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Equity and interest rate models in long-term

insurance simulations

Laura Koskela, Vesa Ronkainen and Anne Puustelli1



Abstract

In this report we review and implement some commonly used stochastic mod-
els for equity prices and interest rates with a view to long-term simulations
such as in life and pension insurance. We give practical details of the various
modelling steps involved, and relate our discussion to the Solvency II project’s
internal models.

1Anne Puustelli is a researcher in the Department of Mathematics and Statistics in the
University of Tampere.
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1 Introduction

This report grew out of the documentation of our current research project
that deals with simulation models and their use in insurance company mod-
elling and solvency supervision. An early example of this type of approach is
given in Pentikäinen et al. (1989). The project is carried out and coordinated
by the Research Unit of the Insurance Supervisory Authority, Finland. It is
closely related to a broader international context, and these international de-
velopments, notably the use of internal models in Solvency II, are reviewed in
Chapters 2 and 3. A comprehensive simulation model that takes into account
all relevant aspects of an insurance company is a very resource intensive and
challenging project. Therefore it is quite natural that our scope is here lim-
ited. We cover a number of models for equity returns in Chapter 4 and briefly
discuss interest rate models in Chapter 5. We regard the material in Appen-
dices relevant especially for those interested in implementation aspects. We
recognize that those working on practical implementation will be faced with
many issues that are not covered in this report. For instance interest rate
modelling is a vast and challenging area where the current literature does
have gaps when it comes to implementation details. Despite the limitations
of our scope we hope that this report can serve as a useful introduction and
reference for model builders in the insurance field. At a later stage we also
aim to cover e.g. stochastic mortality forecasting.

The authors would like to express their appreciation to Research Director
Dr. Lasse Koskinen (ISA) and Dr. Arto Luoma (Department of Mathematics
and Statistics, University of Tampere) for their assistance during different
phases of this work.

We endeavor to ensure the accuracy of the report but it is possible that the
report may contain errors. The views expressed in this report are those of the
authors and do not necessarily reflect the views of the Insurance Supervisory
Authority (ISA) of Finland.
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2 Internal models and solvency
supervision

2.1 Internal modelling

Stochastic modelling and forecasting of the various cash-flows that an insur-
ance company must deal with is very topical both in the EU and interna-
tionally. It is an issue of importance for both insurance companies and their
various stakeholders, i.e. regulators, supervisors, rating agencies, financial an-
alysts, policyholders etc. These so called internal models have a broad field
of potential applications in insurance business as the following examples will
show.

Economic capital models, typically based on a VaR (or percentile) risk
measure, are used widely to determine the desired level and allocation of cap-
ital. ALM-models take an integrated view to assets and liabilities and their
dependencies, and they allow various strategies to be tested regarding as-
set allocation, profit-sharing policy etc. Portfolio optimization for the asset
allocation strategy is also related to ALM-modelling. Another increasingly
important modelling application is the market consistent valuation of embed-
ded guarantees and options, which can also be effectively used for the profit
testing of various life insurance products. Embedded value and its market
consistent variant is a traditional and commonly used tool to measure the
value of a life insurance company. For further discussion on these issues we
refer to Section 10.1.1 of the QIS 4 report (for QIS 4 see a separate section
below).

We can already observe that a number of problems relevant for the ef-
fective management of an insurance company can be analysed with the help
of simulation models. ’One size fits one’ is a quite common phenomenon in
certain modelling areas, for instance in interest rate modelling. So, it may not
be practicable to attempt to solve all the problems with only one universal
model. However, it is of course neither practical nor economical to develop
more models than is absolutely necessary. Based on this point of view, in-
surance regulators are currently working towards European (Solvency II) and
international (IAIS) solvency standards which will allow insurance companies
to use a single model for their capital assessment both for the internal eco-
nomic capital purposes and for the regulatory capital requirements. However,
before giving their approval for such a model, supervisors will require that the
aspects they consider important are adequately reflected in the model and its
use environment. We now turn to these issues in more detail.
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2.2 Solvency II

Solvency II is a fundamental and far-reaching project that will raise the cur-
rent out-dated insurance regulations in the EU to a new, international best
practice level. The focus is on better risk management and therefore the meth-
ods to quantify various risks are fundamentally important. It is here that the
internal models of insurance firms become valuable tools. Below we outline
the validation process for these models that supervisors will use.

2.2.1 Validation process

The general validation process for internal models is given in articles 109-
122 in the Solvency II Directive proposal (COM(2008)119 final, available at
ec.europa.eu/internal_market/insurance). The main steps in the process
are:

1. Use test (art. 117)

2. Statistical quality standards (art. 118)

3. Calibration standards (art. 119)

4. Validation standards (art. 121)

Additionally there are requirements for documentation standards (art.
122), profit and loss attribution (art. 120), governance and management (art.
113) etc. The articles in the directive are necessarily quite general and thus
have to be detailed by implementing measures and supervisory guidance.
These are currently under development in CEIOPS. Some of the challenging
issues relate to insufficient data, finding a right balance between too little and
too much harmonisation, and getting rid of any ’black boxes’ in the modelling
process.

2.2.2 Modelling areas and partial models

The Solvency Capital Requirement (SCR) is based on the idea that an in-
surance firm should have the amount of capital that is sufficient with a 99,5
percent confidence-level to guarantee that the firm will have enough assets to
cover its liabilities at the end of the one year period. This idea and the risks
that need to be modelled are described in articles 102-106 of the Solvency
II directive (Operational risk; Non-life underwriting risk; Life Underwriting
risk; Market risk including interest rate, equity, property, spread, currency
and concentration risk; Default risk). The directive proposal also gives an
option to use a partial internal model, i.e. to model only certain risk modules
or business units and to use the standard formula for the remaining parts
(art.109).

In this report we will only deal with market risk and in particular equity
and interest rate risk. Our approach is tailored for long-term forecasting and
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risk management purposes and it is therefore statistical, not focused on cur-
rent market values of various derivative etc. instruments and their arbitrage-
free modelling. However, we will also discuss the latter approach in the context
of interest rate modelling.

2.2.3 QIS 4 and internal models

Quantitative Impact Study 4 (QIS 4), the most recent field test of Solvency II,
included internal models as one key area. The summary report, CEIOPS SEC-
82-08, is available at www.ceiops.eu. It gives up to date information on how
insurance companies are currently using, and planning to use in the future,
internal models as a part of their risk management and capital assessment
frameworks. It also compares the Solvency Capital Requirement (SCR) and its
various components based both on the standard formula and internal models.

2.2.4 Internal models in insurance companies’ risk and
capital management

Korhonen & Koskinen (2008) explored several critical aspects of risk and cap-
ital management of an insurance company in the internal model context and
provided examples that illustrated the potential importance of management
science tools for internal model users and developers. The problem was formu-
lated as a multiple criteria decision making task with a hierarchical structure.
Korhonen & Koskinen used Analytical Hierarchy Process as a planning tool
to analyze management criteria, causal and risk factors. The evaluation was
carried out (in October 2007) by a panel consisting of senior managers of
major Finnish insurance companies. ”Investment Management” was found to
be the most important management criterion. Other important criteria were
”Cycle Management” and ”Risk Management”. As a final result, panel’s main
concern was that the new regulatory regime may create a potential for new
sources of systemic risk and supervisory over-control of the internal models.
Model related important risk factors are (pure) model risk and dependence
assumptions (considered separately).

2.3 International developments

We have discussed above the coming EU rules and on-going work relating to
internal models. However, we should also note that there are international
projects under way both in the supervisory community (IAIS, www.iaisweb.

org) and the actuarial profession (IAA, www.actuaries.org) that deal with
the same subject. One important example and reference is Wüthrich et al.
(2008). It is the intention of the EC and CEIOPS to take into account these
other developments also in the design of the EU rules.
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3 Modelling frameworks for in-
ternal models

There are several conceptual frameworks that can be useful for the modelers.
One useful way of thinking is the so called actuarial control cycle. The idea
is to take into account the links and loops between various profit and loss
and balance sheet items as well as actuarial, risk management and business
planning goals (see page 31 of the IAA report ’Global Framework for Insurer
Solvency Assessment’, available at www.actuaries.org).

Statistical model fitting is a valuable area to gain modelling insights. For
instance the Box-Jenkins method for time series modelling consists of the
following steps (Box et al. (1994)):

1. Specification

2. Estimation

3. Evaluation

In practice we would first choose the general linear ARIMA class of models
and analyse the data in order to choose a tentative ARIMA(p,d,q) model, and
then we would estimate the parameters. The evaluation phase may use such
tools as overfitting, analysis of error diagnostics, testing for in-sample and
out-of-sample fit using some suitable criteria. As a result we should be able
to identify the best fitting model that can be used to solve our practical
problems of forecasting or control. We will illustrate these steps later in the
context of equity price modelling.

The following list of key steps and things to consider in statistical mod-
elling is based on Chatfield (1995), and we find it relevant for internal models
also.

1. The objectives of the model have to be clearly specified and continuously
kept in mind.

2. The management and responsibilities relating to data collection, mod-
elling and analysis should be arranged in such a way that the whole
process can be executed and supervised appropriately.

3. Data collection principles should define the important variables required
by the model, the way they are measured, and the procedual steps for
carrying out the actual sampling of the data.
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4. Data scrutiny involves meticulous assessment of the structure and qual-
ity of the data, and the results of this analysis and the corrective actions
taken should be documented. In particular credibility, consistency and
completeness of the data should be examined. This step also includes the
processing of the data in a suitable input form for the model (databases
etc). Issues to be checked include the following: a) the coding of the
data is accurately done and suitable to be used as input for the model,
b) the sampled data is representative and of a suitable size, c) analy-
sis and appropriate actions regarding errors, missing observations and
outliers, d) modifying the data if necessary by transformations, correc-
tions, using virtual data to complement the lack of observed extreme
values etc, e) consistency checks if data from several sources have been
merged, f) summarizing the data in suitable and clear numerical and
graphical forms.

5. The processing of the data begins with an initial data analysis (IDA)
and proceeds with the model building steps: formulation, fitting and
validation. All these steps should be documented in order to justify the
choices made at various stages of the model development.

6. Initial data analysis uses various descriptive methods (summary statis-
tics, tables, graphs) to analyse the data. It gives useful background
information for the modelling decisions and should therefore always be
carried out and documented.

7. Model formulation/specification process may vary from case to case
and as such cannot be standardised. At this stage one should carefully
consider the fundamental modelling questions such as the following: a)
the context and objectives, b) background theory and literature review,
c) earlier experiences, d) market best practice and expert knowledge,
which give valuable input for the modeller when choosing and testing
which types of statistical analyses and inference1 would best suit the
research question and data at hand, e) the assumptions made and their
validity have to be documented and justified (e.g. what is known or
assumed or approximated and why).

8. Model fitting/estimation focuses on finding point and interval estimates
for the model parameters using appropriate statistical methods.

9. Model checking/evaluation/validation concentrates on the performance
assessment of the model. This includes diagnostic/residual analysis,
benchmarking with other models, data sets and prior knowledge. Model
robustness should be assessed with respect to chosen assumptions and
data. These analyses will also give indications of the model uncertainty
involved, which should be considered and accounted for. When the per-
formance is not satisfactory in some respect, a new round of model
formulation, fitting and checking should be carried out iteratively until
an acceptable solution has been found.

1Frequentist, Bayesian, decision theoretic
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10. Appropriate software and hardware are crucial when implementing nu-
merical stochastic methods. As a rule the better the quality of these
components, the more precise and reliable are the results. Therefore the
choices made should be justified and documented. Sometimes it may be
necessary or preferable to use a number software packages during the
modelling process. The packages used should be thoroughly tested (e.g.
by running the same data sets through competing packages) and well
documented and supported. They as well as all the other software used
in the modelling should be based on sound, published and tested algo-
rithms. All the numerical results should be replicable (double-checking
should be done during the validation, auditing and approval processes).

11. Literature references should be a key part of the model documentation
at every stage.

12. Effective communication is essential during the model development and
documentation, and when the results are presented. This requires that
the papers are accurately and illustratively written, and that plenty
of open discussions between the model builders, experts and managers
have been carried out. In Solvency II context this relates also to the
pillar 3 requirements that deal with disclosure and market discipline.

There exists a risk that the constructed model is wrong or does not ad-
equately perform the tasks designed to it. The inescapable consequence of
model use is called model risk. A nice review on model risk involved in using
models to value financial securities is provided by Derman (1996). A broad
typology for a risk model’s model risk is given e.g. in Down (2002). He clas-
sifies:

• Misspecified model: Stochastic process might be misspecified, missing
risk factors, misspecified relationships, transaction costs and liquidity
factors;

• Incorrect model application;

• Implementation risk;

• Other sources: Incorrect calibration, programming problems and data
problems.

Further, Down (2002) argues that there is no single strategy for avoiding
model risk, but to combat model risk we can:

• Be aware of model risk;

• Identify, evaluate and check the key assumptions;

• Test models against known problems;

• Choose the simplest reasonable model;

• Backtest and stress-test the model;
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• Estimate model risk quantitatively;

• Do not ignore small problems;

• Plot results and use non-parametric statistics;

• Re-evaluate models periodically.

Hence, in order to assess model risk an intimate knowledge of the modelling
process is required. The model risk is discussed in the Solvency II framework
e.g. in Ronkainen et al. (2008).

Financial derivative modelling is an area which is rapidly gaining ground in
insurance due to market consistent valuation of assets and liabilities (required
by insurance and accounting regulators). Many life and pension insurance
contracts have features that can be described using derivatives terminolgy.
The basic ideas of derivative modelling approach are summarised in Section
4.11.

General forecasting principles (available at www.forecastingprinciples.

com) outline the best practice in the forecasting field and are very useful for
insurance modelling too.

As a final illustration we present the iterative steps of model development
cycle as follows:
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Figure 3.1: Iterative steps of model development cycle.
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4 Equity market modelling

4.1 Introduction

Some part of life or pension insurer’s assets is typically invested in equity
(i.e. stocks or shares). The reason is that in the long run they are expected to
provide a higher, although more volatile, return than what interest rate secu-
rities can provide. However, as we are here dealing with a complex stochastic
process, the exact form of which is ultimately unknown, sound risk and re-
turn analysis for shorter and longer horizons is a necessary part of the risk
management process (typically both nominal and real returns have to be
considered).

The models for equity or other asset prices or returns, may be expressed in
continuous or discrete time. Amongst actuaries, most notable is the pioneer-
ing work of Wilkie (1986, 1995). The Wilkie model is based on Box–Jenkins
methodology. According to Cochrane (2001) the choice between the discrete-
and continuous-time representations of the same idea is one of modelling lan-
guage. He further states that the modeller should be familiar enough with
both discrete- and continuous-time representations to be able to choose the
one that is most convenient for a particular application. Some of the ad-
vantages of continuous-time models are that such models are analytically
tractable and they provide a convenient framework for pricing the derivatives
under the so-called complete market hypothesis. The problem faced with the
continuous-time models is, however, that the price data are essentially al-
ways recorded at discrete points in time (e.g annually, monthly, weekly or
daily), whereas the continuous-time models assume that the price is moni-
tored continuously in time. Due to the unavailability of a continuous sample
of observations, the estimation has usually been performed by first appropri-
ately discretizing the model and then applying various estimation methods.
Since discrete-time models are particularly useful for numerical computations,
they may be a better starting point for many practical situations.

Below we will review and implement several models that are commonly
applied for equities. We will mainly resort to a discrete-time framework and
will discuss the models as financial time series models. Financial time series
analysis provides us with statistical tools useful for analysing various types
of models. Using the real observed data sets we aim at studing how well a
specific model describes the stylized facts of the equity market data.

However, before closing this section, it is essential to understand what is
here meant by volatility. In words volatility is the degree to which the value
of a financial instrument tends to fluctuate, i.e variability. More precisely,
volatility refers to the standard deviation of the change in value of a financial
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instrument with a specific time horizon. Volatility is often used to quantify
the risk of the instrument over that time period. The causes of volatility are
discussed e.g. in Hull (1999). These causes mentioned are the random arrival
of new information about the future returns from the stock and trading.

4.2 Common equity models

A number of models can be applied to equity price or return1 modelling as is
explained e.g. in Hardy (2003), Tsay (2005), and Franses & Dĳk (2000). Here
are some common examples:

1. The lognormal model (see Section 4.5)

2. ARIMA time series models (see Section 4.6)

3. GARCH time series models (see Section 4.7)

4. Regime-switching models (see Section 4.8)

5. Jump-diffusion models (see Section 4.9)

6. Stochastic volatility models (see e.g. Tsay, 2005)

7. State-space model (see e.g. Shumway & Stoffer, 2006, ch. 6)

As will be illustrated below, these models differ with respect to their com-
plexity, which in turn is related to their ability to take into account certain
stylized facts observed in equity markets. These may include a trend, season-
ality, atypical observations, clusters of outliers and nonlinearity. State-space
modelling uses structural approach where trend, volatility, seasonal effects
etc. components can appear explicitly in the model equations. It thus allows
more transparent modelling than e.g. Box-Jenkins ARIMA approach. Typi-
cally the so called Kalman filter recursive methodology is used for parameter
estimation, although it is limited to linear and Gaussian models in its basic
form. However, we will not discuss this modelling approach further in this
report.

