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Abstract

In this research we model the claim process of financial guarantee insurance and
predict the pure premium and the required amount of risk capital. The used data is
from the financial guarantee system of the Finnish statutory pension scheme. The
losses in financial guarantee insurance may be devastating during an economic de-
pression (that is, deep recession). This indicates that the economic business cycle,
and in particular depressions, must be taken into account when the claim amounts
of financial guarantee insurance are modelled. A Markov regime-switching model
is used to predict the number and length of depression periods in the future. The
claim amounts are predicted by using a transfer function model where the predicted
growth rate of real GNP is an explanatory variable. The pure premium and ini-
tial risk reserve are evaluated on the basis of the predictive distribution of claim
amounts. Bayesian methods are applied throughout the modelling process. For ex-
ample, the Gibbs sampler is used in the estimation of the business cycle model.
Simulation results show that the required amount of risk capital is high even though
depression is an infrequent phenomenon.
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1 Introduction

A guarantee insurance (surety insurance) is typically required when there is
a doubt of the fulfilment of a contractual, legal or regulatory obligation. It
is designed to protect some public or private interest from the consequences
of the default or delinquency of another party. Financial guarantee insurance
covers losses from specific financial transactions. Due to differences in laws and
regulations guarantee insurance is a country specific business; see, for example,
Sigma (2006).

When a country experiences economic depression (that is, deep recession) the
losses in financial guarantee insurance may reach catastrophic dimensions for
several years. During that time the number of claims can be extraordinary
large and, what is more important, the proportion of excessive claims can
be much higher than in usual periods (see, for example, Romppainen, 1996;
Sigma, 2006). As the future growth of the economy is uncertain, it is important
to consider the level of uncertainty one can expect in the future claim process.
A mild and short downturn in the national economy increases the losses suf-
fered by financial guarantee insurers only moderately, but severe downturns in
the national economy are crucial. History knows several economic depressions.
These include the Great Depression in the 1930s, World Wars I and II, and
the oil crisis in the 1970s. In recent years the Finnish experience from the be-
ginning of the 1990s and the Asian crisis in the late 1990s are good examples.
An interesting statistical approach for analyzing the timing and effects of the
Great Depression is the Regime Switching method in Coe (2002).

Here we model the claim process of financial guarantee insurance in the eco-
nomic business cycle context. We build on the following three studies on the
financial guarantee system of the Finnish pension scheme. Rantala and Hi-
etikko (1988) modelled the solvency issues by means of linear models. Their
main objective was to test methods for specifying bounds for the solvency
capital. The linear method combined with the data not containing any fatal
depression period - Finland was struck by depression in the early 1990s after
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the article was published - underestimated risk. Romppainen (1996) analyzed
the structure of the claim process during the depression period. Koskinen and
Pukkila (2002) also applied the economic cycle model. Their simple model
gives approximate results but lacks sound statistical ground. We use modern
statistical methods that offer advantages for assessing the uncertainty.

There is no single ”best practice” model for credit risk capital assessment
(Alexander, 2005). The main approaches are structural firm-value models,
option-theoretical approaches, rating-based methods, macroeconomic models
and actuarial loss models. In contrast to market risk, there has been little
detailed analysis of the empirical merits of different models. A review of com-
monly used financial mathematics methods can be found for example in McNeil
et al. (2005). Since the guarantee loans are nontraded in Finland, we adopt an
actuarial approach. However, this approach is also difficult, since depression
is an exceptional event and its modelling is difficult with standard actuarial
methods.

Cairns (2000) points out that uncertainty in actuarial modelling arises from
three sources: 1) uncertainty due to the stochastic nature of a given model; 2)
uncertainty in the values of the parameters in a given model; 3) uncertainty
in the model underlying what we are able to observe and determining the
quantity of interest. In financial guarantee insurance the main problem seems
to fall into the third category because of the complexity of the underlying risk
process.

