns. The reason
is that there is no guarantee that the smooth Lyapunov exponents for the
‘true’ system and the model selected to measure volatility coincide with each
other. Therefore, we argue that a non-parametric approach should be used
when estimating the stability of the system, whereas any (good) volatility
model may be used when estimating the volatility.9

Applications of (λ, σ2)-analysis

Our belief is that (λ, σ2)-analysis has at least two different but closely
connected applications

(i) To monitor the evolution of an asset’s market risk (σ2) and its potential
market risk (λ), meaning that (λ, σ2)-analysis is used as a tool to detect actual
and potential changes in market risk.
Think of an asset with an unchanged market risk. That is, the conditional

volatility of asset returns is measured in a rolling window, where it is found that
there are no statistically significant changes in volatility over some period of
time (see Leeves, 2007, for an application using stock prices before and after the
Asian crisis). However, during the same period of time, the stability of asset
returns has decreased since the average of the smooth Lyapunov exponents
has become less negative, meaning that the asset’s potential market risk has
increased. Thus, in this case, (λ, σ2)-analysis gives an early warning that an
increase in the asset’s market risk may soon occur.

8 A large-scale analysis of the European monetary integration, with the creation of the
EMU, is carried out in Bask and de Luna (2005) using this methodology. To be more specific,
changes in the stability and volatility of 16 European currencies and in the volatility of the
shocks to these currencies are examined, and the results indicate that when most of the
currencies became more (less) stable, a majority of them also became less (more) volatile.
For example, following the agreement of the Maastricht Treaty, most currencies became
more stable and less volatile, whereas they became less stable and more volatile when the
Danish public voted against the treaty.

9 Bask and Widerberg (2007) use this methodology when they examine how the
integration process at the Nordic power market has affected the stability and volatility
of electricity prices. To be more specific, the non-parametric approach outlined above is
used when estimating the stability, whereas an EGARCH model is used when estimating
the volatility. The results indicate that the integration process is associated with more stable
electricity prices and a decrease in volatility of these prices, but without having a one-to-one
correspondence between the changes in stability and volatility.
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Of course, the same tool can be used to monitor changes in market risk
and potential market risk of a portfolio of assets.

(i) To compare the market risk and potential market risk of two portfolios of
assets.
Imagine an investor who is planning to make a portfolio investment, but

is unsure about which asset to invest in. Of course, if this investor is using
what has been named modern portfolio theory when making investments, it
is clear that the potential market risk of different assets should not directly
affect the composition of the portfolio. On the other hand, due to the fact
that a portfolio’s market risk depends on its potential market risk, we believe
that one should not neglect the latter risk.
Think of a situation in which two different assets give rise to portfolios with

the same risk-return profiles. We argue, in this case, that the investor should
invest in the asset that gives rise to the portfolio with the smaller potential
market risk since the market risk is time-varying and that it may be the case
that the market risk of the portfolio with the higher potential market risk is
unusually low. It is, of course, part of future research to derive a reasonable
portfolio theory that supports such a claim.

5 Concluding remarks

The aim of this paper has been to argue in favor of λ as a measure of potential
market risk, and to discuss how this measure can be used in what we call
(λ, σ2)-analysis, which is a method to distinguish between market risk and
potential market risk. What remains is to derive the asymptotic distribution of
a neural network estimator of the average of the smooth Lyapunov exponents,
and, thereafter, take the proposed method to financial data to study its merits
and possible weaknesses.

14



References

Bask, M — de Luna, X (2002) Characterizing the Degree of Stability
of Non-linear Dynamic Models. Studies in Nonlinear Dynamics and
Econometrics, 6 (1) art. 3.

Bask, M — de Luna, X (2005) EMU and the Stability and Volatility
of Foreign Exchange: Some Empirical Evidence. Chaos, Solitons and
Fractals, 25, 737—750.

Bask, M — Liu, T — Widerberg, A (2007) The Stability of Electricity
Prices: Estimation and Inference of the Lyapunov Exponents. Physica
A, 376, 565—572.

Bask, M —Widerberg, A (2007)The Stability and Volatility of Electricity
Prices: An Illustration of (λ, σ2)-Analysis. Göteborg University Working
Paper in Economics, No. 267.