4.3 Data

Stock market indices track the performance of a specific ”basket” of stocks
considered to represent a particular market or sector of a particular stock
market or the economy. They can be used as measures of asset price evolu-
tions, benchmark for evaluating the performance of portfolio management,

1Direct statistical analysis of prices is difficult, because consecutive prices are correlated
and the variance of prices often increases with time. It is usually more convenient to build
up the model for returns, i.e. changes in prices. This is because return series commonly
have more attractive statistical properties. The results for returns can be used to give
appropriate results for prices.
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support of derivatives, and economic indicators (Gourieroux & Jasiak, 2001,
p. 413).

Diversification is the key tool to manage idiosyncratic investment risk
(also called unsystematic or diversifiable risk), and this principle is generally
applied in the asset management of insurance companies and pension funds2.
Consequently, in many cases an appropriately chosen basket of market indices
can be expected to provide a good approximation — in terms of return and
risk — to the actual asset portfolio that an insurance company holds3. This
is mentioned for instance in Morningstar (2007) on page 126: ”It is safe to
say that, on average, the pension funds and balanced mutual funds are not
adding value above their asset allocation policy due to their combination of
timing, security selection, management fees, and expenses. Thus, about 100
percent of the total return is explained by asset allocation policy.”

In the most recent quantitative impact studies QIS 3 and QIS 4 the po-
tential economic implications of Solvency II were tested. In this exercise the
benchmark indices according to which the parameters of market risk mod-
ule for equities were calibrated were Global and European MSCI Developed
Market Indices (starting from 1970). Another example is the following basket
of equity indices:

• Standard and Poor’s 500 Index

• Dow Jones STOXX 600 Price Index EUR

• OMX Helsinki Cap Index

• NASDAQ Composite Index

• Nikkei 225 Index

A serious problem for the modeller is the fact that for many market indices
the data series is too short when long-term predictions are in focus. In particu-
lar the Euro-zone has not yet long enough history to provide appropriate data
for long-term forecasting purposes. One rule of thumb in statistical modelling
says that there should be at least the same amount of historical time series
data available for estimation as is the length of forecasting period. However,
as emphasized by Alexander (2001), in choosing how far to go back with the
data, one has to take a view on whether or not current forecasts should be
influenced by events that occured many years ago. Reliance on market values
is the foundation of most financial models, and it also underlies the current
international projects in the field of insurance, e.g. Solvency II.

In this report our approach is mainly statistical (econometrical) and we
wish to use long data series as the basis of our modelling. The main reasons
for this decision are the following:

2Diversification is one requirement in the prudent person rule which is an investment
standard for pension funds.

3When not taking into account the effect of hedging etc. financial engineering may of
course significantly change the probability distribution of returns compared to the index.
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1. Forecasting horizon for pensions have to extend beyond what is typically
available in the security markets for equity derivatives or government
bonds4.

2. We are mainly concerned with risk management and forecasting, which
have to be done under real world probabilities (see Chapter 5).

3. In the time series of equity prices/returns we can observe bubbles and
subsequent crashes from time to time. These overreactions can, to a
large extent, be explained by the theory of behavioral finance (for an
overview and references see e.g. Kaliva et al., 2007). As the current
market volatility confirms, there seems to be no reason to believe that
human behaviour in the market (motivated by hope, greed, panic, herd
behaviour etc human traits) has changed essentially from its historically
implied levels. The same applies to economic recessions, violent conflicts
etc., which also create atypical observations.

The equity market data analyzed and used in this report to study the
characteristics of various models are the S&P 500 yearly Total Return In-
dex 1925-2006 and the S&P 500 monthly Total Return Index 1955-2006 from
Morningstar (2007). These indices are nominal and include also the effect of
reinvested dividends. The S&P 500 Total Return Index is a widely recog-
nized index of common stock prices of U.S. companies. It consist of 500 large
stocks, which are weighted by market capitalisation5. The S&P is a common
benchmark for institutional investors.6

Very often return series are investigated instead of the inital series of
prices, and it is common to define the returns as the logarithmic returns (log
returns). The log return at time t, i.e. yt, is computed as

(4.1) yt = ln

(
Pt

Pt−1

)
= ln Pt − ln Pt−1 = pt − pt−1,

where Pt is the equity price at time t and pt = ln Pt. In case of a stock market
index series, Pt is the index value at time t. The transformation is discussed
in more detail in Appendix A. Appendix A also gives a descriptive analysis of
the data series used in this study and examines how well these series reflect
the stylized facts of financial time series.

4.4 Choosing the model

When suitable data series have been identified, a number of appropriate mod-
els should be estimated in order to find the best fit for the application at hand.

4Among the longest bonds in the Euro area is Germany’s 30 year paper and France’s
50 year bond. The longest actively traded equity derivatives are of much shorter duration,
typically they tend to expire in two or three years.

5If a stock has 10 million shares outstanding and sells for $20 per share, its market
capitalisation is 200 million dollars.

6The Dow Jones Industrial Average is less diversified (only 30 large stocks) and uses
average prices without weighting by market capitalisation. These two indices generally
move in the same direction, but the magnitude of the changes can differ because of the
differences in their definitions.
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Both theoretical and applied literature should prove helpful when choosing
the models to be studied further. The fit of various models can be assessed
by optimizing some suitable criterion for the in-sample fit or by assessing the
forecasting performance of various models7.

For equity modelling both linear and nonlinear time series models might
be used, but in many applications — in particular for high-frequency data
— nonlinear models perform significantly better. When comparing models
based on their in-sample fit, one can use for instance the AICC statistic
(a bias-corrected AIC-criterion) that is applicable both for univariate and
multivariate modelling. Another common criterion to assess the in-sample fit
is the BIC, that is the Bayesian (or Schwarz-Rissanen) information criterion.

There is a difference between the AIC and BIC in their basic assumptions
(see e.g. McQuarrie & Tsai, 1998). If one believes that the true model is of
infinite dimension or that it is not included in the set of candidate models, the
goal in model selection is to choose the finite-dimensional candidate model
that best approximates the true model. In this approach, one needs to fix how
to measure the distance between models. A widely used distance measure is
the so-called Kullback-Leibler distance, on which the AIC and AICC are
based. These criteria are also asymptotically efficient in the sense that they
choose the model with minimum mean squared error distribution, when the
sample size tends to infinity.

On the other hand, if one believes that the true model is finite-dimensional
and that it is included in the set of candidate models, the goal in model
selection might be to choose the model which has the highest probability to
be the correct one. The BIC is based on this idea, and it is consistent in the
sense that it chooses the correct model with probability one when the sample
size tends to infinity. In the statistical approach these assumptions are almost
always too strong. Especially in our econometric forecasting and case study
purposes, the AIC and AICC are the most appropriate but in most cases we
have also computed the BIC values for comparison.

In the Bayesian approach to modelling, one can use as a model selec-
tion criterion the average discrepancy, defined as Davg(y) = E(D(y, θ)|y).
In Bayesian terminology, it is the posterior mean of the deviance D(y, θ) =

−2 log p(y|θ) (see e.g. Gelman et al., 2004) and can be estimated as D̂avg(y) =∑L
l=1 D(y, θl)/L, where the vectors θl are posterior simulations of the pa-

rameters. One can also use the deviance information criterion, defined as
DIC = 2D̂avg(y) − Dθ̂(y), where Dθ̂(y) = D(y, θ̂(y)) is the minimum value
of the deviance (see e.g. Spiegelhalter et al., 2002). The minimum deviance
can be approximately obtained, in addition to direct minimization, by using
extensive posterior simulations or by replacing θ̂ with any point estimate,
such as the posterior mean or median. The DIC can also be written in the
form DIC = Dθ̂(y) + 2pD, where pD = D̂avg(y)−Dθ̂(y) is called the effective
number of parameters. It represents the expected improvement in the fit, im-
provement which is expected from estimating the parameters of the model.
In simple cases, pD is asymptotically equal to the true number of parameters.

7In this case a part of the sample data has to be reserved for the out-of-sample fore-
casting purposes which may not be possible in many long-term insurance applications.
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It can also be computed in models where the number of parameters is not
clearly defined, such as in hierarchical or state-space models. Therefore, the
DIC is more general than AIC, AICC or BIC.

The goal of both DIC and AIC (or AICC) is to choose the model which
minimizes the Kullback-Leibler distance between the distribution of the true
model and the predictive distribution of the fitted model. This is equivalent
to minimizing E[D(yrep, θ̂(y))], where yrep is the replicated data set and the
expectation is taken under the assumed true model. Therefore, the DIC and
AIC (or AICC) values are comparable.

There are a number of criteria to assess the out-of-sample forecasting
performance of a model, such as mean absolute error (MAE) and root mean
square error (RMSE). Kennedy (2003) points out that no single criterion
is always ”best” — the ”best” criterion depends on the particular problem
being analysed. There is, however, some agreement in the literature that the
”best” forecasting method overall is a ”combined forecast” that is formed as
a weighted average of various different forecasts. This issue is discussed from
the insurance point of view in Kaliva et al. (2007).

Modelling error is a very important question to be considered when inter-
nal models are being used for regulatory purposes. In general the longer the
forecasting horizon, the greater the role of subjectivity and expert opinions
(due to lack of data and because of the possibility that the data-generating
process will change during the forecasting period). In this report the equity
model comparisons are based on the results for the in-sample using the above
described model selection criteria.

4.5 The lognormal model

The lognormal model is a discrete version of the geometric Brownian motion
(GBM)

(4.2)
dPt

Pt

= µ dt + σ dWt,

where Pt is the equity price at time t, µ and σ ≥ 0 are constants and Wt is the
standard Wiener or Brownian motion process8. The term dPt/Pt represents
the percentage change or return in the asset price, µ represents the expected
rate of return of the equity price (drift) and σ is the volatility. The indepen-
dent lognormal model, obtained by discretizing the GBM, can be expressed
as

(4.3) yt = µ + σzt,

where yt is the log return, and zt are independent and identically distributed
standard normal for all t. It follows from (4.3) that Pt/Pt−1 ∼ LogN(µ, σ),
where LogN denotes the lognormal distribution. Given last period’s price

8Wiener process can be defined by two components: (1) dWt is normally distributed
with mean zero and variance dt, (2) the values of dWt over two different, non-overlapping
increments of time are independent (see e.g. Clewlow & Strickland, 1998).
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Pt−1, also Pt follows a lognormal distribution. We may express the price at
time t as

(4.4) Pt = Pt−1 exp(µ + σzt).

This shows that since both Pt−1 and exp(µ + σzt) are non-negative, also Pt

will be non-negative.
The lognormal model, or geometric Brownian motion, is most widely used

to describe the equity price behaviour and it is one of the original assump-
tions of the Black-Scholes framework (Black & Scholes, 1973). Since the model
states that all subsequent price changes represent random departures from
previous prices, it is consistent with the efficient market hypothesis9. The
lognormal model provides a useful approximation for short and medium ma-
turity. However, over longer term, the model does not usually provide a sat-
isfactory fit to the data. Empirical studies indicate that the model fails to
capture more extreme price movements, does not allow for autocorrelation in
the data and also fails to capture volatility clustering (Hardy, 2003). Note
that the lognormal model is a special case of ARMA models applied to log
returns, or of ARIMA models applied to log prices. In the ARIMA context
(Section 4.6) the lognormal model is referred to as a random walk model with
a drift.

4.6 ARIMA models

It is in particular the correlations between the variable of interest and its past
values (i.e. autocorrelation or serial correlation) which are the focus of linear
time series analysis. ARMA models constitute a very useful class of linear
time series models for a wide range of applications. These discrete stochastic
processes depend linearly on their past values yt−i and random shocks of white
noise ǫt−i.

10

The foundation of time series analysis is stationarity. It is therefore com-
mon to apply ARMA model to return series instead of prices or market in-
dices. In this report we are mainly concerned with weakly stationary time se-
ries11, which show the tendency of fluctuating with constant variation around
a fixed level. For the definition of weak and strict stationarity we refer to
Tsay (2005). For the stationary time series the ARMA(p, q) model can be
expressed as

(4.5) yt = φ1yt−1 + ... + φpyt−p + ǫt + θ1ǫt−1 + ... + θqǫt−q,

where ǫt is white noise with mean zero and variance σ2
ǫ > 0, φ 6= 0 and θ 6= 0

(see e.g. Shumway & Stoffer, 2006). The parameters p and q are called the

9According to the efficient market hypothesis, the market accurately reflects all knowl-
edge available about all stocks at all times. In other words, past stock prices do not provide
information that permits an investor to outperform the market.

10The white noise is a collection of uncorrelated random variables ǫt, with mean 0 and
finite variance σ2

ǫ
. It shall be sometimes denoted as ǫt ∼ wn(0, σ2

ǫ
).

11In the finance literature, it is common to assume that an asset return series is weakly
stationary. This assumption can be checked empirically provided that a sufficient number
of historical returns are available (Tsay, 2005).
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autoregressive and the moving average orders, respectively. If yt has a nonzero
mean µ, we may replace yt by yt − µ in (4.5), i.e.

(4.6) yt − µ = φ1(yt−1 − µ) + ... + φp(yt−p − µ) + ǫt + θ1ǫt−1 + ... + θqǫt−q,

or write

(4.7) yt = α + φ1yt−1 + ... + φpyt−p + ǫt + θ1ǫt−1 + ... + θqǫt−q,

where α = µ(1 − φ1 − . . . − φp). It is important to understand the meaning
of a constant term in a time series model. As explained by Tsay (2005), for
MA(q), i.e. ARMA(0,q), model the constant term is simply the mean of the
series. For a stationary AR(p), i.e. ARMA(p,0), model or ARMA(p, q) model,
the constant term is related to the mean via the relationship given above,
that is α = µ(1−φ1− . . .−φp). For a random walk model (see ARIMA(0,1,0)
model below), the constant term becomes the time slope.

ARIMA model (Integrated ARMA) is a broadening of the class of
ARMA models to include differencing. If the time series can be modelled
with ARMA(p, q) after it has been differenced d times, then the original se-
ries is modelled with ARIMA(p, d, q). For example, a process is said to be
ARIMA(p, 1, q), if ∇yt = yt − yt−1 is ARMA(p, q). Similarly, a process is said
to be ARIMA(p, 2, q), if ∇2yt = yt − 2yt−1 + yt−2 is ARMA(p, q). Note also,
that ARIMA(p, 0, q) is equivalent to ARMA(p, q).

Univariate ARIMA models are in effect a sophisticated extrapolation
method, using only past values of the variable being forecast to generate
forecasts. Kennedy (2003) considers that the potential sources of errors in
econometric forecasting relate to specification, conditioning, sampling, and
randomness. Then (on page 361) he goes on to compare traditional causal
econometric models with ARIMA models as follows: ”It is generally acknowl-
edged that whenever specification or conditioning errors render econometric
models impractical (which some claim is most of the time), the Box-Jenkins
approach has considerable merit for forecasting. It is also recognized that if
an econometric model is outperformed by an ARIMA model, this is evidence
that the econometric model is misspecified”.

We have fitted an ARIMA model to S&P 500 Total Return Index data
using the approach explained in Brockwell & Davis (2002). This method,
also known as the Box-Jenkins approach, consists of the following, possibly
iterative, steps:

1. Make data transformations, when necessary, to get a stationary series
(i.e. there should be no trend or cyclic components or non-constant
level and variability with time). In our case this step consist of taking a
logarithm and differencing at lag 1 (see Appendix A). This is a practical
and common procedure when analysing financial data. Still, one has to
appreciate the theoretical issues involved, e.g. regarding unit roots (cf.
Franses & Dĳk, 2000; Kennedy, 2003)

2. Calculate key statistics from the data such as autocorrelations (ACF
and PACF) and compare the values or sizes of these statistics with the
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theoretical ones that would hold true if a certain model is adequate. As
the attention is restricted to linear ARIMA models, the main objective
in this step is to determine the preliminary orders p and q.

3. Fit various models and compare the results. Choose the one which gives
the smallest AICC.

4. Use diagnostic tests for the residuals of the fitted model. This step uses
e.g. a histogram, a Q-Q plot as well as some specific tests of random-
ness such as Ljung-Box, McLeod-Li, turning points, Jarque-Bera (see
Brockwell & Davis, 2002).

Below we are content with only briefly introducing the fitted models. Re-
sults that led to the choice of these models are left to Appendix A and B.
Appendix B focuses on Steps 2–4 while Appendix A presents and justifies the
data transformation in Step 1.