From the methodological point of view we adopt the Bayesian approach rec-
ommended for example by Scollnik (2001). Simplified models or simplified
assumptions may fail to reveal the true magnitude of the risks faced by
the insurer. While undue complexity is generally undesirable, there may be
situations where complexity cannot be avoided. Best et al. (1996) explain
how Bayesian analysis can generally be used for realistically complex models.
An example of concrete modelling is provided by Hardy (2002), who applies
Bayesian techniques to a regime-switching model of the stock price process
for risk management purposes. Another example can be found in Smith and
Goodman (2000), who present models for the extreme values of large claims
and use modern techniques of Bayesian inference. Here, Bayesian methods are
used throughout the modelling process, for example the Gibbs sampler in the
estimation of the business cycle model. The proposed actuarial model is used
for simulating purposes in order to study the effect of the economic cycle on
the needed pure premium and initial risk reserve.

We apply the Markov regime-switching model to predict the number and
length of depression periods in the future. The prediction of claim amounts is
made by using a transfer function model where the predicted growth rate of
real GNP is an explanatory variable. More specifically, we utilize the business
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cycle model introduced by Hamilton (1989). In the Hamilton method all the
dating decisions or, more correctly, the probability that a particular time pe-
riod is in recession, are based on the observed data. The method assumes that
there are two distinct states (regimes) in the business cycle - one for expansion
and one for recession - that are governed by a Markov chain. The stochastic
nature of the GNP growth depends on the prevailing state.

The financial guarantee insurance is characterized by long periods of low loss
activity punctuated by short severe spikes; see Sigma (2006). As such con-
ventional dichotomic business models are inadequate, since severe recessions
constitute the real risk. We propose a model where the two states represent
1) the depression period state and 2) its complement state consisting of both
boom and mild recession periods. We use Finnish real GNP data to estimate
our model. The claim data is from the financial guarantee insurance system of
the Finnish pension scheme. Combining a suitable business cycle model with
a transfer function model provides a new way to analyze the solvency of a
financial guarantee provider with respect to claim risk.

The paper is organized as follows. In Section 2 the Finnish credit crisis in
the 1990s is described. Section 3 introduces the business cycle model and
Section 4 presents the transfer function model and predictions. Model checks
are presented in Section 5. Section 6 concludes.

2 The Finnish experience in the 1990s

During the years 1991− 1993 Finland’s GNP dropped by 12%. Naturally that
period was harmful to all sectors of the economy and society as a whole.
However, the injuries suffered in the insurance sector were only moderate, at
least compared with the problems of the banking sector at the same time.
An important exception was the financial guarantee insurance related to the
statutory earnings-related pension scheme of the private sector. At a general
level, Norberg (2006) describes the risk presented to pension schemes under
economic and demographic developments.

The administration of the pension scheme is decentralised to numerous in-
surance companies, company pension funds and industry-wide pension funds.
The central body for the pension scheme is the Finnish Centre for Pensions
(FCfP). The special financial guarantee insurance was administrated by the
FCfP. It was designed to be a guarantee for loans granted by pension insurance
companies as well as to secure the assets of pension funds.

The business was started in 1962 and continued successfully until Finland was
hit by depression in the 1990s. Then the losses took catastrophic dimensions
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Fig. 1. Claims paid from financial guarantee insurance by the Finnish Centre for
Pensions of Finland between 1980 and 2000. The lower dark part of the bar describes
the final loss by August 2001.

and the financial guarantee insurance activity of the FCfP was closed. Claims
paid by the FCfP are shown in Figure 1. The cost was levied to all employers
involved in the mandatory scheme. Hence, pension benefits were not jeopar-
dized.