Dechert, W D — Gencay, R (1992) Lyapunov Exponents as a
Nonparametric Diagnostic for Stability Analysis. Journal of Applied
Econometrics, 7, S41—S60.

Dechert, W D — Gencay, R (1996) The Topological Invariance of
Lyapunov Exponents in Embedded Dynamics. Physica D, 90, 40—55.

Dechert, W D — Gencay, R (2000) Is the Largest Lyapunov Exponent
Preserved in Embedded Dynamics? Physics Letters A, 276, 59—64.

de Luna, X (1998)Projected Polynomial Autoregression for Prediction
of Stationary Time Series. Journal of Applied Statistics, 25, 763—775.

Engle, R F (1982) Autoregressive Conditional Heteroscedasticity with
Estimates of the Variance of United Kingdom Inflation. Econometrica,
50, 987—1007.

Fernández-Rodríguez, F — Sosvilla-Rivero, S — Andrada-Félix, J (2005)
Testing Chaotic Dynamics via Lyapunov Exponents. Journal of Applied
Econometrics, 20, 911—930.

Gencay, R — Dechert, W D (1992) An Algorithm for the n Lyapunov
Exponents of an n-Dimensional Unknown Dynamical System. Physica
D, 59, 142—157.

Gencay, R — Dechert, W D (1996) The Identification of Spurious
Lyapunov Exponents in Jacobian Algorithms. Studies in Nonlinear
Dynamics and Econometrics, 1 (3) art. 2.

Guckenheimer, J — Holmes, P (1983) Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields. (Applied Mathematical
Sciences, Vol. 42), Springer-Verlag: Berlin.

15



Hornik, K — Stinchcombe, M — White, H (1990) Universal Approximation
of an Unknown Mapping and its Derivatives using Multilayer
Feedforward Networks. Neural Networks, 3, 551—560.

Kennel, M B — Brown, R — Abarbanel, H D I (1992) Determining
Embedding Dimension for Phase-Space Reconstruction using a
Geometrical Construction. Physical Review A, 45, 3403—3411.

Leeves, G (2007) Asymmetric Volatility of Stock Returns during
the Asian Crisis: Evidence from Indonesia. International Review of
Economics and Finance, 16, 272—286.

McCaffrey, D — Ellner, S — Gallant, A R — Nychka, D (1992) Estimating
the Lyapunov Exponent of a Chaotic System with Nonparametric
Regression. Journal of the American Statistical Association, 87, 682—695.

Nychka, D — Ellner, S — Gallant, A R — McCaffrey, D (1992) Finding Chaos
in Noisy Systems. Journal of the Royal Statistical Society B, 54, 399—426.

Sauer, T — Yorke, J A — Casdagli, M (1991) Embedology. Journal of
Statistical Physics, 65, 579—616.

Shintani, M — Linton, O (2004) Nonparametric Neural Network
Estimation of Lyapunov Exponents and a Direct Test for Chaos.
Journal of Econometrics, 120, 1—33.

Takens, F (1981) Detecting Strange Attractors in Turbulence. In
Dynamical Systems and Turbulence (Lecture Notes in Mathematics, Vol. 898)
by Rand, D A and Young, L S, eds., Springer-Verlag: Berlin, 366—381.

16



 

BANK OF FINLAND RESEARCH 
DISCUSSION PAPERS 
 
ISSN 0785-3572, print; ISSN 1456-6184, online 
 
1/2007 Timo Korkeamäki – Yrjö Koskinen – Tuomas Takalo  Phoenix rising: Legal 

reforms and changes in valuations in Finland during the economic crisis. 
2007. 39 p. ISBN 978-952-462-346-9, print; ISBN 978-952-462-347-6, online. 

 
2/2007 Aaron Mehrotra  A note on the national contributions to euro area M3. 

2007. 25 p. ISBN 978-952-462-348-3, print; ISBN 978-952-462-349-0, online. 
 
3/2007 Ilmo Pyyhtiä  Why is Europe lagging behind? 2007. 41 p. ISBN 978-952-462-

350-6, print; ISBN 978-952-462-351-3, online. 
 
4/2007 Benedikt Goderis – Ian W Marsh – Judit Vall Castello – Wolf Wagner  Bank 

behaviour with access to credit risk transfer markets. 2007. 28 p. 
ISBN 978-952-462-352-0, print; ISBN 978-952-462-353-7, online. 