For the logarithmic index values pt of S&P 500 yearly data 1925-2006, the
procedure chose the random walk model (i.e. ARIMA(0, 1, 0)) with a constant
α, which is usually called a drift. The drift term here represents the time trend
of the logarithmic index. The model can be written as

(4.8) pt = α + pt−1 + ǫt,

or, alternatively, in terms of the log return as

(4.9) yt = α + ǫt,

where t = 1, . . . , 82. As can be seen in (4.9), for the log returns yt the model
is just white noise with a drift12, i.e. yt −α ∼ wn(0, σ2

ǫ ), which indicates that
returns cannot be predicted from past changes in a time series of historical re-
turns. The random walk model reflects the efficient market hypothesis, which
states that it is not possible to consistently outperform the market by using
any information that the market already knows, except through luck. The
estimated model for the log return is

(4.10) yt = 0.0992 + ǫt,

with σ̂2
ǫ = 0.0364. According to (4.10), the expected yearly log return (growth

rate) of S&P 500 Total Return Index is about 9.9%, and its 95% confidence
interval spreads from about −27% to 47%.

The random walk model with a drift was also suggested for the logaritmic
index of our shorter historical index series (S&P 500 yearly Total Return
Index 1955-2006). The estimated model is

(4.11) yt = 0.1002 + ǫt,

with σ̂2
ǫ = 0.0234. According to (4.11), the expected yearly log return (growth

rate) of S&P 500 Total Return Index is about 10.0%.

12ARMA(0, 0) with a drift
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For the monthly log index we also fitted the random walk model with a
drift. The estimated model can be written as

(4.12) yt = 0.0086 + ǫt,

with σ̂2
ǫ = 0.0017. According to (4.12), the expected yearly log return (growth

rate) of S&P 500 Total Return Index is about 10.3%, and the volatility is
significantly lower than for the longer series.

Our results are in accordance with the existing literature. As stated by
Tsay (2005), although daily returns of a market index often show some minor
serial correlation13, monthly return of the index may not contain any signif-
icant serial correlation. Hence, for most asset return series, building a mean
equation amounts to removing the sample mean from the data if the sample
mean is significantly different from zero. This is exactly what has been done
above.

As discussed in Appendix A, the stylized facts of equity returns imply
that linear models have in many instances only limited use in financial mod-
elling. Particularly, linear models such as ARIMA, assume a constant variance
and are hence not capable of describing the time-varying volatility typical for
many financial time series. The asset return typically has a time-varying vari-
ance and volatility comes in clusters where tranquil periods of small returns
are interspersed with volatile periods of large returns. In Section 4.7 we will
introduce a special class of nonlinear time series models (GARCH class of
models) which are capable of describing some of the stylized facts of financial
time series not captured by linear models. In distinction from the models that
are nonlinear in mean, the GARCH models are nonlinear in variance, because
their conditional variances14 evolve over time15. ARIMA models are linear in
both sense.

4.7 GARCH models

In time series analysis appropriate modeling of the volatility may improve
the efficiency in parameter estimation and the accuracy in interval forecast
(Tsay, 2005). It is therefore essential to not only model the mean equation
but also to find a volatility model which adequately reflects the stylized facts
of asset return series.

The volatility of a time series is not directly observable, but it has some
characteristics that are commonly seen in asset returns (especially in high-
frequency returns). According to Tsay (2005) these characteristics are: (1)

13A possible cause of autocorrelation in equity indices is the news arrival process, where
new information affects only trading in some stocks before others (Alexander, 2001, p. 385).

14A conditional distribution, in this context, is a distribution that governs a return
at a particular instant in time. In more general terms, a conditional distribution is any
distribution that is conditioned on a set of known values for some of the variables. In time
series that often means conditioning on all the past values that were realized in the process.
The conditional variance at time t is the variance of the conditional distribution at time t.
(Alexander, 2001, pp. 12–13).

15In fact, the conditional variance is assumed to be an autoregressive process.
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There exist volatility clusters (i.e., volatility may be high for certain time
periods and low for other periods). (2) Volatility evolves over time in a con-
tinuous manner (i.e., volatility jumps are rare). (3) Volatility does not diverge
to infinity (i.e, volatility is often stationary). (4) Volatility seems to react dif-
ferently to a big price increase or a big price drop, referred to as the leverage
effect. The characteristics listed above reflect the fact that ARIMA mod-
els, which assume a constant variance, turn out to be insufficent for many
financial applications. To capture changes in volatility, models such as the
autoregressive conditionally heteroscedastic (ARCH) model and its extension
called generalized ARCH (GARCH) were introduced by Engel (1982) and
Bollerslev (1986), respectively. The focus in this section will be on standard
ARCH and GARCH models which are able to not only describe the feature
of volatility clustering but also capture the excess kurtosis and fat-tailedness
of time series of asset reuturns.

A time series model can generally be expressed as the sum of predictable
and unpredictable part, where the former is an expectation conditional on the
information set available at time t−1, denoted by It−1. Typically, It−1 consists
of all linear functions of the past returns. Using mathematical notations, this
can be expressed as

(4.13) yt = E[yt|It−1] + ǫt.

In the previous section we studied ARIMA models and assumed that the shock
ǫt is white noise, and that in particular E[ǫ2

t ] = E[ǫ2
t |It−1] = σ2

ǫ for all t, i.e. ǫt

was assumed both conditionally and unconditionally homoscedastic16. A con-
venient way to introduce more realism is to assume that the conditional vari-
ance of the shock is not constant over time but instead some time-dependent
and nonnegative function ht = h(It−1). In other words, E[ǫ2

t |It−1] = ht. This
can also be expressed as ǫt = zt

√
ht, where zt is independent and indentically

standard normal or t-distributed.
The basic idea of ARCH models is that (1) the shock ǫt of an asset is seri-

ally uncorrelated but dependent and (2) the dependence of ǫt can be described
by a simple quadratic function of its lagged values. To be more specific, in
the basic ARCH model, the conditional variance of the shock that occur at
time t is a linear function of the squares of past shocks. The ARCH(s) model
can be expressed as

(4.14) ht = ω + α1ǫ
2
t−1 + ... + αsǫ

2
t−s,

where ω > 0 and αi ≥ 0 for all i = 1, . . . , s. The coefficients αi must satisfy
some regularity conditions to ensure that the unconditional variance of ǫt is
finite. It can be seen from the structure of the model that a major market
movement that occured yesterday or up to s time units ago will have an effect
to increase today’s conditional variance. It makes no difference wheather the
movement is positive or negative. So, good and bad news have the same
(symmetric) effect on the volatility in this model.

16The term homoscedasticity means that the variance is the same throughout the process.
The term heteroscedasticity means that the variance changes over time.
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The ARCH models often require many parameters to adequately describe
the volatility of asset returns making the estimation of the model parame-
ters more difficult. To reduce the computational problems Bollerslev (1986)
suggested adding lagged conditional variances to the ARCH model. The
GARCH(r, s) model can be expressed as

(4.15) ht = ω + α1ǫ
2
t−1 + ... + αsǫ

2
t−s + β1ht−1 + ... + βrht−r,

where ω > 0, αi > 0, and βi ≥ 0 to guarantee that ht ≥ 0 and the model
is identifiable. The coefficients αi and βi must satisfy

∑max(r,s)
i=1 (αi + βi) < 1

to ensure that the unconditional variance of ǫt is finite. The GARCH model
assumes conditional heteroscedasticity, while the unconditional variance is
homoscedastic. It is also worth noting that ARCH models are special cases of
GARCH models, namely GARCH(0,s) = ARCH(s). To summary, the vari-
ance in GARCH model is a weighted average of three components: a constant
or unconditional variance, yesterday’s forecast and yesterday’s news.

Higher-order GARCH models often tend to be overcomplicated and are
rarely used in practice. Instead a GARCH(1, 1) model, which has just one
lagged error square and one lagged conditional variance, will most often be
sufficient to capture the volatility clustering in the data. It can be argued
that the GARCH(1, 1) is equivalent to an ARCH(∞) model with exponen-
tially declining weights (see e.g. Alexander, 2001, p. 72). The GARCH(1, 1)
model is the simplest and most robust of the family of volatility models, and
its parameters have nice interpretations: A large coefficient of the lagged er-
ror square in the GARCH(1, 1) model indicates that volatility responds quite
intensively to market movements while a large coefficient of the lagged con-
ditional variance term means that shocks to conditional variance take a long
time to die out. The parameter estimates of the GARCH(1, 1) model are sen-
sitive to the data used. In particular, long-term volatility forecasts will be
affected by the stress events included in the historic data. For more detailed
discussion of the choice of the historic data for model estimation we refer to
Alexander (2001).

As already pointed out, the standard GARCH(r, s)-models presented in
this section are able to take into account the stylized fact of volatility clus-
tering because they tend to generate a more volatile regime after one such
atypical observation has been observed. In addition these models generate
certain other desirable features such as fatter tails and excess kurtosis of the
return distributions. However, the basic GARCH formulation is rather simple
and restrictive and cannot address all the peculiarities that are observed in
the financial data. Most notable exemptions are the asymmetric effect of pos-
itive and negative shocks on volatility, and possible correlation between the
return and volatility. The GARCH models also tend to overpredict volatility
because they respond slowly to large isolated returns. As a result numerous
improvements have been suggested in the literature (see e.g. Franses & Dĳk,
2000; Tsay, 2005). However, in order to avoid adding unnecessary complexity
to the model, we have not implemented any of these variants of the GARCH
model, although a better in-sample fit might be possible with these more
complex models.
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The practical modelling steps for GARCH model can be done in a similar
fashion as for ARIMA models above. According to Tsay (2005), the model
building procedure can be devided into the following four steps:

1. Specify a mean equation by testing for serial dependence in the data
and, if necessary, build a model (e.g. an ARIMA model) for the time
series to remove any linear dependence.

2. Use the residuals of the mean equation to test for ARCH/GARCH ef-
fects.

3. Specify a volatility model if ARCH/GARCH effects are statistically
significant and perform a joint estimation of the mean and volatility
equations.

4. Check the fitted model carefully and refine it if necessary.

For most asset return series serial correlations are weak, if any. Thus,
building a mean equation amounts to removing the sample mean from the
data if the sample mean is significantly different from zero. In financial ap-
plication typically only lower order models are considered (e.g. GARCH(1,1),
GARCH(1,2) or GARCH(2,1)). As in the case of ARIMA modelling, the rank-
ing of the GARCH model candidates can, for example, be based on the AICC
criteria.

The GARCH model is fitted to our index series in Appendix C.
For the logarithmic index pt of S&P500 yearly data 1925-2006, we chose
the ARIMA(0,1,0)-ARCH(1) model, i.e. the mean equation is modelled by
ARIMA(0,1,0), i.e. a random walk with a drift, and the volatility by the
ARCH(1). The model can be written as

(4.16) pt = α + pt−1 + zt

√
ht and ht = ω + α1ǫ

2
t−1,

or, alternatively, in terms of the log return as

(4.17) yt = α + zt

√
ht and ht = ω + α1ǫ

2
t−1,

where ω > 0, α1 ≥ 0 and t = 1, . . . , 82. The estimated model is

(4.18) yt = 0.1163 + zt

√
ht and ht = 0.0183 + 0.5829ǫ2

t−1.

According to the model the expected yearly log return is 11.6%, which is
somewhat higher than that of the pure ARIMA model. The relatively large
α1 coefficient indicates that volatility responds quite intensively to market
movements. Since there are no lagged conditional variances included in the
model the shocks to conditional variance die out quickly. By taking a look at
the plotted time series in Figure A.1 in Appendix A, one may surely notice
that the estimated model indeed reflects the features of our yearly data series
quite well. Large shocks can be easily identified in the data (e.g. the Great
Depression of the 30’s, World War II, 1973-1974 and 2000-2002) while volatilty
clustering is more difficult to observe. This is also consistent with the common
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view that GARCH effects may not be so apparent at lower-frequency data
series.

For the log index of the shorter yearly index series, namely S&P500 yearly
index 1925-2006, the random walk with a drift seems to be appropriate. That
is, log returns follow the ARMA(0,0) model with a drift. According to our
investigations, the ARCH/GARCH terms do not improve the mean fit. This
is consistent with our visual observation that a more calm yearly return series
is obtained if the starting date of the series is set to year 1954 instead of 1925.
The exclusion of the Great Depression of the 30’s and World War II leaves a
yearly return series that does not show much deviation from stationarity.

For the monthly log index we chose the ARIMA(0,1,0)-GARCH(1,1) model.
For the log return, the model can be written as

(4.19) yt = α + zt

√
ht and ht = ω + α1ǫ

2
t−1 + β1ht−1,

where ω > 0, α1 > 0, β1 ≥ 0 and t = 1, . . . , 624. The estimated model
becomes

(4.20) yt = 0.00863 + zt

√
ht and

ht = 0.000075 + 0.0967ǫ2
t−1 + 0.8645ht−1.

As expected for the higher-frequency data series, the model now reflects the
feature of volatility clustering. The relatively high value of β1 indicates that
shocks to conditional variance take a long time to die out, so volatility is
persistent. According to the model the expected yearly log return is 10.4%.

A more detailed description of the fitting procedure, the estimated models
and the model diagnostics with conclusions are given in Appendix C.

4.8 Regime-switching models

We have discussed above how the GARCH models can be used to address
the issue of changing regimes with respect to volatility. But there can also be
different regimes for investment returns, i.e. we observe periods of significantly
lower or higher returns than on the average. For example, from Table 2-7 of
Morningstar (2007) we can observe that the compound annual returns for
10-year holding periods of S&P 500 total return index vary between -0.89
and 20.06 percents during 1925-2006. In the following, we will see how the
changing regimes can be taken into account in equity return modelling. Note
that this section is mathematically more advanved than the previous ones.

There are two general approaches to model these so-called regime-switches.
The first class of models assumes that the regimes can be determined by an
observable variable, while the models in the second class assume that the
regime is determined by an underlying unobservable stochastic process (see
e.g. Franses & Dĳk, 2000). In the following, we will present two models be-
longing to the latter class. One of them is the Hamilton (1989) model which
we will discuss in the end of this section. The other model is given by

(4.21) yt = α0 + stα1 + (1 − st)ǫ
0
t + stǫ

1
t ,
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where yt is the log return and the state variable st determines if the expected
stock return is high (st = 0) or low (st = 1). The parameters α0 and α1

are unobservable and must be estimated. We set α1 to be negative. The
error processes ǫ0

t ∼ N(0, σ2
0) and ǫ1

t ∼ N(0, σ2
1) are i.i.d. Gaussian processes.

Equation 4.21 can be rewritten in the form

yt =

{
α0 + ǫ0

t , where st = 0,
α0 + α1 + ǫ1

t , where st = 1.

The transitions between the states are controlled by the first-order Markov
process with transition probabilities

P(st+1 = 0|st = 0) = p,

P(st+1 = 1|st = 0) = 1 − p,

P(st+1 = 0|st = 1) = 1 − q,

P(st+1 = 1|st = 1) = q.

Thus, the transition matrix is given by

P =

(
p 1 − p

1 − q q

)
.

The stationary probabilities π = (π0, π)′ of the Markov chain satisfy the
equations π′P = π′ and π′1 = 1, where 1 = (1, 1)′.

This model can be estimated, for example, by using the Gibbs sampler,
introduced by Geman & Geman (1984) in the context of image restoration.
Examples of Gibbs sampling can be found in Gelfand et al. (1990) and Gelman
et al. (2004). The advantage of using the Bayesian approach is that we need
not rely on asymptotic inference and that the inference on the state variables
is not conditional on the parameter estimates. Carlin et al. (1992) provide
a general approach to the use of the Gibbs sampler in nonlinear state-space
modelling.

Gibbs sampling, also called alternating conditional sampling, is a useful
algorithm for simulating multivariate distributions for which the full condi-
tional distributions are known. Let us assume that we wish to simulate the
random vector θ = (θ1,θ2, . . . ,θp) whose subvectors θi have known con-
ditional distributions p(θi|θ(−i)), where θ(−i) = (θ1, . . . ,θi−1,θi+1, ...,θp). In
each iteration the Gibbs sampler goes through θ1,θ2, . . . ,θp and draws values
from their conditional distributions p(θi|θ(−i)) where the conditioning subvec-
tors have been set at their most recently simulated values. It can be shown
that this algorithm produces an ergodic Markov chain whose stationary dis-
tribution is the desired target distribution of θ. In Bayesian inference one can
use the Gibbs sampler to simulate the posterior distribution if one is able to
generate random numbers or vectors from all the full conditional posterior
distributions.