Afterwards the FCfP’s run-off portfolio was transferred to the new company
named ”Garantia”. A more detailed description of the case of the FCfP can
be found in Romppainen (1996). In order to promote the capital supply, the
FCfP had a legal obligation to grant financial guarantee insurance to company
pension funds and industry-wide pension funds for which insurance was oblig-
atory. Hence, it employed fairly liberal risk selection and tariffs. This probably
had an influence on the magnitude of the losses. Hence, the data reported by
Romppainen and used here can not be expected, as such, to be applicable
in other environments. The risks would be smaller in conventional financial
guarantee insurance, which operates solely on a commercial basis.

It is interesting to note that there are similar problems also in the USA at
present. The corresponding US institute is Pension Benefit Guaranty Corpora-
tion (PBGC). It is a federal corporation created by the Employee Retirement
Income Security Act of 1974. It currently protects the pensions of nearly 44
million American workers and retirees in 30,330 private single-employer and
multiemployer defined benefit pension plans. Pension Insurance Data Book
2005 (page 31) reveals that total claims of PBGC have increased rapidly from
about 100 million dollars in 2000 to 10.8 billion dollars in 2005. This increase in
claims can not be explained by nation-wide depression, but it may be related
to problems of special industry sectors (for example aviation).
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3 National economic business cycle model

Our first goal is to find a model by which we can forecast the growth rate
of GNP. We will use annual Finnish data on real GNP from 1860 to 2004,
provided by Statistics Finland. We are particularly interested in the number
and length depression periods. For this purpose we will utilize the Markov
regime-switching model introduced by Hamilton (1989). The original Hamilton
model has two states for the business cycle: expansion and recession. In our
situation, however, it is more important to detect depression, since it is the
period when financial guarantee insurance will suffer its most severe losses.
Therefore, we will define the states in a slightly different way in our application.
Specifically, we will use a two-state regime-switching model in which the first
state covers both expansion and recession periods and the second state is for
depression.

Our estimation results correspond to this new definition, since depression pe-
riods are included in our data set. By contrast, Hamilton used quarterly U.S.
data from 1951 to 1984, which do not include years of depression.

The Hamilton model may be expressed as yt = α0 +α1st +zt, where yt denotes
the growth rate of real GNP at time t, st the state of the economy and zt a
zero-mean stationary random process, independent of st. The parameters α0

and α1 and the state st are unobservable and should be estimated. We will
assume that zt is an autoregressive process of order r, denoted by zt ∼ AR(r).
It is defined by the equation zt = φ1zt−1 + φ2zt−2 + . . . + φrzt−r + ǫt, where
ǫt ∼ N(0, σ2

ǫ ) is an i.i.d. Gaussian error process. The growth rate at time t is
calculated as yt = log(GNPt) − log(GNPt−1).

We define the state variable st to be 0, when the economy is in expansion or
recession, and 1, when it is in depression. The transitions between the states
are controlled by the first-order Markov process with transition probabilities

P(st+1 = 0|st = 0) = p,

P(st+1 = 1|st = 0) = 1 − p,

P(st+1 = 0|st = 1) = 1 − q,

P(st+1 = 1|st = 1) = q.

Thus, the transition matrix is given by

P =







p 1 − p

1 − q q





 .

The stationary probabilities π = (π0, π)′ of the Markov chain satisfy the equa-
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tions π′P = π′ and π′1 = 1, where 1 = (1, 1)′.

The Hamilton model was originally estimated by maximising the marginal
likelihood of the observed data series yt. Then the probabilities of the states
were calculated conditional on these maximum likelihood estimates. The nu-
merical evaluation was done by a kind of nonlinear version of the Kalman
filter. By contrast, we will use Bayesian computation techniques throughout
this paper. Their advantage is that we need not rely on asymptotic inference
and the inference on the state variables is not conditional on the parameter
estimates. The Hamilton model will be estimated using the Gibbs sampler,
introduced by Geman and Geman (1984) in the context of image restoration.
Examples of Gibbs sampling can be found in Gelfand et al. (1990) and Gel-
man et al. (2004). Carlin et al. (1992) provide a general approach to its use in
nonlinear state-space modelling.