 
5/2007 Risto Herrala – Karlo Kauko  Household loan loss risk in Finland – 

estimations and simulations with micro data. 2007. 44 p. 
ISBN 978-952-462-354-4, print; ISBN 978-952-462-355-1, online. 

 
6/2007 Mikael Bask – Carina Selander  Robust Taylor rules in an open economy 

with heterogeneous expectations and least squares learning. 2007. 54 p. 
ISBN 978-952-462-356-8, print; ISBN 978-952-462-357-5, online. 

 
7/2007 David G Mayes – Maria J Nieto – Larry Wall  Multiple safety net regulators 

and agency problems in the EU: is Prompt Corrective Action a partial 
solution? 2007. 39 p. ISBN 978-952-462-358-2, print; 
ISBN 978-952-462-359-9, online. 

 
8/2007 Juha Kilponen – Kai Leitemo  Discretion and the transmission lags of 

monetary policy. 2007. 24 p. ISBN 978-952-462-362-9, print; 
ISBN 978-952-462-363-6, online. 

 
9/2007 Mika Kortelainen  Adjustment of the US current account deficit. 2007. 35 p. 

ISBN 978-952-462-366-7, print; ISBN 978-952-462-367-4, online. 
 
10/2007 Juha Kilponen – Torsten Santavirta  When do R&D subsidies boost 

innovation? Revisiting the inverted U-shape. 2007. 30 p. 
ISBN 978-952-462-368-1, print; ISBN 978-952-462-369-8, online. 

 
11/2007 Karlo Kauko  Managers and efficiency in banking. 2007. 34 p. 

ISBN 978-952-462-370-4, print; ISBN 978-952-462-371-1, online. 



 
 

12/2007 Helena Holopainen  Integration of financial supervision. 2007. 30 p. 
ISBN 978-952-462-372-8, print; ISBN 978-952-462-373-5, online. 

 
13/2007 Esa Jokivuolle – Timo Vesala  Portfolio effects and efficiency of lending 

under Basel II. 2007. 23 p. ISBN 978-952-462-374-2, print; 
ISBN 978-952-462-375-9, online. 

 
14/2007 Maritta Paloviita  Estimating a small DSGE model under rational and 

measured expectations: some comparisons. 2007. 30 p. 
ISBN 978-952-462-376-6, print; ISBN 978-952-462-377-3, online. 

 
15/2007 Jarmo Pesola  Financial fragility, macroeconomic shocks and banks’ loan 

losses: evidence from Europe. 2007. 38 p. ISBN 978-952-462-378-0, print; 
ISBN 978-952-462-379-7, online. 

 
16/2007 Allen N Berger – Iftekhar Hasan – Mingming Zhou  Bank ownership and 

efficiency in China: what lies ahead in the world’s largest nation? 2007. 
47 p. ISBN 978-952-462-380-3, print; ISBN 978-952-462-381-0, online. 

 
17/2007 Jozsef Molnar  Pre-emptive horizontal mergers: theory and evidence. 2007. 

37 p. ISBN 978-952-462-382-7, print; ISBN 978-952-462-383-4, online. 
 
18/2007 Federico Ravenna – Juha Seppälä  Monetary policy, expected inflation and 

inflation risk premia. 2007. 33 p. ISBN 978-952-462-384-1, print; 
ISBN 978-952-462-385-8, online. 

 
19/2007 Mikael Bask  Long swings and chaos in the exchange rate in a DSGE model 

with a Taylor rule. 2007. 28 p. ISBN 978-952-462-386-5, print; 
ISBN 978-952-462-387-2, online. 

 
20/2007 Mikael Bask  Measuring potential market risk. 2007. 18 p. 

ISBN 978-952-462-388-9, print; ISBN 978-952-462-389-6, online. 
 
 
 
 
 



Suomen Pankki
Bank of Finland
P.O.Box 160
FI-00101 HELSINKI
Finland


	Measuring potential market risk
	Abstract
	Tiivistelmä
	Contents
	1 Measuring market risk
	2 λ: a measure of potential market risk
	3 Testing for a change in λ
	4 (λ,σ2)-analysis
	5 Concluding remarks
	References
	Bank of Finland Discussion Papers