To simplify some of the expressions we will use the following notations:
y = (y1, y2, . . . , yT )′ and s = (s1, s2, . . . , sT )′. The vector of all parameters is
denoted by η = (α0, α1, σ

2
0, σ

2
1, p, q)′ and the states at the other time points

than t are denoted by s(−t).
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In order to facilitate computations, we use the following prior distribu-
tions:

p(α0) ∝ 1,

p(α1) ∝ N(m, v2) × I(α1 < −0.01),

σ2
0 ∼ Inv-χ2

(
vσ2

0
, s2

σ2

0

)
,

σ2
1 ∼ Inv-χ2

(
vσ2

1
, s2

σ2

1

)
,

p ∼ Beta(αp, βp),

q ∼ Beta(αq, βq),

where I(α1 < −0.01) denotes the indicator function obtaining the value 1, if
α1 < −0.01, and 0, otherwise. In order to implement the Gibbs sampler the
full conditional posterior distributions of the parameters are needed:

{α0|y, s, α1, σ0, σ1} ∼ N
(
µα0

, σ2
α0

)
,

p(α1|y, s, α0, σ0, σ1) ∝ N(µα1
, σ2

α1
) × I(α1 < −0.01),

{σ2
0|y, s, α0, α1}

∼ Inv-χ2

(
vσ2

0
+ S0,

vσ2

0
s2

σ2

0

+
∑T

t=1 (1 − st)(yt − α0)
2

vσ2

0
+ S0

)
,

{σ2
1|y, s, α0, α1}

∼ Inv-χ2

(
vσ2

1
+ S1,

vσ2

1
s2

σ2

1

+
∑T

t=1 st(yt − α0 − α1)
2

vσ2

1
+ S1

)
,

{p|s} ∼ Beta

(
T∑

t=1

(1 − st)(1 − st−1) + αp,
T∑

t=1

st(1 − st−1) + βp

)
,

{q|s} ∼ Beta

(
T∑

t=1

stst−1 + αq,
T∑

t=1

st−1(1 − st) + βq

)
,

{st|s(−t),y,η}

∼ Bernoulli

(
P(st = 1|s(−t),η)p(y|st = 1, s(−t),η)

∑1
j=0 P(st = j|s(−t),η)p(y|st = j, s(−t),η)

)
, t = 1, . . . , T,

where we have denoted

µα0
=

∑T
t=1

(1−st)(yt−stα1)

σ2

0

+
∑T

t=1
st(yt−stα1)

σ2

1

S0

σ2

0

+ S1

σ2

1

, σ2
α0

=

(
S0

σ2
0

+
S1

σ2
1

)−1

,

µα1
=

m
v2 +

∑T
t=1

st(yt−α0)

σ2

1

1
v2 + S1

σ2

1

, σ2
α1

=

(
1

v2
+

S1

σ2
1

)−1

,

and

S0 =
T∑

t=1

(1 − st), S1 =
T∑

t=1

st.
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The notation Inv-χ2(ν, s2) means the scaled inverse-chi-square distribution,
defined as νs2/χ2

ν , where χ2
ν is a chi-square distributed random variable with

ν degrees of freedom.
Note that the probability of state 1 at time t, given the states at the other

time points, s(−t), is easily calculated as

P(st = 1|s(−t),η) =
P(st = 1|st−1, p, q)P(st+1|st = 1, p, q)

P(st+1|st−1, p, q)
, 0 < t < T.

When we assume that α1 = 0, the model (4.21) simplifies to the form

(4.22) yt = α0 + (1 − st)ǫ
0
t + stǫ

1
t ,

where error processes ǫ0
t ∼ N(0, σ2

0) and ǫ1
t ∼ N(0, σ2

1) are i.i.d. Gaussian
processes. Equation 4.22 can be rewritten in the form

yt =

{
α0 + ǫ0

t , where st = 0,
α0 + ǫ1

t , where st = 1.

The conditional posterior distributions of the parameters are the same as
earlier if α1 is set at 0 in all the equations.

Next we move to our second model, that is, the Hamilton model. The
Hamilton model may be expressed as yt = α0 + α1st + zt, where yt denotes
the log return at time t, st the state (low or high) of the return and zt a zero-
mean stationary random process, independent of st. The parameters α0 and
α1 and the state st are unobservable and must be estimated. We will assume
that zt is an autoregressive process of order r, denoted by zt ∼ AR(r). It
is defined by the equation zt = φ1zt−1 + φ2zt−2 + . . . + φrzt−r + ǫt, where
ǫt ∼ N(0, σ2

ǫ ) is an i.i.d. Gaussian error process.
The Hamilton model was originally estimated by maximizing the marginal

likelihood of the data series yt. Then the probabilities of the states were
calculated conditional on these maximum likelihood estimates. The numerical
evaluation was done by a kind of nonlinear version of the Kalman filter. By
contrast, we will use the Gibbs sampler. The technical details of the method
can be found in Puustelli et al. (2008).

The estimation results for both models are given in Appendix D. For the
monthly data a better fit than that of the GARCH model was found in both
cases. For the yearly data there appeared to be convergence problems possibly
due to insufficient amount of data.

4.9 Other nonlinear models

Finally, we mention two more nonlinear approaches that are based on empir-
ically observed findings from equity market data. A jump-diffusion process
is capable to generate atypical observations such as the one experienced on
Black Monday in October 1987. This class of models adds for instance lognor-
mally distributed random shocks to the Brownian motion e.g. according to
the Poisson process. A model that gives a good fit to our long yearly data can
be formulated by adding Gamma-distributed negative jumps to the random
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walk process according to Geometric-distributed waiting times. This model
will be described in detail in a separate research report (to be published by
Ronkainen and Alho).

Instead of modelling a single shock, the whole bubble formation phase can
be modelled (which often precedes the downward shock). For an example of
this approach see Kaliva & Koskinen (2008a,b).

4.10 Forecasting

Once the time series model which adequately describes the data is chosen,
the next step is to use the model for predictive purposes. The goal is to
predict l future values of a time series based on the data collected to the
present time point t. That is, at time point t one wants to obtain values
ŷt+1|t, ŷt+2|t, . . . , ŷt+l|t, where ŷt+l|t denotes a forecast of a future value yt+l

made at time t. There are many different ways to forecast the future value
yt+l. In time series analysis the forecast is commonly considered optimal, if it
minimizes the mean square error (MSE)

(4.23) E
[
yt+l − ŷt+l|t

]2
.

The forecast that minimizes (4.23) is the conditional expectation of yt+l at
time t, that is ŷt+l|t = E [yt+l|It].

Forecasting a stationary time series using ARMA models is quite straight-
forward in practice. To illustrate this, we first take a look at the forecasting
with an AR(p) model. The forecasting procedure with an AR(p) model starts
with generating the one-step-ahead forecast which is then used for a two-step-
ahead forecast and so on. The optimal one-step-ahead prediction at time t
is

ŷt+1|t = α̂ + φ̂1(yt − α̂) + φ̂2(yt−1 − α̂) + . . . + φ̂p(yt−p+1 − α̂),

and the two-step-ahead prediction is

ŷt+2|t = α̂ + φ̂1(ŷt+1|t − α̂) + φ̂2(yt − α̂) + . . . + φ̂p(yt−p+2 − α̂),

and the subsequent forecasts are obtained consequently. For an MA(q) model
and l ≤ q, the l-step-ahead prediction is

ŷt+l|t = α̂ + θ̂lǫt + θ̂l+1ǫt−1 + . . . + θ̂qǫt−q+l.

For l > q we simply have ŷt+l|t = 0. This is because the unknown errors
ǫt+1, ǫt+2, . . . are set to zero. For an ARMA(p, q) model the l-step-ahead pre-
dictions are

ŷt+l|t = α̂ + φ̂1(ŷt+l−1|t − α̂) + φ̂2(ŷt+l−2|t − α̂) + . . . +

+ φ̂p(yt+l−s − α̂) + θ̂lǫt + θ̂l+1ǫt−1 + . . . + θ̂qǫt−q−l,

for l ≤ q. For l > q only the AR part determines the forecasts.
Accurate predictions of volatilities are critical e.g. for option pricing, risk

management and portfolio management. Volatility forecasts of an ARCH
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model can be obtained recursively as those of an AR model. Also in many
GARCH models the forecasts are relatively simple to construct. This is be-
cause they take a simple analytic form and need no approximations or com-
plicated simulations.

In the case of GARCH(1,1) model, the optimal h-step-ahead forecast of
the conditional variance can be computed recursively from

(4.24) ĥt+l|t = ω̂ + (α̂1 + β̂1)ĥt+l−1|t,

which is obtained by noticing that the unexpected return at time t + j is
unknown for j > 0, but E(ǫ2

t+j) = ht+j. Note, that volatility term structure
forecasts that are constructed from GARCH models mean-revert to the long-
term level of volatility. If α̂ + β̂ < 1, this long-term volatility level is

ĥ = ω̂/(1 − α̂ − β̂),

which is obtained by replacing ĥi+j by ĥ for all j in (4.24). For more detailed
discussion of the forecasting with both linear and nonlinear models, we refer
to the books of Franses & Dĳk (2000) and Lai & Xing (2008). For practical
issues specific to long-term forecasting, e.g. the role of expert judgement, we
refer to the introduction given in Chapters 9–10 in Makridakis et al. (1998).

4.11 On option pricing

The fundamental assumption in option pricing is that there are no arbitrage
opportunities in an efficient financial market. Therefore if one can find a (dy-
namic) trading strategy on the underlying security and the risk-free bond
that exactly replicates the cash-flows of the derivative, this replicating port-
folio must have the same price as the derivative. If the market is complete,
every security can so be replicated, i.e. hedged, and a unique arbitrage-free
price can be found. However, in insurance applications we need to keep in
mind and adjust for the limitations of the basic derivative models (see Kaliva
et al., 2007, and later chapters of this report for further discussion).

Another concept that needs special care is risk neutral valuation. As
Wilmott (2001) states, it is a very important and very confusing topic in fi-
nancial option valuation. Wilmott summarises the key issues as follows: ”Real
and risk neutral, this idea is probably more confusing than anything else in
quantitative finance, but it is extremely important. ... But remember also
that such risk-neutral valuation is only valid when hedging can be used to
eliminate all risk. If hedging is impossible, risk-neutral valuation is meaning-
less.” He also points out that if one uses simulations to get an idea what may
happen to unhedged positions in the future, then the real world probabili-
ties should be used for the underlying asset. This is very important to keep in
mind when modelling non-hedgeable risks and carrying out risk management.
Wilmott however underlines that for pricing of derivatives one has to use the
risk neutral probabilities.

When pricing options or any derivatives one thus should use risk-neutral
valuation. In risk neutral valuation one assumes a risk-neutral world which
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is a world where all investors are risk-neutral. In other words, investors are
insensitive to risk and the value of a derivative does not depend upon the
risk preference of the investor. So, to find the value of an option, one need
to move to a risk-neutral world and then calculate the expected payoff at the
expiration time and then discount it using risk-free rate. Typically, a model
which is estimated from the historical data in a way we have done above (i.e.
in the real world) differs from a model that should be used for pricing options
(a risk-neutral model). A person doing the pricing should know how the two
models differ 17. We will discuss the risk-neutral world again in the context of
interest rate modelling in Section 5.3.2. For a theoretical and practical pricing
of non-life insurance contracts within a financial option pricing context see
e.g. Holtan (2007).

17A risk-neutral model requires a change of probability measure, which is based on the
Girsanov’s theorem of stochastic calculus. A risk-neutral model is often achieved by setting
the drift term of the real world process equal to the risk-free rate. This is because in the
risk-neutral world the return on any traded investment is simply the risk-free rate.
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5 Interest rate modelling

5.1 Introduction

In equity option pricing the interest rates are often assumed constant1. How-
ever, as options and derivatives are written either on interest rates, or on se-
curities whose values are dependent on interest rates (e.g. bonds and swaps),
a description of the stochastic behaviour of interest rates becomes essential.
The assumption on the constant interest rate may be acceptable when the
life of the option is only a few months. However, as longer time periods are
considered, such an assumption becomes far too unrealistic. Recall that it is
exactly the fluctuation of interest rates that the option buyer seeks to hedge.

An interest rate model is a probabilistic description of the future evo-
lution of interest rates. It characterizes the uncertainty involved in interest
rates. Interest rate modelling is a very important part of any life and pension
insurance simulation exercise. This is because the valuation of the liabilities
of life insurance companies and pension funds depends crucially on interest
rates. In Solvency II there are two different approaches to the valuation of life
insurance liabilities, namely: (1) hedgeable and (2) non-hedgeable approach.
The first approach is applied to those cash-flows that can be hedged. It states
that the cash-flows should be valued based on the respective hedging cost in
the financial market (arbitrage-free market value). The second approach is
used for those cash-flows that cannot be hedged. The valuation of the cash-
flows should then be based on the so called best estimate (expected value)
plus risk margin2. The future cash-flows are discounted by the relevant risk-
free interest rates of the financial markets. Thus, the interest rates affect the
valuation of the liabilities both through certain asset classes as well as through
the discounting of the cash-flows. The proper modelling of interest rates is
crucial for the appropriate valuation of the liabilities in Solvency II.

The behaviour of interest rates is complex providing one of the most chal-
lenging modelling areas. A convenient way to approach interest rate mod-
elling is to first introduce bonds and bond yields.3 A bond’s yield, or yield-
to-maturity, can be thought of as the interest earned per year from buying
and holding the bond until its maturity. More specifically, it is the interest
rate at which the present value of the stream of payments is exactly equal to

1This is the case, for example, when the Black-Scholes formula is used for short-dated
options.

2The risk margin should address the uncertainty in the valuation of the best estimate
in terms of regulatory capital costs. It should cover the risk linked to the future liability
cash-flows over their whole time horizon.

3A bond is an obligation by the bond issuer to pay money to the bond holder according
to rules specified at the time the bond is issued.
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the current price (Luenberger, 1998). The (annual) yield-to-maturity, λ, of a
coupon-bearing bond can be solved from the equation

P =
F

[1 + (λ/m)]n
+

n∑

k=1

C/m

[1 + (λ/m)]k
,

where P is the current price of the bond, F is the face value4 of the bond, C
is the yearly coupon payment5, m is the number of coupon payments per year
and n is the number of coupon periods remaining to maturity. A zero-coupon
bond is a bond paying no coupons. The formula above of course implies that a
rise in interest rates reduces bond prices while a fall has the opposite influence.

The interest rate that the issuer of a bond must pay is influenced by a
variety of factors such as the bond’s term to maturity and the creditworthiness
of the issuer. The relationship between yield, or interest rate, and maturity
for similar bonds at a particular point in time is called a yield curve, a zero-
curve6 or a term structure of interest rates. A yield curve can be constructed
by plotting the yields of various available bonds that differ in maturity but are
otherwise identical at a particular point in time. Usually, government bonds
are used for derivation, since they are assumed default free, they exist in a
wide range of maturities and are freely traded on the secondary markets. A
common yield curve that investors consider is the U.S. Treasury yield curve. In
this report we will concentrate on government bonds that have no probability
of default.

The yield curve may take different shapes. The curve typically rises grad-
ually with increasing maturity reflecting the fact that longer term interest
rates are higher than shorter term interest rates. However, occasionally it
may take on an inverted shape, where the yields decrease as the time to ma-
turity increases. A flat yield curve is almost never observed. This suggests
that investors require different rates of return depending on the maturity of
the bond they are holding. A number of different theories have been proposed
for the shape of the yield curve, the simplest of them being that the yield
curve reflects the market’s expectations of future interest rates. For example,
according to this expectations theory, the upward rising yield curve can be
explained by the market believing that the interest rate will rise. For a good
review on the main theories proposed to explain the shape of the yield curve
we refer to the article of Choudhry in Fabozzi (2002, Chapter 4).

As indirectly indicated above, the yield curve’s shape and height changes
through time. The fluctuation of the shape of the yield curve is called the
evolution of the term structure of interest rates. The main challenge in the
modelling of interest rates is to capture the random fluctuation of the yield
curve, which is much more complex than the movements of a single stock or

4The face value is a specific amount paid by the bond at the date of maturity (expiration
date).

5Coupon payment is the interest payment made to the bondholder. The coupon amount
is described as a percentage of the face value. Here the coupon payments sum to C within
a year.

6The yield curve is often represented in terms of a zero-coupon bond, i.e. a bond that
provide no coupons.

34



Figure 5.1: The evolution of the term structure of interest rates based on
monthly observations on US Treasuries from July 2001 to March 2008.

index price. One can intuitively relate it to the difference in the dynamics
of a scalar variable (e.g. stock index) and a vector (the yield curve). Figure
5.1 illustrates the evolution of the term structure of interest rates. The figure
is based on monthly observations (US Treasuries) from July 2001 to March
2008.