The Gibbs sampler, also called alternating conditional sampling, is a useful
algorithm for simulating multivariate Markov chains. It is defined in terms of
subvectors of θ = (θ1,θ2, . . . ,θp), where θ is the random vector whose distri-
bution is to be simulated. In each iteration the Gibbs sampler goes through
θ1,θ2, . . . ,θp and draws values from their conditional distributions, condi-
tional on the latest values of the other components of θ. It can be shown that
this algorithm produces an ergodic Markov chain whose stationary distribu-
tion is the distribution of θ. In order to use the Gibbs sampler as an estimating
algorithm, all full conditional posterior distributions of the parameters need
to be evaluated.

To simplify some of the expressions we will use the following notations: y =
(y1, y2, . . . , yT )′, s = (s1, s2, . . . , sT )′ and z = (z1, z2, . . . , zT )′. We will also
need the matrix

Z =





















z′0

z′1
...

z′T−1





















,

whose rows are of the form zt = (zt, zt−1 . . . , zt−r+1)
′. Furthermore, we denote

the vector of autoregressive coefficients by φ = (φ1, φ2, . . . , φr)
′ and the vector

of all parameters by η = (α0, α1,φ
′, σ2

ǫ , p, q)
′. In the following treatment we

assume the pre-sample values y0 = (y0, ..., y1−r)
′ and s0 = (s0, ..., s1−r)

′ to
be known. In fact, s0 is not known, but we will simulate its components in a
similar way as those of s.

Using these notations the density of y, conditional on s and the parameters
η, can be written as
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p(y|s,η) =
T
∏

t=1

1
√

2πσ2
ǫ

exp

(

−
1

2σ2
ǫ

(yt − α0 − α1st − φ′zt−1)
2

)

.

In order to make computations easy, we use the following prior distributions:

p ∼ Beta(αp, βp),

q ∼ Beta(αq, βq),

p(φ, σ2
ǫ ) ∝

1

σ2
ǫ

,

p(α0) ∝ 1,

p(α1) ∝ N(α1|µ0, σ
2
0) × I(α1 < −0.03).

We obtained noninformative prior distributions for p and q by specifying as
prior parameters αp = βp = αq = βq = 0.5. These values correspond to
Jeffreys uninformative prior distribution in the standard Bernoulli model. We
also made sensitivity analysis by using informative priors with parameters
αp = 19, βp = 3; αq = βq = 11. These values correspond to the idea that
the chain has switched to state 1 in 2 out of 20 prior cases when it has been
is state 0 and has switched to state 0 in 10 out of 20 prior cases when it has
been in state 1. By this choice of priors we could increase the probability of
the state 1 so that it corresponded to our concept of depression.

For α0, φ and σ2
ǫ we gave improper, noninformative prior distributions. The

prior distribution of α1 prevents it from getting a positive value (that is, the
state can then be interpreted as a depression state). Here, notation N(α1|µ0, σ

2
0)

refers to the Gaussian density with mean µ0 and variance σ2
0 and I(α1 <

−0.03) the indicator function obtaining the value 1, if α1 < −0.03, and 0, oth-
erwise. We specified the values µ0 = −0.1, σ2

0 = 0.22 as prior parameters, which
results in a fairly noninformative prior distribution. We also experimented here
with an informative alternative µ0 = −0.05, σ2

0 = 0.0252, which reduces the
difference between the states and increases the probability of state 1. The re-
sults were similar to those obtained when informative priors were given to p
and q.