Modeling the term structure of interest rates has a long tradition in finance
and there are always many competing models available for each application
at hand. There is no single ideal term structure model useful for all purposes,
but the model needs to be chosen according to what is approporiate for the
particular problem and data at hand. In the following we will take an in-
sight into the interest rate term structure modelling. After introducing the
basic notations used in the chapter, we will first discuss the four faces of an
interest rate model (Section 5.3) and then list some desirable features of a
term-structure model (Section 5.4). A few of the best-known one-factor short
rate models are briefly introduced in Section 5.5. For the convenience, we
will resort to the continous-time framework. In Section 5.6 one-factor short
rate models are applied in the context of life insurance. The section is math-
ematically more advanced and is based on the paper of Luoma et al. (2008)
which analyzes the role of the underlying asset and interest rate model in the
market consistent valuation of life insurance policies. We then widen the per-
spective by moving from one-factor models to multifactor models. The HJM
framework is introduced in Section 5.8 and the modelling in that context is
demonstrated by a simulation study in Appendix F. Before closing the ap-
pendix we briefly discuss some issues on pricing. In Section 5.9 we give a brief
introduction to the market models which have become widely popular in the
past years.
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5.2 Notations and relationships

Below we introduce the notations used in this chapter and also show some
relationships:

P (t, T ) The price at time t of a zero-coupon bond that matures at
time T , with t ≤ T . Note that P (t, t) = 1 for all t.

R(t, T ) Spot rate. The spot rate R(t, T ) is the continuously com-
pounded interest rate at time t implied by the price P (t, T ),
that is

R(t, T ) = − 1

T − t
ln P (t, T ), t < T.

It follows that
P (t, T ) = e−R(t,T )(T−t).

Interpretation: If we invest one euro at time t in a zero-coupon
bond maturing at time T for T − t years, then this will accu-
mulate at an average rate of R(t, T ) over the whole period.

F (t, T, S) Forward rate. The (continuously compounded annualized) for-
ward rate at time t which applies between times T and S, is
defined as

F (t, T, S) =
1

S − T
ln

P (t, T )

P (t, S)
, t ≤ T < S.

Interpretation: Forward rate is the interest rate agreed at time
t for an investment of one euro made at time T in a zero-
coupon bond maturing at time S for S − T years. Note that
F (t, t, S) = R(t, S).

f(t, T ) The (continuously compounded annualized) instantaneous
forward rate at time t, is defined as

f(t, T ) = lim
S→T

F (t, T, S) = − ∂

∂T
ln P (t, T ), t < T.

It follows that
P (t, T ) = e−

∫ T

t
f(t,u) du

and

R(t, T ) =
1

T − t




T∫

t

f(t, u) du



 .

rt Short rate. The (continuously compounded annualized) in-
stantaneous interest rate at time t is defined as

rt = lim
T→t

R(t, T ) = R(t, t) = f(t, t), t < T.

In practice one should take the short rate to be the yield on a
liquid finite-maturity bond, say one of one month (Wilmott,
2001, pp. 286–287).

36



Note that R(t, T ), f(t, T ) and P (t, T ) all carry the same information.
They are all functions of two variables: intiation time t and maturity time T .
They provide three different but equivalent ways to represent the yield curve.
The short rate r(t) is a function of only one variable and hence contains less
information. However, the short rate plays an important role in interest rate
modelling.

5.3 The four types of an interest rate model

In this section the concepts arbitrage-free and equilibrium models, and risk
neutral and realistic (real world) probabilities are explained. We also briefly
discuss the choice between an arbitrage-free or equilibrium model, and the
choice between risk neutral or realistic parameterizations of a model. These
two dimension define four classes of model forms, each of which has its own
proper use. For a proper discussion on the topic, we refer to the excellent
article of Fitton & McNatt in Fabozzi (2002, Chapter 2). The following section
is closely based on this particular article.

5.3.1 Arbitrage-free vs. equilibrium model

It is a common belief that market participants quickly take advantage of any
opportunities for arbitrage7 among financial assets, so that these opportu-
nities do not exist for long. Thus, in many cases the term structure of the
interest rates for different maturities is aimed to be modelled in an arbitrage-
free way8, that is, such that the interest rates implied by the model are con-
sistent with the observed actual interest rates. ”Arbitrage-free” is known as
the law of one price. If one values the same cash flows in two different ways,
one should get the same result for both (see e.g. Cheyette in Fabozzi, 2002,
Chapter 1).

Arbitrage-free models assume some computationally convenient, but es-
sentially arbitrary, random process underlying the yield curve. They take cer-
tain market prices as given, and adjust model parameters so that the models
fit the prices exactly9. It should be realized, that an arbitrage-free model may
achieve an exact fit to prices of assets in particular classes without regard to
the reality. Examples of arbitrage-free models are the Ho & Lee, the Hull &
White, the BDT and the Black & Karasinski models discussed in Section 5.5.

Equilibrium models attempt to capture the behaviours of the term struc-
ture over time. Rather than interpolating among prices at one particular point
in time, they employ a statistical approach assuming that market prices are
observed with some statistical error. Typically, equilibrium models put struc-
ture on the evolution of interest rates and then try to match the data as

7Arbitrage, also known as riskless profit and, more popularly, as free lunch, is the
simultaneous purchase and sale of assets to make a profit from the difference in pricing.

8This is typically done under the risk neutral probability measure (see Section 5.3.2
below).

9In an arbitrage-free model, the drift term is, in general, dependent on time.
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closely as the model will allow. Current term structure of interest rates hence
is an output rather than an input in the model10 (Hull, 1999).

Equilibrium models can be made to provide approximate fit to many of the
term structures encountered in practice. However, they do not usually provide
an exact fit. In certain cases, there may even be significant differences between
the model fit and the observed actual rates, leading to arbitrage. This clearly
is a disadvantage of the model. On the other hand, equilibrium models can
have an advantage over arbitrage-free models in that they can be estimated
from historical data when current market prices are unreliable or unavailable.
The first short rate models being proposed in the financial literature were
one-factor equilibrium models. Examples of such models are the Merton, the
Rendleman & Bartter, the Vasicek and the CIR models introduced in Section
5.5. Some equilibrium models can be converted into arbitrage-free models by
including a time-dependent drift term. Examples of such models are the Ho
& Lee and the Hull & White models generalized from the equilibrium models
of Merton and Vasicek, respectively.

5.3.2 Risk neutral vs. real world

When pricing interest rate derivatives, the task is to specify a random process
for the instantaneous, risk-free interest rate called the short rate11, which is
the rate payable on an investment in default-free government bonds for a very
short time period (cf. Section 5.2). The short rate is generally considered as
the only truly riskless interest rate in financial markets. It is also believed
to be the most important state variable driving the dynamics of the term
structure of interest rates.

An investor in bonds (or any risky investment) subject to market risk
expects to earn a risk-free return plus a (time-varying) risk premium, whose
purpose is to take into account the aggregate risk preference of market par-
ticipants. The spot rate for a particular term is then composed of the return
expected under the random process for the short rate up to the end of that
term, plus a term premium, an additional return to compensate the investor
for the interest rate risk of the investment. Thus, in order to value a zero-
coupon bond, it may seem necessary to not only know the random process
for the short rate but also the term premium for every possible term.

In the valuation principle called risk neutral valuation, it is not necessary
to separately identify the term premium embedded in each spot rate. The
idea is to identify a set of spot rates such that investors’ risk preferences
do not affect the valuation of bonds or other interest rate derivatives. As
described by Fitton & McNatt, this is eventually done by risk-adjusting the
term structure model, that is, by changing probability distribution of the
short rate so that the spot rate of every term is, under the new model, equal
to the expected return from investing at the short rate over the same term.

10In arbitrage-free models the current term structure is an input. This means that while-
constructing the model we take the observed actual rates and estimate the unobserved
rates.

11The short rate is an abbreviation for the ”short term interest rate”. The short rate can
be illustrated as being the short-term maturity edge of the yield surface in Figure 5.1.
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This is accomplished by redefining the model so that, instead of being a
random process for the short rate, it is a random process for the short rate
plus a function of the term premium (for a mathematical formulation and
more detailed description see the full article in Chapter 2 of Fabozzi, 2002).

As further described by Fitton & McNatt, the resulting risk neutral model
can be thought of as a model for the true behaviour of the short rate in an
imaginary world, where the investors do not require compensation for the ex-
tra risk in bonds of longer maturity. The important aspect of the risk neutral
model is that the term premia, whatever their values, that exist in the mar-
ketplace are embedded in the interest rate process itself, so that the expected
discounted value of a cash flow at the risk adjusted short rate is equal to the
discounted value of the cash flow at the spot rate. Valuing assets without
risk adjusting the model would require a more complicated discounting pro-
cedure. Under the parametrization of the risk neutral probability measure,
however, an interest-sensitive instrument’s price can be estimated by averag-
ing the present values of its cash flows, discounted at the short term interest
rates along each path of the short rate under which those cash flows occur.
Thus, the specific change of variables that produces a risk neutral model sim-
ply makes the algebra easier than the others, because one can ignore risk
preferences.

It is important to distinguish the risk neutral term structure model (spec-
ified under the risk neutral probability measure) from the realistic risk averse
term structure process (specified under the real world probability measure).
In the real world, term premia commonly are different from zero, while in
scenarios generated by a risk neutral process all term premia are zero. As
discussed above, risk neutral interest rate scenarios are preferred for pricing
bonds. However, such scenarios that are lacking realism are not appropriate
for all purposes. Realistic simulations, which can be provided only if the test
environment is like the real environment, are desired especially for many risk
management purposes e.g. for stress testing cases.

5.3.3 When to use each of the model types

The two dimensions, risk neutral versus real world and arbitrage-free versus
equilibrium, define four classes of modelling approached, each of which has
its appropriate use. The risk neutral and arbitrage-free type of model is the
most familiar interest rate model form for most analysts. However, as shown
in Table 5.1, it is not the only valid kind of a term structure model. From
Solvency II point of view the risk neutral approach is related to mark-to-
market valuation of liabilities while the real world approach is needed for the
calculation of Solvency Capital Requirement. For a comprehensive discussion
on the use of each of the modelling approaches we refer to Fabozzi (2002,
Chapter 2).
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Table 5.1: When to use each of the model types (Fabozzi, 2002, Table 2.1)

Model
classification Risk neutral Real world
Arbitrage-free • Current pricing, where in-

put data (market prices) are
reliable

• Unusable, since term pre-
mium cannot be reliably es-
timated

Equilibrium • Current pricing, where in-
puts (market prices) are un-
reliable or unavailable
• Horizon pricing

• Stress testing
• Reserve and asset
adequacy testing

5.4 Desirable features

Cairns (2004) discusses basic characteristics which, in varying degree, are
desirable but not essential for the development of a term-structure model.
We list some of these charateristics below. For the comprehensive list we
refer to Cairns (2004, pp. 53–55).

1. Models should not allow negative interest rates.

2. Models should incorporate mean reversion. By mean reversion (or au-
toregression) is meant a tendency of a stochastic process to remain near
or return over time to a long-run average value. Interest rates typically
are mean reverting while stock prices do not exhibit this tendency.

3. Model formulaes obtained for bond and derivative prices should be sim-
ple. However, a more important property of a model is, of course, that
a proposed model gives a good approximation to what we observe in
reality.

4. Bond and derivative prices are simple to calculate numerically. This re-
laxes the requirement that prices be available using analytical formulae
and is a reflection of the existence of increasing computing power.

5. Models are flexible enought to cope with new and more complex deriva-
tive products.

6. Models produce dynamics that are realistic.

7. Models fit historical data well (in the statistical sense) or at least ade-
quately.

5.5 On one-factor short rate models

One-factor models provide a solid foundation upon which we can build more
complex models. These models have only a single source of randomness and
they are often built for the short rate, which is commonly considered as the
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only truly riskless interest rate in financial markets. The risk neutral valuation
requires that one knows the sequence of short rates for each scenario. Since an
interest rate model must provide this information, many interest rate models
are simply models of the stochastic evolution of the short rate. The desirability
of short rate models also follows from that they have the Markov property
(”absence of memory”) meaning that the evolution of the short rate at each
instant depends only on its current value and not on how it got there.

A short rate model is a mathematical model that describes the future
evolution of interest rates by describing the future evolution of the short rate.
The one-factor short rate models often use a stochastic differential equation
(SDE) to represent the short rate rt. Commonly, rt is assumed to be governed
by an equation of the Ito type,

drt = µ(rt, t) dt + σ(rt, t) dWt,

where µ(.) and σ(.) are the instantaneous drift and standard deviation (volatil-
ity) of the process, respectively, and Wt is the standard Wiener or Brownian
motion process. The left-hand side of the equation is the change in the short
rate over the next instant. Given an initial condition r0, the equation defines
a stochastic process rt. Many such models have been proposed as being good
approximations to actual interest rate processes. We should note that the
manipulation of SDEs requires some special stochastic calculus rules (see e.g.
James & Webber, 2000). Intuitively SDEs can be described as continuous-
time counterparts of discrete time processes that we discussed in the context
of equity modelling.

Below we list a few of the best-known one-factor short rate models. All
processes for the short rate will be presented in the risk neutral world. Before
we go to the short rate models it is worth noting that a change of measure from
real world to the risk neutral will only affect the drift term. The volatility term
is the same under both the measures. Using historical data we can estimate12

the parameters of the models under the real world measure. To move from one
probability measure to another we need know (or approximate) the market
price of risk. For a comprehensive introduction to estimation and calibration
techniques we refer to James & Webber (2000). A nicely written paper by
Zeytun & Gupta (2007) may help the reader to better understand the model
specification and parameter estimation under the risk neutral respective real
world probability measure.

1. Merton model:
The model was proposed by Merton in 1973. It assumes that the short
rate follows a Brownian motion with a drift, that is,

drt = α dt + σ dWt,

where α and σ are constants. The model assumes that rt is normally
distributed. This implies that interest rates can become negative with

12The process of fitting an interest rate model to historical and current data is known as
estimation. The process is often called a model calibration if the parameters of the models
are being estimated from current market data (James & Webber, 2000).
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a positive probability, which clearly is an undesirable property of the
model at least for the nominal interest rates. The parameter σ in the
model represents the local volatility of short rates, i.e. volatility per unit
of time dt.

2. Rendleman & Bartter model:
In 1980 Rendleman and Bartter suggested a model

drt = αrt dt + σrt dWt,

where α and σ are constants. The model is the lognormal model sug-
gested for the equity price and presented in Section 4.5. It assumes that
the short rate follows a GBM. The GBM leads to lognormal distribu-
tion of short rates. Hence, unlike the Merton model, the Rendleman &
Bartter model does not permit negative interest rates. The Rendleman
& Bartter model is nowadays rarely advocated as a realistic model of
the short rate process. One reason is that the model does not attempt to
model a mean reversion property often exhibited by the interest rates in
practice. Interest rates do not usually exhibit the long-term exponential
growth seen in the equity markets.

3. Vasicek model:
One of the most widely used models was developed by Vasicek in 1977.
It assumes that the short rate follows an Ornstein-Uhlenbeck process13

drt = α(β − rt) dt + σ dWt,

where α, β and σ are constants. The model incorporates mean reversion
through the instantaneous drift term α(β − r). It is incorporated in the
Vasicek model so that if the interest rate is above the long-run mean,
that is, rt > β, the drift term will be negative and the short rate is
pulled down. Likewise, if the short rate is less than the long-run mean,
that is, rt < β, the drift will be positive and the rate is pulled upward.
The coefficient α is the speed of adjustment of the interest rate towards
its long-run normal level. A drawback of the Vasicek model is that the
volatility of the short rate is constant. Another undesirable feature of
the model is that it permits negative interest rates.

4. Cox, Ingersoll & Ross (CIR) model:
Cox, Ingersoll and Ross proposed in 1985 an alternative to the Vasicek
model where rates are always non-negative. The model is derived from
the equilibrium conditions of the economy and it considers an interest
rate process of the type

drt = α(β − rt) dt + σ
√

rt dWt,

where α, β and σ are constants. The model has the same mean reverting
drift as the Vasicek model. The volatility part of the model is, however,

13The Ornstein-Uhlenbeck process is the continuous-time analogue of the discrete-time
AR(1) process.
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different. In the CIR model the volatility of the short rate is assumed
to be proportional to the level of interest rates through

√
rt. The model

hence allows more variability at times of high interest rates and less
variability when rates are low. Cairns (2004) regards the CIR model as
the first tractable model that keeps rates of interest positive. However,
despite the fact that the CIR model is nowadays widely used, it is quite
incapable to fit different types of shapes for the yield curve. The CIR
model presents a good fit only for upward term structures of interest
rates.

5. Ho & Lee model:
Ho and Lee proposed their model in 1986. The model extended the
Merton model to fit a given initial yield curve perfectly in a discrete-
time framework. It actually was the first arbitrage-free model of the
term structure of interest rates. The Ho & Lee model is one of the
simplest models that can be calibrated to market data. The continuous-
time limit of the model is

drt = θ(t) dt + σ dWt,

where σ is a constant repsenting the instantaneous volatility of the short
rate and θ(t) is a time-dependent drift that defines the average direction
that the short rate moves at time t. The drift θ(t), which is independent
of the short rate, is chosen so that the model generates the observed
yield curve. Like in the Merton model, the volatility of the short rate
is assumed to be constant. The Ho & Lee model is easy to apply and
provides an exact fit to the current term structure of interest rates. The
main drawback of the model is that it has no mean reversion property.
The model also has a disadvantage of permitting negative interest rates.

6. Hull & White model:
Hull and White proposed in 1990 a model that extended the Vasicek
model to provide an exact fit to an initial yield curve. The Hull & White
model is hence sometimes also referred to as an extended Vasicek model.
One version of it is

(5.1) drt = (θ(t) − βrt) dt + σ dWt,

where β and σ are constants, and θ(t) is a function of time. The model
is also often expressed as

drt = α(µ(t) − rt) dt + σ dWt,

where α and σ are constants, and µ(t) is a function of time chosen
to ensure that the model fits the initial yield curve. Now µ(t) has a
straightforward interpretation of a local mean reversion level, i.e. at
time t the short rate reverts to µ(t) at rate α. The model can also be
characterized as the Ho & Lee model with the mean reversion property.
The main difference to the Vasicek model is that in the Vasicek model
µ(t) = β, i.e. a constant.
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7. Black, Derman & Toy (BDT) model:
Black, Derman and Toy suggested in 1990 a generalization of the Hull
& White model, which matches both the observed initial yield curve
and market volatility data. The continuous-time limit of the model is

d ln rt =

(
θ(t) − σ′(t)

σ(t)
ln rt

)
dt + σ(t) dWt,

where θ(t) and σ(t) are independent functions of time, and σ′(t) is the
partial derivative of σ(t) with respect to t. The functions θ(t) and σ(t)
are chosen so that the model fits the existing term structure of interest
rates and volatilities, respectively. Since the changes in the short rate
are lognormally distributed, the problem of negative interest rates is
avoided. A drawback of the BDT model is that in certain cases the
model may be mean fleeing rather than mean reverting. A version often
implemented in practice holds the future short rate volatility constant.
The convergence limit then reduces to

d ln rt = θ(t) dt + σ dWt,

which is virtually indentical to the Ho & Lee model, except that the
underlying variable is ln rt rather than rt. The BDT model is also some-
times referred to as the exponential Vasicek model.

8. Black & Karasinski model:
In 1991, Black and Karasinki suggested a generalization of the BDT
model, in which the reversion rate was explicitly decoupled from the
volatility. The continuous-time limit representation of the model is

d ln rt = (θ(t) − β(t) ln rt) dt + σ(t) dWt,

where θ(t), β(t) and σ(t) are three independent functions of time, or

d ln rt = α(t)(ln µ(t) − ln rt) dt + σ(t) dWt,

where µ(t), α(t) and σ(t) have the interpretations of the target rate, the
mean reversion and the local volatility in the expression for the local
change in ln rt, respectively. The three time-dependent functions are
chosen to match three features of the world (see Black & Karasinski,
1991). The Black & Karasinski model avoids the problem of negative
interest rates and it has become quite popular amongst practitioners
mainly due to its good fitting quality to market data.

A more detailed description on the above one-factor models can be found
in many books dealing with interest rate models such as Cairns (2004), Hull
(1999) and Brigo & Mercurio (2001). For an introduction on the parameter
estimation and model calibration we refer to the same books and Lai & Xing
(2008). Chan et al. (1992) has conducted an empirical comparison of various
short-term interest rate models. Lai & Xing (2008) briefly summarize the
results.
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One-factor models are simple and tractable. However, as discussed in
Cairns (2004), these models generally fail many of the desirable character-
istics listed in Section 5.4. This can be explained by one-factor models being
dependent on only a single factor which makes the models too inflexible and
unrealistic. The practical sufficiency of one-factor model is discussed in Sec-
tion 5.7.1. Multifactor models which incorporate more than one factor and
are hence more flexible are considered in Section 5.7.2. However, before going
into the discussion of these two topics, we will in the next section take a look
at the work of Luoma et al. (2008) in which one-factor short rate models are
applied in the context of life insurance.

5.6 Interest rate models in the market con-

sistent valuation of life insurance policies

In this section we introduce a bivariate modelling of stochastic interest rate
and equity index. These models are used by Luoma et al. (2008) in a market
consistent valuation of a participating life insurance contract. The contract
is, in this setup, an American-style path-dependent derivative. A Bayesian
approach is utilized in the estimation of the underlying processes. Specifically,
the processes are estimated using the Markov Chain Monte Carlo method,
and their simulation is based on their posterior predictive distribution, which
is, however, adjusted to give risk-neutral dynamics. The contract prices are
estimated using the regression method.

The focus is on a novel application of advanced theoretical and compu-
tational methods, which enable us to deal with a fairly realistic valuation
framework and to address model and parameter error issues. Our empiri-
cal results support the use of elaborated instead of stylized models for asset
dynamics in practical applications.

5.6.1 The model

The short-term interest rate model we use is a generalization of the Vasicek
and CIR models. It was introduced by Chan et al. (1992), who provide a
useful summary of short-term interest rate models in their paper.

We assumed that the dynamics of riskless short-term rate rt and stock
index St are described by the following system of SDEs:

drt =κ(ξ − rt)dt + σrγ
t dW

(1)
t ,(5.2a)

dSt = µStdt + νS1−α
t dW

(2)
t ,(5.2b)

where W
(1)
t and W

(2)
t are two standard Brownian motions, correlated through

W
(2)
t = ρW

(1)
t +

√
1 − ρ2W

(3)
t , where W

(1)
t and W

(3)
t are independent stan-

dard Brownian motions under the real-world probability measure. Thus the
correlation of W

(1)
t and W

(2)
t is ρ.

By parameter restriction the short-term interest rate model becomes the
following: If γ = 0, the model becomes the Vasicek model, and, if γ = 1

2
, it
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becomes CIR model. The stock index model becomes a geometric Brownian
motion if α = 0.

Substituting Z
(1)
t = W

(1)
t and Z

(3)
t = W

(3)
t + (µ − rt)ν

−1(1 − ρ2)−1/2Sα
t dt,

the system of SDEs (5.2a) and (5.2b) can be written in the form

drt =κ(ξ − rt)dt + σrγ
t dZ

(1)
t ,(5.3a)

dSt = rtStdt + νS1−α
t dZ

(2)
t ,(5.3b)

where Z
(2)
t = ρZ

(1)
t +

√
1 − ρ2Z

(3)
t . Now a risk-neutral probability measure

Q may be introduced by assuming that Z
(1)
t and Z

(3)
t are two independent

standard Brownian motions under this measure. It can then be shown that
the discounted price S̃t = St exp(−

∫ t

0
rsds) is a martingale under Q.

To our knowledge, the transition densities of the bivariate process de-
scribed by (5.2a) and (5.2b) do not have a closed form solution, and its Euler
discretization is used to estimate the unknown parameters κ, ξ, σ, γ, µ, ν
and α. Accordingly, we simulate the risk-neutral process using the Euler dis-
cretization of (5.3a) and (5.3b).

In order to obtain numerical stability in estimation, we reparametrize the
model (5.2a) as

dxt = (β − κxt)dt + τxγ
t dW

(1)
t ,

where xt = 100 rt (the interest rate given in percentages), β = 100 κξ and
τ = (100)1−γσ. Assuming that the bivariate process has been observed at
equally-spaced time points 0, δ, ...Nδ, the likelihood function can be written
in the form

(5.4) p(y|θ) =
N∏

i=1

1√
2πτ 2x2γ

(i−1)δδ
exp

(
−
(
∆xiδ − (β − κx(i−1)δ)δ

)2

2τ 2x2γ
(i−1)δδ

)

×
N∏

i=1

1√
2πν2S

2(1−α)
(i−1)δ (1 − ρ2)δ

exp



−

(
∆Siδ − µS(i−1)δδ − νS1−α

(i−1)δρ∆W
(1)
iδ

)2

2ν2S
2(1−α)
(i−1)δ (1 − ρ2)δ



 ,

where y is data, θ = (µ, ν, α, β, κ, τ, γ, ρ), ∆xiδ = xiδ − x(i−1)δ, ∆Siδ = Siδ −
S(i−1)δ and

∆W
(1)
iδ =

xiδ − x(i−1)δ − (β − κx(i−1)δ)δ

τxγ
(i−1)δ

.

5.6.2 Bayesian estimation

We use Bayesian methods to estimate the unknown parameters of the stock
index and interest rate models. This makes it possible to take parameter un-
certainty into account when evaluating the fair prices of derivatives. We take
the model uncertainty into account by using a sufficiently general, contin-
uously parametrized family of distributions (see Gelman et al., 2004). The
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Metropolis algorithm introduced by Metropolis et al. (1953) is used to sim-
ulate the joint posterior distribution of unknown parameters. The posterior
density is proportional to the product of the prior density and the likelihood,

p(θ|y) ∝ p(θ)p(y|θ).

We use an improper uniform prior distribution

p(θ) ∝
{

1 when |ρ| < 1 and min(κ, ξ, σ, ν, α) > 0
0 otherwise

and the posterior function is thus proportional to the likelihood (5.4) in a
feasible region of parameters. The estimation results are summarized in Ap-
pendix E.

5.6.3 Insurance contract

The goal is to price a participating life insurance contract, and it is done
from insurance company’s perspective. The contract may be viewed as an
option whose seller is an insurance company and buyer its client. The contract
consists of two parts. The first part is a guaranteed interest and the second
part a bonus depending on the yield of some total return equity index. The
amount of savings in the insurance contract at time ti is denoted by Y (ti).
Then its growth during a time interval of length δ = ti+1 − ti is given by

log
Y (ti+1)

Y (ti)
= g δ + b max

(
0, log

X(ti+1)

X(ti)
− g δ

)
,(5.5)

where X(ti) =
∑q

j=0 S(ti−j)/(q + 1) is a moving average of the total return
equity index S(ti). One can see from (5.5) that the accumulated capital is
guaranteed to the customer. The guarantee rate g is fixed for one year at a
time. It is set annually at krt, where rt is the riskless short-term interest rate
at time t and k < 1. The bonus rate b is the proportion of the excessive equity
index yield that is returned to the customer. We use the time interval δ =
1/255, where 255 is approximately the number of the days in a year on which
the index is quoted. The model also incorporates a surrender (early exercise)
option and the possibility for a penalty p which occurs if the customer reclaims
the contract before the final expiration date. The parameters k, g, b and p
are predefined by the insurance company. A further condition is that there
will be a 1 % penalty if the contract is reclaimed during the first 10 working
days. This condition essentially improves the estimation of the fair bonus rate,
which is the main goal in Luoma et al. (2008).

This particular participating life insurance contract is in practice an Amer-
ican option with a path-dependent moving average feature. An American op-
tion gives the holder the right to exercise the option at any time up to the
expiry date. The pricing of an American option is based on an optimal ex-
ercising strategy. The idea is to compare the dicounted immediate exercise
value with the corresponding discounted continuation value. In pricing a sim-
ple but powerful least squares method introduced by Longstaff & Schwartz
(2001) is adopted.
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One should note that the methods used in determining prices of Ameri-
can options are approximative. In addition to Monte Carlo simulation errors,
there is a modelling error related to the choice of regressors in the least squares
method. These sources of error are taken into account in the confidence in-
tervals which are also provided in Luoma et al. (2008).

5.7 On multifactor models

5.7.1 Are one-factor models sufficient for practical pur-
poses?

The short rate is a key interest rate in all the one-factor models constructed
above, even though this rate cannot be directly observed14. The short rate
may constitute the fundamental coordinate with which the whole yield curve
can be characterized. Knowledge of the short rate and of its distributional
properties leads to knowledge of bond prices, from which one can then con-
struct the whole zero-coupon interest rate curve. The evolution of the whole
curve is hence characterized by the evolution of the single quantity namely
the short rate (Brigo & Mercurio, 2001).

A one-factor model does not often capture the subtleties of the yield curve
that are important for particular contracts/products. A look at the historical
data in Figure 5.1, for example, shows that changes in interest rates with
different maturities are not perfectly correlated. However, this is indeed what
one-factor models assume.15 The Vasicek model, for example, assumes that
the thirty-year interest rate at a given instant is perfectly correlated with,
say, the three-month rate at the same instant. This means that a shock to
the interest rate curve at time t is transmitted equally through all maturities,
and the curve, when its initial point (the short rate rt) is shocked, moves
almost rigidly in the same direction (Brigo & Mercurio, 2001). Since in reality
interest rates are known to exhibit in a different manner, a more satisfactory
model of curve evolution is often needed.

According to Brigo & Mercurio (2001), many one-factor short rate mod-
els may prove useful when the product to be priced does not depend on the
correlations of different rates but depends at every instant on a single rate of
the whole interest rate curve, say for example the six-month rate. One-factor
models may also be acceptable in the cases where two or more rates jointly in-
fluence the payoff at every instant. However, in such cases the real correlation
between the rates need to be high enough so that the perfect correlation in-
duced by the one-factor model provides an acceptable approximation. Hence,

14The one- or three-month interest rate is often taken to be the best available proxy for
the short rate. It is not ideal, however, as the short rate is defined to have an instantaneous
holding period, compared with which three months is a long way down the yield curve
(James & Webber, 2000, p. 77).

15According to Hull (1999), the assumption on a single factor is not as restrictive as it
might appear. Although one-factor model implies that all rates move in the same direction
over any short time interval, they do not require that all move by the same amount. Hull
also adds that the term structure need not always have the same shape, but a fairly rich
pattern of term structures can occur under a one-factor model.
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such rates usually need to be close, say, for example, six-month and one-year
rates.

Since the obligations of pension funds or life insurers stretch far into the
future, the model used should not only fit the short end of the yield curve
well but also the long end. It is relevant that such a model is able to capture
the nature of correlations among rates of different maturities. In general,
whenever correlation plays a more relevant role or when higher precision is
required, there is a need for a model providing a more realistic yield curve
evolution. For example, an option may be defined in terms of the difference
between the one- and five-year rates. As noted by Cairns (2004), in such a
case one-factor model would possibly overprice this contract because of its
assumption that the underlying rates are perfectly, non-linearly correlated.
The nature of correlations among rates of different maturities, including the
way that those correlations are influenced by the shape of the term structure,
are better captured by multifactor models discussed in the next section.

5.7.2 Introduction to multifactor models

Multifactor models have the potential to explain the lack of perfect correla-
tion. They have more than one source of randomness allowing for increased
variety of yield curves. However, as a result of their increased flexibility, mul-
tifactor models require more computation time than the one-factor models
introduced above.

There have been a number of attempts to extend one-factor short rate
models so that they involve two or more factors. Brennan & Schwartz (1982),
for example, chose the two stochastic factors to be the short rate and the long-
term interest rate. Fong & Vasicek (1991) chose the variance of the short
term rate to be the second state variable to more accurately describe the
term structure of interest rates. Two-factor models can be further extended
to three or more factors. The choice of the number of factors then involves a
compromise between numerically-efficient implementation and capability of
the model to represent realistic correlation patterns (and covariance structures
in general) and to fit satisfactorily enough market data in most concrete
situations (Brigo & Mercurio, 2001).

When modelling interest rate risk, insurance companies seem to commonly
use models that involve more than one factor. Apparently models such as
Black & Karasinski, CIR or Hull & White models with two or three factors
are often used. Unfortunately, there seems to be no single answer to the
question of how many factors should appear in the model. Research on term
structure has established that much of the variablity in government bond
returns can be summarized by movements in a few, usually two or three,
underlying factors. In Section 5.8.3 we will discuss a common method used
to extract the driving factors, namely principal component analysis (PCA).
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5.8 Heath, Jarrow & Morton (HJM) model

5.8.1 Introduction to the HJM model

An important alternative to the short rate models is the Heath, Jarrow &
Morton (HJM) model framework16 which was proposed in a groundbreaking
paper by Heath et al. (1992)17. Instead of modelling a short rate and deriv-
ing the forward rates, or equivalently the yield curve, from that model, the
HJM model starts with directly modelling the whole forward rate curve. The
advantage of modelling forward rates by the HJM model is that the current
term structure of rates is, by construction, an input of the selected model.

The HJM model is based on the instantaneous forward rates f(t, T ), 0 ≤
t < T .18 The HJM model simultaneously considers infinitely many processes
f(t, T ), namely one process for each T . However, if a model depends on,
say, three sources of randomness, then we are fortunately able to consider
the problem as three dimensional rather than infinite dimensional. The n-
factor HJM model assumes that the evolution of the instantaneous forward
rates, under the real world measure, is governed by the stochastic differential
equation

(5.6) df(t, T ) = α(t, T ) dt +
n∑

i=1

σi(t, T ) dWt,i, t ≤ T,

where α(t, T ) is the drift and σi(t, T ) the volatility function of factor i at ma-
turity T , and Wt,i are independent standard Wiener processes. The volatilities
and drifts can depend on the history of the Wiener processes Wt,i and on the
rates themselves up to time t. Equation 5.6 is the most general formulation
of the HJM approach with n sources of randomness.