In order to implement the Gibbs sampler the full conditional posterior distri-
butions of the parameters are needed:
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{p|s} ∼ Beta

(

T
∑

t=1

[(1 − st)(1 − st−1)] + αp,
T
∑

t=1

[st(1 − st−1)] + βp

)

,

{q|s} ∼ Beta

(

T
∑

t=1

[stst−1] + αq,
T
∑

t=1

[st−1(1 − st)] + βq

)

,

{st|s(−t),y,η}

∼ Bernoulli

(

Pr(st = 1|s(−t),η)p(y|st = 1, s(−t),η)
∑1

j=0 Pr(st = j|s(−t),η)p(y|st = j, s(−t),η)

)

, t = 1, . . . , T,

{φ|y, s, α0, α1, σ
2
ǫ} ∼ N

(

(Z ′Z)−1Z ′z, σ2
ǫ (Z

′Z)−1
)

,

{σ2
ǫ |y, s, α0, α1,φ} ∼ Inv-χ2 (T, (z − Zφ)′(z − Zφ)/T ) ,

{α0|y, s, α1,φ, σǫ} ∼ N

(

∑T
t=1 y∗

t

T
,
σ2

ǫ

T

)

,

p(α1|y, s, α0,φ, σǫ) ∝ N(α1|α̂1, σ̂1
2) × I(α1 < −0.03),

where we have denoted

α̂1 =

∑

T

t=1
sty

∗∗

t

σ2
ǫ

+ 1
σ2

0

µ0
∑

T

t=1
st

σ2
ǫ

+ 1
σ2

0

, σ̂2
1 =

(

∑T
t=1 st

σ2
ǫ

+
1

σ2
0

)

−1

,

and

y∗

t = yt − α1st − φ′zt−1, y∗∗

t = yt − α0 − φ′zt−1.

The notation Inv-χ2(ν, s2) means the scaled inverse-chi-square distribution,
defined as νs2

χ2
ν

, where χ2
ν is a chi-square distributed random variable with ν

degrees of freedom.

Note that the probability of state 1 at time t, given the states at the other
time points, s(−t), is easily calculated as

Pr(st = 1|s(−t),η) =
Pr(st = 1|st−1, p, q) Pr(st+1|st = 1, p, q)

Pr(st+1|st−1, p, q)
, 0 < t < T.

In Figure 2, one simulated chain, produced by the Gibbs sampler, is shown. As
we can see, the chain converges rapidly to its stationary distribution and the
component series of the chain mix well, that is, they are not too autocorrelated.
The summary of the estimation results, based on three simulated chains, as
well as Gelman and Rubin’s diagnostics (Gelman et al., 2004) are given in
Appendix A. The values of the diagnostic are close to 1 and thus indicate
good convergence.
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Fig. 2. Iterations of the Gibbs sampler.

4 Prediction of the claim amounts

Our ultimate goal is to predict the pure premium and the required amount of
risk capital needed for the claim deviation. The claim data is obtained from
FCfP (see Section 2) and the years included in this study are 1966−2004. The
prediction of the claim amounts is made by using a transfer function model of
the form

xt = β0 + β1xt−1 + β2yt + ǫt,

where xt = Φ−1(x∗

t ) and x∗

t is the proportion of gross claim amount to technical
provision at time t, yt the growth rate of GNP and ǫt ∼ N(0, σ2) an i.i.d.
Gaussian error process. The parameters β0, β1 and β2 are not known and are
estimated. The series yt is predicted using the model described in the previous
section.

The model xt = β0 + β1xt−1 + β2yt + ǫt may also be expressed in the form

xt − β0 =
β2

1 − β1B
yt +

1

1 − β1B
ǫt

= β2(yt + β1yt−1 + β2
1yt−2 + . . . ) + ǫt + β1ǫt−1 + β2

1ǫt−2 + . . . ,

from which one can see that xt can be obtained by applying exponential filters
to the input series yt and ǫt.

In our analysis we applied the probit transformation Φ−1(.), the inverse func-
tion of the standard normal distribution function, to the variable x∗

t . This is
reasonable, since x∗

t cannot exceed 1. As an alternative we used the logit link
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xt = logit(x∗

t ) = log(x∗

t /(1 − x∗

t )). The parameters β0, β1 and β2 were esti-
mated using standard Bayesian simulation for regression models. We used an
otherwise uninformative prior distribution but made the restriction β1 < 1 to
ensure that that the estimated model for xt is stationary.

The premium and the initial risk reserve are evaluated from the posterior pre-
dictive distribution of the proportions of claim amount to technical provision.
For simplicity the technical provision is set at 1 in the prediction. Then the
predicted proportions are the same as the predicted claim amounts. The pre-
mium is set at the overall mean of all iterations through the prediction period.
The balance at time t is calculated by subtracting the claim amount at time
t from the cumulated premiums. The five-year 95% and 75% values at risk
are evaluated from the minimum balance of each iteration. The distribution
of the minimum balance is extremely skewed, which can be explained by the
rareness of depression and by the huge losses of guarantee insurance once de-
pression hits. This phenomenon can be seen from Figure 3, which shows the
95% prediction limits of the balance when both probit and logit links are used.
In both cases, noninformative prior distributions were used in the estimation
of the Hamilton model. The curves indicating the lower prediction limits are
much steeper than those indicating the upper limits. The use of the logit link
produces more extreme simulation paths.
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Fig. 3. Simulation results for the balance of the guarantee insurance. The solid
lines indicate the 95% values at risk and the dashed lines 20 example paths. The
simulation results based on the probit and logit links are shown in the left and right
parts of the figure, respectively.

Extensive simulations (5 000 000 iterations) were done to evaluate the pure
premium and the 95% and 75% values at risk for the prediction period of five
years. The pure premium levels were 1.9% and 2.7% with the probit and logit
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links, respecitvely. The 95% values at risk were 2.3 and 2.9 times the five-
year premium with the probit and logit links, respectively. The corresponding
figures for the 75 % value at risk were 0.30 and 0.18, respectively. These
results were obtained when noninformative prior distributions were used in
the estimation of the Hamilton model. When informative prior distributions
were used, the results did not change considerably. The choice between the
probit and logit links in the context of the transfer function model had a
larger effect. When the logit link was used, the estimate of the premium level
became unrealistically large.

5 Model checks for the Hamilton model and the transfer function

model

We made some sensitivity analysis with respect to the prior distributions re-
lated to the Hamilton model. We found that by using informative prior distri-
butions for the transition probabilities p and q we could increase the estimated
probabilities of state 1 so that it corresponded better to its interpretation as
depression. This can be seen from Figure 4 where the growth rate of GNP
is shown along with the probabilities of depression, estimated using two dif-
ferent kinds of prior information. The same goal was achieved by giving an
informative prior for α1. However, these adjustments did not considerably
effect the estimated premium or value at risk. According to the posterior pre-
dictive checks, the model with noninformative prior distributions appeared
to be somewhat better. However, the model with informative priors was also
sufficiently good.

The residuals of the Hamilton model appeared to be normally or nearly nor-
mally distributed. In fact, our data set had one positive outlier which caused
the rejection of a normality test. This is due to the fact that the model does
not include a regime for strong boom periods of the economy. However, it is
not necessary to make the model more complicated by introducing a third
regime, since positive outliers are extremely rare and it is sufficient for our
purpose to model the depression periods.

The fit of a model can be checked by producing replicated data sets using
posterior predictive simulation. A replicated data set is produced by first gen-
erating the unknown parameters (and in the case of the Hamilton model also
the states) from their posterior distribution and then, given these parameters,
the new data values. One can simulate distributions of arbitrary test statistics
under the checked model by calculating the test statistics from each replicated
data set. Then one can compare these distributions with the statistics of the
original data set. This approach to model checking is well explained in Gelman
et al. (2004), in Chapter 6.
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Fig. 5. Replication check for the Hamilton model with noninformative prior distri-
butions.