If there is only one source of randomness, that is n = 1, the forward rate
for any fixed maturity T evolves according to its own volatility σ(t, T ) and its
own drift α(t, T ). Since the forward rate processes (for different maturities)
in such a setting are dependent upon the same one-dimensional source of
uncertainty Wt, the changes of all forward rates, and hence all yields and all
bond prices, are perfectly but non-linearly correlated (cf. one-factor models).
As already discussed above, for many applications this kind of an assumption
is too coarse.

In a multifactor version of the HJM model (with n sources of randomness)
the various processes are driven by a collection of independent Wiener process
Wt,1,Wt,2, . . . ,Wt,n. The forward rate for any fixed maturity T then has a

16It is important to observe that the HJM approach to interest rates is not a proposal
of a specific model, such as e.g. Vasicek model. It is instead a framework to be used for
analyzing interest rate models. Every short rate model can be equivalently formulated in
forward rate terms (Björk, 1998).

17The work of Heath, Jarrow and Morton was motivated by the earlier work of Ho &
Lee (1986). The Ho-Lee model is a special case of the HJM model.

18Although the HJM model is often described as a model of forward evolution, it can be
re-expressed so that the evolution of a spot rate curve, or indeed of a bond price curve, is
fundamental. Empirical work, for instance, is often performed on spot rate curves, not on
forward rate curve (James & Webber, 2000).
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volatility σi(t, T ) for each Wiener process term Wt,i. This allows different
bonds to depend on external ’shocks’ in different ways, and to have strong
correlation with some bonds and weaker correlation with others.

Given a non-random initially observed forward rate curve f(0, t), Equation
5.6 can be integrated as

(5.7) f(t, T ) = f(0, T ) +

t∫

0

α(s, T ) ds +
n∑

i=1

t∫

0

σi(s, T ) dWs,i.

Equation 5.7 says that the forward rate process starts with initial value f(0, T )
and is driven by various Wiener process terms and a drift. The instantaneous
short rate rt = f(t, t) can be written

(5.8) rt = f(0, t) +

t∫

0

α(s, t) ds +
n∑

i=1

t∫

0

σi(s, t) dWs,i.

It is worth noting that the short rate process rt is not necessarily Markov
as the evolution of the term structure could depend on the entire path taken
by the term structure since it was initialized at time 0. This property may lead
to considerable increase in computation times when implementing the model
since one may be forced to use Monte Carlo simulation or non-combining trees
to value derivative securities (for the numerical techniques involved with the
HJM model see e.g. Clewlow & Strickland, 1998, Section 10).

Suppose now that we have specified the coefficient functions α(t, T ) and
σi(t, T ), i = 1, . . . , n, and the initial forward rate curve f(0, T ). Then we have
specified the entire forward rate structure and thus, by the relation

(5.9) P (t, T ) = e−
∫ T

t
f(t,s) ds,

we have also specified the entire term structure of zero-coupon bonds, t ≤
T . Since in the dynamics (5.6) we have n sources of randomness and an
infinite number of traded assets (one bond for each maturity T ), we may
have introduced arbitrage possibilities into the bond market. Contrary to the
short rate modelling case, to rule out arbitrage we now cannot choose the
drift rate α(t, T ) independently of the volatility structure. We need to impose
conditions on the forward-rate dynamics, so that they are consistent with
absence of arbitrage opportunities. For simplicity, we will first discuss these
conditions in one-factor case (n = 1). The conditions are then given in a more
general case of n factors.

In one-factor case the stochastic differential equation for P (t, T ) under
the real world probability measure (P-measure) is

(5.10) dP (t, T ) = µP (t, T )P (t, T )dt + σP (t, T )P (t, T )dWt,
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where

σP (t, T ) = −
T∫

t

σ(t, s) ds and(5.11)

µP (t, T ) = rt −
T∫

t

α(t, s) ds +
1

2
σP (t, T )2.(5.12)

All bonds are now driven by the same Wiener process, so to rule out the
arbitrage we now have to impose the restriction

(5.13) µP (t, T ) = rt − λ(t)σP (t, T ), for all T,

where λ(t) is the market price of risk at time t. Using (5.11) and (5.12), the
arbitrage-free condition can be written as

(5.14)

T∫

t

α(t, s) ds = −λ(t)

T∫

t

σ(t, s) ds +
1

2




T∫

t

σ(t, s) ds




2

,

which, after differentiating with respect to T on both sides of the equation
and rearranging the terms, becomes

(5.15) α(t, T ) = σ(t, T )

T∫

t

σ(t, s) ds − λ(t)σ(t, T ).

It follows from (5.15), that the SDE for instantaneous forward rates in one-
factor case (under the measure P) has the expression

(5.16) df(t, T ) =



σ(t, T )

T∫

t

σ(t, s) ds − λ(t)σ(t, T )



 dt + σ(t, T )dWt.

For the n-factor case, (5.15) is written as

(5.17) α(t, s) =
n∑

i=1

σi(t, T )

T∫

t

σi(t, s) ds −
n∑

i=1

λi(t)σi(t, T ),

where λi(t) is the market prices of risk associated with Wt,i. Equation 5.17
is called the ”HJM Rate Drift Condition”. It tells us that to rule out the
arbitrage, we cannot choose the forward rate drift α(t, T ) independently of
the volatility structure, but the drift must be a function of the volatility
structure and the market price of risk, λ(t).

However, as discussed earlier, in order to price fixed-income derivatives, we
need the distribution of f(t, T ) and hence bond prices under the risk-neutral
measure (Q-measure). So, what we are still missing is the model formulation
under the measure Q. What we also would like to see, is that the market price
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of risk λ(t) in the drift term of (5.17) would disappear. Fortunately, for HJM
models setting the price of risk λ(t) to zero takes us from the drift under the
real world measure P to the drift under Q. Thus, the ”HJM Drift Condition”
under the risk-neutral world (under Q) has the expression

(5.18) α(t, s) =
n∑

i=1

σi(t, T )

T∫

t

σi(t, s) ds.

As a consequence, as stated by James & Webber (2000), in the HJM frame-
work one does not have to separately model a price of risk (unless one is
calibrating to time series data). It is now also easy to see that the forward
rate is in fact completely specified by the volatility functions. In other words,
no drift estimation is needed.

An ”algorithm” for the use of an HJM model can be written schematically
as follows (see Björk, 1998, p. 269):

1. Specify, by your own choice, the volatilities σi(t, T ), i = 1, . . . , n (see
Section 5.8.3).

2. The drift parameter of the forward rates is now given by (5.18).

3. Go to the market and observe today’s forward rate structure f(0, T ),
T ≥ 0 (see Section 5.8.2).

4. Integrate in order to get the forward rates as in (5.7).

5. Compute bond prices using (5.9).

6. Compute prices for derivatives.

5.8.2 Initial curves and the availability of market data

The HJM model requires as an input any sufficiently smooth initial yield
curve. However, fitting HJM models empirically requires estimating a contin-
uous forward rate curve from the discrete set of bond prices observed in the
market. The main problem occuring is that only rates with few maturities can
be derived directly from the market19. This is typically quite enough for short
terms but only with one-year lag for maturities longer than one or two years.
The problem is usually solved by interpolating between the given points with
splines or other parameterized families (see e.g. Lai & Xing, 2008, Chapters 7
and 10.2). However, some analyses show that the choice of the interpolation
method, and thereby the choice of the initial curve, should not be completely
independent of the particular model used. Instead, one should use an initial
curve that is consistent with the model (see e.g. Angelini & Herzel, 2002).

19A common procedure for calculating the zero-coupon yield curve from market data
is called a bootstrap method. Bootstrapping starts with the shortest term security and
steps through them all in ascending order of maturity. At every step, zero rates from the
preceding securities are used to determine the zero rates for the current one. The curve
generation process strips each security into its individual cashflows and then prices it using
zero coupon pricing. See e.g. Hull (1999).
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The lack of appropriate and liquid securities of different maturities is not
only a problem for the estimation of the initial curve. Market incomplete-
ness, i.e. there are no deep and liquid markets of appropriate securities, is a
serious practical problem especially for the long term hedging of life and pen-
sion products. The CRO Forum in Appendix A of their paper Market value
of liabilities for insurance firms (see www.croforum.org/publications.ecp)
use a 60-year cash flow or interest rate option and a 30-year equity option as
examples of non-hedgeable risks. Other examples of this type include mor-
tality and lapse (policyholder behaviour) risk. On the other hand many life
insurance financial modelling practitioners (see e.g. Life and Pension, April
2007, pages 15-18) hold the view that at the moment about 10 years seems
to be the limit after which illiquidity causes the projections based on market-
calibrated data being more of a guesswork (extrapolation). Another example
is given in Fabozzi (2002, p. 24) where it is noted for the US market that
models with good statistical fit is needed for the valuation of caps and floors
beyond 5-year tenor. In the Euro area the longest benchmarks of government
bonds are the 30-year German bond and the 50-year French bond. In swap
markets one may find even longer maturities but it is still questionable how
liquid and deep the market is, and if it can be used as a good proxy for
risk-free interest rate20.

5.8.3 Volatility functions in HJM

The HJM models require only the specification of the form of the volatil-
ity structure of forward interest rates along with the initial term structure
of interest rates as inputs. The choices of the volatility functions σi(t, T ),
i = 1, . . . , n, are essential for the valuation of derivatives. For example, volatil-
ity functions that give Gaussian forward rate processes may lead to explicit
formulae for simpler options. In practice it is convenient to choose the volatil-
ity structure to be Markov, since such specifications avoid unnecessary com-
plexity and are likely to result in valuations using approximate trees. Non-
Markov specifications may require difficult simulations or non-recombining
trees even for the valuation of simple options.

One of the volatility functions often used in practice is σ(t, T ) = σ, that
is a constant. This is a Ho & Lee type volatility, which is tractable but unre-
alistic. Another common function is that of a Vasicek type volatility, namely
σ(t, T ) = σe−a(T−t), with σ and a constants. This specification is consistent
with the Hull & White model or the Vasick model with time-varying drift.
Although this volatility performs better than a constant volatility, it does not
provide a very realistic volatility structure. In practical implementations one
often uses several volatility functions. For instance, a two-factor model where
the first function is given by the Ho & Lee structure and the second by the
Hull & White structure was introduced by Heath et al. (1992).

PCA provides a recommended way of modelling the volatility structure
of interest rates in the HJM framework. By applying PCA to a time series of

20In QIS 3 and QIS 4 field-tests for Solvency II the risk-free interest rates up to 50
years were obtained from the swap market data. However, the swap rates do include a risk
premium.
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historical term structure, it is possible to not only determine the number of
factors that explain the data in a satisfactory way, but also to identify the
shape of the volatility functions. PCA is a multivariate prodedure whose main
use is to reduce the dimensionality of a data set while retaining as much infor-
mation as is possible. PCA transforms two or more correlated variables into
a smaller number of uncorrelated variables ordered by reducing variability.
These new variables are called principal components (sometimes also referred
to as factors). Essentially, principal components are linear combinations of
the original (correlated) variables. The first principal component accounts for
as much of the variability in the data as possible, the second principal compo-
nent accounts for as much of the remaining variability as possible, and so on.
The last of these variables can be removed with minimum loss of real data.
For a more detailed and theoretical description of PCA see e.g. Johnson &
Wichern (1998) and Lai & Xing (2008).

Empirical studies based on PCA reveal that three factors (principal com-
ponents) capture about 90%–95% of variations in the yield curve (see e.g.
Litterman & Scheinkman, 1991; Jamshidian & Zhu, 1997). The three com-
ponents, or factors, are often called ”level”, ”slope” and ”curvature” (Litter-
man & Scheinkman, 1991). The names describe how the yield curve shifts
or changes shape in response to a shock. A ”level” shock changes the inter-
est rates of all maturities by almost identical amounts, inducing a parallel
shift that changes the level of the whole yield curve. The influence of the
”slope” factor on yield curve increases short-term interest rates by much larger
amounts than the long-term interest rates, so that the yield curve becomes
less steep and its slope decreases. The ”curvature” factor affects medium-term
interest rates, and consequently the yield curve becomes more ”humpshaped”
than before. According to James & Webber (2000), the ”level” factor will
often explain 80%–90% or more of the variance, depending on the data set,
confirming that parallel shifts are the most usual term structure movements.
As a consequence, as stated by Cheyette in Fabozzi (2002, Chapter 1), valu-
ation of securities can be reduced to a one-factor problem in many instances
with little loss of accuracy. A two- or three-dimensional process is, however,
needed to provide a realistic evolution of the yield curve. 21 22

The use of PCA to estimate HJM volatility functions was already proposed
in the original paper of Heath, Jarrow and Morton. Later literature applying
PCA to determine the volatility functions specifically in the context of an
HJM model contain e.g. the paper of Bühler et al. (1999) and Driessen et al.
(2003). As discussed above, two or three factors (principal components) are
usually needed to provide a realistic evolution of the yield curve. Once the
driving principal components are extracted from the time series of historical
term structure, the volatility functions are determined by the volatilities of

21Note that much of the empirical studies has been done under the real world measure.
However, since instantaneous-covariance structure of the same process when moving from
the real world probability measure to the risk neutral probability measure does not change,
one may guess that also in the risk-neutral world a two- or three-dimensional process may
be needed in order to obtain satisfactory results (Brigo & Mercurio, 2001).

22One must be aware that these conclusions on the number of components are in reference
to the historical term structure data only.

55



those principal components and the corresponding factor loadings. We will
demonstrate the volatility function estimation using PCA in Appendix F.
Appendix F will also contain a cursory discussion of how to price derivatives
when the forward rate process follows a HJM model.

5.9 On market models

Since the market models are of increasing importance in interest rate mod-
elling, we briefly discuss the framework here. For more detailed introduction
on the topic we refer to e.g. Brigo & Mercurio (2001).

A practically appealing alternative to the HJM framework, called market
models, was proposed by Brace et al. (1997), Jamshidian (1997) and Miltersen
et al. (1997). Market models aimed at correcting some problems encountered
by the HJM model, such as, that (1) the HJM model is based on the instan-
taneous forward rates, which cannot be directly observed in the market, and
that (2) the model is not always easy to calibrate to prices of actively traded
instruments such as caps (for calibrating interest rate models in the financial
industry see e.g. Lai & Xing, 2008, Chapter 10.6).

Market models shifted from a concentration on unobservable, instanta-
neous rates of interest such as the short rate or forward rates, to rates (e.g.
LIBOR23) which are directly observable in the market. Accompanied with the
assumption that relevant market interest rates are lognormal, which results
in analytical formulae for some commonly traded derivatives, market models
create an environment which makes calibration of a model relatively straigh-
forward compared with models arising from alternative frameworks. The an-
alytical tractability has made the market models popular amongst practition-
ers. The HJM model, on the other hand, has become popular amongst the
academics due to its attractive theoretical properties. The most widely used
version of the market models is the LIBOR market model (LMM), which is
expressed in terms of successive LIBOR forward rates. For the calibration of
the LMM and the model plausibility for pricing swaption based products see
e.g. Salminen (2007).

23LIBOR = London Inter Bank Offer Rate
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Appendix A

Descriptive analysis of the equity
index data

We here describe our data series in order to obtain insight into their patterns.
The main purpose of this initial data analysis is to describe some characteristic
features of the time series at hand.

A.1 Data transformations

To justify and illustrate the transformation applied to our equity index series,
we will first take a closer look at one of the original data series, namely S&P
500 yearly Total Return Index (SP500TRIy) from years 1925-2006 (Morn-
ingstar, 2007). Figure A.1(a) displays the index series. It can be easily seen
that the series is nonstationary and can be characterized by the irregular ex-
ponential growth and heteroscedasticity (i.e. variance increases as the level of
the original series rised over time).

In financial studies, returns are very often investigated instead of the inital
series of prices or stock market index values. This is because returns in general
display more regular patterns, i.e. have more attractive statistical properties,
and are hence easier to handle. There are, however, several definitions of an
asset return (see e.g. Tsay, 2005, pp. 2–6). Academics often use in their re-
search logarithmic returns (log returns), also called continuously compounded

Time

P
t

1940 1960 1980 2000

0
50

0
10

00
15

00
20

00
25

00
30

00

Time

y t

1940 1960 1980 2000

−
0.

6
−

0.
4

−
0.

2
0.

0
0.

2
0.

4

(a) Index values Pt. (b) Log returns yt.