We generated 5000 replicates of the GNP data under the Hamilton model
and calculated some basic statistics from them. The resulting distributions
were consistent with the observed statistics, which can be seen from Figure
5. Only the maximum value of the original data set is extreme with respect
to its simulated posterior distribution. Still, this value is plausible under the
simulated model, that is, the Hamilton model. We also made a similar test for

13



Minumum

F
re

qu
en

cy

−0.30 −0.20 −0.10

0
50

0
10

00
15

00

Maximum

F
re

qu
en

cy

0.10 0.20 0.30

0
50

0
10

00
15

00

Mean

F
re

qu
en

cy

−0.06 0.00 0.04

0
20

0
60

0
10

00

Standard deviation
F

re
qu

en
cy

0.04 0.06 0.08

0
50

0
10

00
15

00
Kurtosis

F
re

qu
en

cy

−1 1 2 3 4 5
0

50
0

15
00

25
00

Skewness

F
re

qu
en

cy

−1.5 −0.5 0.5

0
20

0
40

0
60

0
80

0

Fig. 6. Replication check for the AR(2) model.

the simpler linear AR(2) model by producing 5000 replicates. The resulting
distributions, as seen in Figure 6, were not as consistent with the observed
statistics as they were in the case of the Hamilton model. Specifically, the ob-
served mean, skewness and kurtosis were more extreme than we would expect
under a good model.

The discrepancy between the data and the model may be measured using sev-
eral criteria; see Gelman et al. (2004). We used the average discrepancy, de-
fined as Davg(y) = E(D(y, θ)|y), the posterior mean of the deviance D(y, θ) =
−2 log p(y|θ). A smaller value of this criterion indicates a better model fit. The
average discrepancy is estimated as D̂avg(y) =

∑L
l=1 D(y, θl)/L, where the

vectors θl are posterior simulations. The estimated average discrepancy for
the Hamilton model with our noinformative prior distribution was D̂avg(y) =

−539.02 and with our informative prior distribution D̂avg(y) = −549.56. The

criterion value for the AR(2) model was D̂avg(y) = −274.19, indicating that
its model fit was considerably inferior to that of the Hamilton model.

We also made robustness checks by using subsample data in estimation. The
results did not change considerably, when only the first half of the data set
(years 1861-1932) was used. When the second half (years 1933-2004) was used
the difference between the regimes became smaller and the probability of the
depression regime increased. This is natural, since the second half does not
contain the years when GNP had extreme drops, that is, the years 1867 (one
of the great hunger years in Finland) and 1917-18 (when Finland became
independent and had the civil war).

We also made checks for our transfer function model, used in the estimation
of the risk premium and the initial risk reserve. The predictive distributions of
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Fig. 7. The observed proportions of gross claim amount to technical provision and
three replicated series when the probit transformation is used.
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Fig. 8. The observed proportions of gross claim amount to technical provision and
three replicated series when the logit transformation is used.

the basic statistics were consistent with their observed values, both in the cases
of probit and logit links. The residuals, obtained after fitting the probit or logit
transformed data sets, appeared to be normally or nearly normally distributed.
The observed proportions of claim amount to technical provision are shown
in the upper parts of Figures 7 and 8 and three replicated series in their
lower parts. The probit and logit transformations are used in Figures 7 and 8,
respectively, for the sake of comparison. On the basis of visual inspection the
probit link would seem to be better than the logit link in producing replicated
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series which resemble the original series. However, one cannot draw reliable
conclusions about this, since the estimation period is so short. If needed, one
could take into account the model risk related to the link function by applying
a more general link function, such as the inverse of the distribution function
of Student’s t-distribution.

A standard approach would be using a compound Poisson process to model
the numbers of claims and their sizes simultaneously. However, we found such
an approach difficult, since both the claim size distribution and the intensity
of claims turned out to be variable during our short estimation period.

6 Conclusions

In this paper we presented an application of Bayesian modelling to financial
guarantee insurance. Our goal was to model the claim process and to predict
the premium and the required amount of risk capital needed for the claim
deviation. Even though the data used is from the Finnish economy and from
the financial guarantee system of the Finnish statutory pension scheme, we
think that the model could be used in similar cases elsewhere. However, for the
interpretation of the results it is important to note that the risks are probably
smaller in conventional companies that operate solely on a commercial basis
than in a statutory system.

The Markov regime-switching model was used to predict the number and
length of depressions in the future. We used real GNP data to measure the
economic growth. The claim amounts were predicted by using a transfer func-
tion model where the predicted growth rate of real GNP was an explanatory
variable. We had no remarkable convergence problems when simulating the
joint posterior distribution of the parameters even though the prior distri-
butions were noninformative or only mildly informative. The sensitivity to
the choice of the link function (probit or logit) in the context of the trans-
fer function was much greater than the sensitivity to the prior assumptions
(informative or noninformative) in the growth rate model.

The simulation results can be summarized as follows. First, if the effects of
economic depressions are not considered properly, there is a danger that the
premiums of financial guarantee insurance will be set at a too low level. Pure
premium level based on the gross claim process is assessed to be at minimum
1.9%. In Finland the claim recoveries after the realization process of collaterals
has been about 50%. Second, in order to get through a long-lasting depression
a financial insurer should have a fairly great risk reserve. The 95% value at
risk for a five-year period is about 2.3 times the five-year premium. The cor-
responding 75% value at risk is only about 0.30 times the five-year premium.
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These figures illustrate the essential importance of reinsurance contracts in
assessing the needed risk capital.

General observations can be made from this study:

• In order to understand the effects of business cycles on financial insurers’ fi-
nancial condition and better appreciate the risks, it is appropriate to extend
the modelling horizon to cover a depression period;

• A financial guarantee insurance company may benefit from incorporating
responses to credit cycle movements into its risk management policy;

• The use of Bayesian methods offers significant advantages for assessing un-
certainty;

• This study underlines the observation that a niche insurance company may
need special features in its internal model.

We suppose that the proposed method can also be applied to the financial
guarantee and credit risks assessment of a narrow industry sector whenever a
suitable business cycle model is found.

A Estimation results of the Hamilton model with noninformative

prior distributions

Number of chains = 3

Sample size per chain = 2500

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

alpha0 0.034387 0.0037252 4.302e-05 0.0001311

alpha1 -0.127041 0.0300157 3.466e-04 0.0014282

phi1 0.272877 0.1075243 1.242e-03 0.0031602

phi2 -0.161943 0.0960893 1.110e-03 0.0027343

sigmaE 0.001325 0.0001898 2.192e-06 0.0000047

p 0.972081 0.0213633 2.467e-04 0.0010495

q 0.402894 0.2120644 2.449e-03 0.0037676

sum(St) 5.673333 3.8759548 4.476e-02 0.2744217
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2. Quantiles for each variable:

0.025 0.25 0.50 0.75 0.975

alpha0 0.0274775 0.031792 0.034295 0.036825 0.042004

alpha1 -0.1864689 -0.148860 -0.125884 -0.104208 -0.074866

phi1 0.0462000 0.204920 0.277852 0.345023 0.476358

phi2 -0.3557249 -0.225779 -0.158533 -0.096778 0.022228

sigmaE 0.0009913 0.001193 0.001312 0.001444 0.001734

p 0.9156113 0.962588 0.977417 0.987580 0.997095

q 0.0506376 0.236130 0.389157 0.554960 0.834136

sum(St) 2.0000000 3.000000 4.000000 7.000000 16.000000

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 0.975 quantile

alpha0 1.01 1.03

alpha1 1.03 1.11

phi1 1.00 1.01

phi2 1.00 1.00

sigmaE 1.01 1.02

p 1.03 1.09

q 1.00 1.01

sum(St) 1.05 1.16
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