Figure A.1: S&P 500 yearly Total Return Index from 1925-2006.
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returns, since their statistical properties are more tractable. The log return
yt at time t is defined as

(A.1) yt = ln

(
Pt

Pt−1

)
= ln Pt − ln Pt−1,

where Pt is the equity price or stock market index value at time t. Note that
the purpose of the transformation in (A.1) is to make the data series station-
ary. The log return approximately represents the relative (percentage) change
in equity price from period to period, i.e. growth rate. The approximation is
almost exact if the percentage change is small1. The series yt, displayed in
Figure A.1(b), shows more or less stationary and random appearance. The
stationarity of the time series can be tested e.g. by augmented Dickey-Fuller
(ADF), Phillips-Perron (PP) or Kwiatkowski-Phillip-Schmidt-Shin (KPSS)
test (see unit-root tests e.g. in Franses & Dĳk, 2000).

The transformation in (A.1) is applied to all our index series. Two other
series considered in this report are S&P 500 yearly and monthly Total Return
Index series covering the years 1955-2006 (Morningstar, 2007). These data
series are denoted by SP500TRIs and SP500TRIm, respectively. The former
time series corresponds to the last 52 observations of SP500TRIy. Figures
A.2(a) and A.2(b) display the log returns (yt) of the corresponding data
series. In the sequel, as we refer to any of our time series, we will actually
refer to the log returns yt instead of the index values Pt.

Time

y t

1960 1970 1980 1990 2000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Time

y t

1960 1970 1980 1990 2000

−
0.

2
−

0.
1

0.
0

0.
1

(a) Log returns of SP500TRIs. (b) Log returns of SP500TRIm.

Figure A.2: S&P 500 yearly (SP500TRIs) and monthly (SP500TRIm) Total
Return Index series from 1955-2006.

1According to Franke et al. (2004), the log return approximates the relative change well
with returns under 10%. The authors also state that this is usually above all the case when
one is studying financial time series with high frequency, as, for example, with daily values.
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A.2 Typical features of financial time series

Many models that are commonly used in empirical finance to describe asset
returns and volatility are linear. There are, however, several indications that
nonlinear models may be more appropriate for time series of asset returns.
The typical features suggesting the necessity of considering nonlinear models
are (Franses & Dĳk, 2000):

1. Large returns (in absolute terms) occur more frequently than one might
expect under the assumption that the data are normally distributed.2

2. Large absolute returns tend to appear in clusters.3

3. Large negative returns appear more often than large positive ones in
stock markets, while it may be the opposite for exchange rates.

4. Volatile periods are often preceded by large negative returns.

A.3 Data-analysis

In this section we will take a closer look at our data series to discuss the above
features. The analysis follows closely that of Franses & Dĳk (2000) and starts
by introducing a set of summary statistics. After that we report the values
of these summary statistics as they are computed from our datasets. We also
use some graphical tools and statistical tests to analyze the data.

A.3.1 Summary statistics

The set of summary statistics include the number of observations (N) in the
data series, the arithmetic mean and median (measures of location), the min-
imum, maximum and standard deviation (measures of statistical dispersion)
and the skewness and kurtosis (measures of the shape of the distribution).

Skewness (Skew) and kurtosis (Kurt) characterize the location and vari-
ability of a data set. Skewness is a measure of symmetry of the distribution
and kurtosis is a measure of whether the data are peaked or flat relative to a
normal distribution. Data sets with negative values for the skewness indicate
data that are skewed left, while positive values indicate data that are skewed
right. By skewed left, we mean that the left tail is long relative to the right
tail. Similarly, skewed right means that the right tail is long relative to the
left tail. Data sets with high kurtosis tend to have a distinct and sharper peak
near the mean, decline rather rapidly and have heavy tails, while data sets
with low kurtosis, on the other hand, tend to have a flat and more rounded
top near the mean and wider ”shoulders”. The kurtosis (Ky) and skewness
(Sy) are defined as

Ky = E

[
(yt − µ)4

σ4

]
and Sy = E

[
(yt − µ)3

σ3

]
,

2Normality is often closely related to the use of linear models.
3Clusters indicate the possible presence of time-varying risk or volatility.
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where µ and σ2 are the mean and the variance of yt, respectively. For an
observed time series y1, . . . , yn these statistics can be estimated by the sample
analogues

K̂y =
1

n

n∑

t=1

(yt − µ̂)4

σ̂4
and Ŝy =

1

n

n∑

t=1

(yt − µ̂)3

σ̂3
,

where µ̂ = 1
n

∑n
t=1 yt and σ̂2 = 1

n

∑n
t=1(yt − µ̂)2 are the sample mean and

variance, respectively.
A usual assumption in the finance literature is that the logarithmic returns

yt are normally distributed as

yt ∼ N(µ, σ2).

For normal distribution the kurtosis is equal to three and the skewness is
equal to zero (the latter is true for all other symmetric distributions as well).
If the kurtosis is greater than three, the distribution is said to be leptokurtic.
This kind of distribution is said to have heavy tails, implying that the distri-
bution puts more mass on the tails than a normal distribution does. In other
words, a random sample from a leptokurtic distribution tends to contain more
extreme values. If the kurtosis is less than three, the distribution is said to
be platykurtic.

A.3.2 Data description

We will now examine if and how strongly our data sets reflect the features
listed above. We will start by reporting the summary statistics computed for
log returns yt in Table A.1. The table will serve as a basis for the discussion
in this section.

Table A.1: Summary statistics of the data series.

Data series N Mean Median Min Max Sd Skew Kurt

SP500TRIy 81 0.099 0.134 -0.568 0.431 0.192 -0.853 3.893
SP500TRIs 51 0.100 0.117 -0.307 0.360 0.154 -0.573 2.621
SP500TRIm 623 0.0086 0.0110 -0.242 0.153 0.0416 -0.599 5.545

(0.103) (0.132) . . (0.144) . .

The data series are plotted in Figures A.1(b), A.2(a) and A.2(b). It can
be seen that all three paths are characterized by subsequent ups and downs.
In addition, both positive and negative outlying observations occur during
the time periods, although extreme negative returns seem to be more present
than positive extremes. The feature of volatility clustering is more difficult
to observe in the data series. Some volatilty clusters may, however, be distin-
quished in the higher-frequency monthly series in Figure A.2(b).

The summary statistics of all our index series are shown in Table A.1. The
table shows that the log returns in the data series SP500TRIy vary between
−0.568 and 0.431. However, the mean return is 0.099 which implies that on
average the yearly growth rate of the index is about 9.9% during the sample
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Figure A.3: The sample distribution of yt of SP500TRIy.

period. The standard deviation (volatility) of the corresponding data set is
0.192, that is about 19%. The mean log return of the shorter yearly series
SP500TRIs indicates a slightly higher growth rate, namely 10.0%. According
to the monthly data (SP500TRIm) the yearly growth rate is 10.3%. The
yearly mean, median and standard deviation of the monthly returns are given
in parentheses on the last row of the table.

We then take a look at the distributional patterns of the data series.
Figures A.3(a) and A.3(b) graphically illustrate the sample distribution of
log returns of SP500TRIy. In Figure A.3(a) the sample distribution of yt is
described by a histogram while in Figure A.3(b) the corresponding distri-
bution is estimated by a kernel density estimator. For comparison we also
show the normal distribution which has the distribution parameters equal to
the sample mean and variance of the data. The whiskers on the horizontal
axis in Figure A.3(b) represent individual observations. Figures A.3(a) and
A.3(b) reflect the fact that the distribution of log returns of SP500TRIy is
more peaked and has fatter tail probabilities than the normal distribution,
i.e. large absolute returns occur more often than would be expected if the
data were normally distributed. The value of the kurtosis (K > 3) in Table
A.1 also supports the conclusion. The skewness in Table A.1 is negative for
SP500TRIy indicating non-symmetry and long left tail relative to the right.
Hence, large negative returns appear more often than large positive ones.
The yearly log returns of SP500TRIy well reflect the distributional patterns
commonly associated with high-frequency financial time series.

The kernel density based estimates of the sample distribution of yt of
SP500TRIs and SP500TRIm are displayed in Figures A.4(a) and A.4(b), re-
spectively. The kurtosis and skewness values can be found in Table A.1. The
conclusions of the distributional pattern of monthly returns are similar to
those of SP500TRIy, i.e. the distribution of log returns is skewed left and has
fat tail probabilities. Also the distribution of yearly log returns SP500TRIs
is skewed left. However, unlike the yearly log returns of the longer series
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(a) SP500TRIs. (b) SP500TRIm.

Figure A.4: Kernel estimate (solid) of the sample distribution of yt of data
series SP500TRIs and SP500TRIm and the normal distribution (dashed).

SP500TRIy, the returns of SP500TRIs do not have a fat-tailed sample dis-
tribution. This is indicated in Table A.1 by the kurtosis which is slightly less
than three, i.e. less than that of the normal distribution.

The analysis of the behaviour of the volatile periods will be based on
the scatterplots or lagplots (see Franses & Dĳk, 2000). The scatterplots of
SP500TRIy are displayed in Figures A.5(a) and A.5(b) below. In Figure
A.5(a) the SP500TRIy values of year t (yt) are plotted against the values
of year t−1 (yt−1) and the observations for the three smallest negative values
of yt are connected with the two preceding and the two following observations
by arrows that point in the direction in which the data series evolves. The
corresponding plot for the three largest values of yt is shown in Figure A.5(b).

It commonly appears for the higher-frequency financial series that large
absolute returns occur in clusters. In such a case relative volatile periods (i.e.
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Figure A.5: Scatterplot of the return of SP500TRIy on year t (yt) against the
return on year t − 1 (yt−1).
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periods with large price changes and hence large absolute returns) alternate
with those in which prices are rather stable and absolute returns remain
small. In scatterplots this feature is reflected by the routes formed by the
arrows showing tendency of travelling around the main cloud of observations
for an extended period of time. A single large return would, on the other
hand, constitute a three-cycle in the figure. This can be justified by noting
that a large value yt (in absolute terms) is needed to leave the main cloud of
observations and that the next observation necessarily also appears outside
the main cloud, since then yt−1 is large. See Franses & Dĳk (2000) for more
discussion and illustration.

In Figures A.5(a) and A.5(b) the routes formed by the arrows show some
tendency of travelling around the main cloud of observations for an extended
period of time. If the routes in Figures A.5(a) and A.5(b) were combined,
the arrows would only comprise three stretches. As noted above, this indi-
cates that large absolute returns occur in clusters. The first stretch starts at
(yt, yt−1) = (0.36,-0.09) which correspond to years 1928 and 1929, and ends at
(-0.003,-0.10) where the latter coordinate corresponds to year 1940. The sec-
ond stretch starts at (0.22,0.17) and ends at (0.06,-0.11). The first coordinate
of the starting point and the latter coordinate of the ending point correspond
to years 1951 and 1957, respectively. Finally, the third stretch covers the
period from year 1971 to 1977. This closer examination of the arrow paths
reveals some more volatile periods in our time series, one of which being the
Great Depression of the 30’s.

The scatterplots of the shorter yearly series SP500TRIs are displayed in
Figures A.6(a) and A.6(b), respectively. At the first glance, the stretches may
seem to travel around the main cloud of observations. However, it should be
noted that, after all, the observations form a relatively compact cloud, so the
clustering effect is not as obvious as in the case of the longer yearly data. If
the figures are combined, the arrow paths form four stretches with the longest
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Figure A.6: Scatterplot of the return of SP500TRIs on year t (yt) against the
return on year t − 1 (yt−1).
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one covering the years from 1970 to 1978. The second path covers the years
from 1956 to 1961 and corresponds to only one outlying observation. The
last two paths correspond to the years both sides of the millennium (1992-
1998 and 1999-2005). Looking at Figure A.1(b), some more extreme events
are observed at those years. However, compared to the years in the 30’s, for
example, the overall volatility remains smaller.
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Figure A.7: Scatterplot of the return of SP500TRIm on month t (yt) against
the return on month t − 1 (yt−1).

Figures A.7(a) and A.7(b) display the scatterplots of the monthly series.
Based on the arrow paths in Figure A.7(b), especially, it may not be that easy
to say whether the paths reflect clustering or not. However, if we combine the
stretches in both figures we may found that they correspond to the time
periods from June 1974 to January 1975, from May 1982 to November 1982,
from October 1986 to January 1988 and from May 1998 to November 1998.
As these periods are traced in the time plot of the series shown in Figure
A.2(b), some more volatile clusters can be observed.

It was also claimed earlier that volatile periods are often predeced by
large negative returns in financial time series. If this were the case, the routes
formed by the arrows in the scatterplots should almost invariably leave the
main cloud in a southern direction (i.e. today’s return is large and negative).
This feature is quite well reflected in Figures A.5(a) A.5(b). The negative
sample correlation (-0.259) between y2

t and yt−1 also supports the conclusion.
Also the two other series indicate the same behaviour. The sample correlations
between y2

t and yt−1 of data series SP500TRIs and SP500TRIm are -0.425 and
-0.172, respectively.

It is interesting to note, that although the features studied above (fatter-
tailed distribution and time varying volatility) are more commonly associated
with the higher-frequency financial time series, they do seem to be present
also in our yearly based data series SP500TRIy. However, as discussed above,
not all features seem to be that clearly presented in the shorter yearly data
series SP500TRIs which excludes the Great Depression in the 30’s as well
as the World War II. Commonly, nonlinear time series models are suggested
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to describe the features studied above. However, we will first take a look at
the linear models in Section 4 and Appendix B and leave the more complex
models to the subsequent Appendices.
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Appendix B

ARIMA modelling

In this chapter we report and discuss the most essential findings and results
of the iterative steps 2–4 of the ARIMA modelling procedure described in
Section 4.6. The R software (version 2.5.1) is here used to analyse the data.
For the ARIMA modelling we have applied the function arima() contained
in package tseries. Alternatively, for example, armaFit() function in package
fseries could have been used. We aim at giving a comprehensive description
only on the ARIMA modelling of the S&P yearly Total Return Index 1925–
2006. For the other two models we content with only briefly commenting the
chosen models. The modelling procedure for all three data sets is exactly the
same.

B.1 S&P 500 yearly Total Return Index 1925–

2006

Step 1: Make data transformations

The data transformation was discussed in Section A.1 in Appendix A. The
abbreviation SP500TRIy is used for the log returns yt of the particular data
set.

Step 2: Calculate key statistic and determine preliminary values of the orders
p and q

After suitably transforming the data (i.e., the series indicates no apparent
deviations from stationarity nor apparent trend or seasonality), the next step
is to identify, if necessary, preliminary values of the autoregressive order p and
the moving average order q. The sample autocorrelation function (ACF) and
the partial autocorrelation function (PACF) are the most relevant statistics
to be used in this model specification step (see e.g. Brockwell & Davis, 2002).
For example, a sample ACF that is 1 at lag zero and close to zero elsewhere
suggests that a white noise model might be appropriate for the data. The
sample ACF and PACF of the transformed data series are displayed in Figure
B.1. The figure shows that neither the sample ACF nor the sample PACF show
significant peaks1 and hence a white noise model (i.e. ARMA(0,0)) might be
adequate for the data.

1For independent and indentically distributed (IID) random variables with mean zero
and constant variance the sample autocorrelations are approximately IID N(0, 1/n) for large
n. If the underlying noise process is IID, approximately 95% of the sample autocorrelations
for nonzero lags should fall between the bounds ±1.96/

√
n.
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(a) The sample ACF. (b) The sample PACF.

Figure B.1: The sample ACF and PACF of SP500TRIy.

Step 3: Fit various models and compare the results

Although the sample ACF and PACF suggest the ARMA(0,0) model, we
will fit various models with low orders p and q. Conditional-sum-of-squares
method is used to find starting values. Maximum likelihood (ML) method is
used for the final estimation of the model parameters. The models are com-
pared with the AIC, BIC and AICC criteria functions. Table B.1 reports the
criteria values of the fitted models. It can be seen that ARMA(0,0) gives
the smallest value for all three criteria functions. A closer look at the esti-
mated ARMA(0,0) model shows that the constant parameter is significant
(α̂ = 0.0992, σ̂α = 0.0212) and should be included in the model. We choose
this model for further analysis.

Table B.1: Criteria values of the various ARMA(p, q) models fitted to
SP500TRIy.

p q m AIC BIC AICC

0 0 2 -34.621 -29.832 -34.467
0 1 3 -33.281 -26.097 -32.969
0 2 4 -33.456 -23.879 -32.930
1 0 3 -33.091 -25.907 -32.779
1 1 4 -32.827 -23.249 -32.300
1 2 5 -31.973 -20.000 -31.173
2 0 4 -32.938 -23.360 -32.412
2 1 5 -31.778 -19.806 -30.978
2 2 6 -35.316 -20.950 -34.181

AIC = −2 log(L)+2m, BIC = −2 log(L)+m log(n),
AICC = −2 log(L)+2mn/(n−m−1), L = the like-
lihood of the model, m = the number of estimated
parameters in the model, n = the number of obser-
vations
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Step 4: Use diagnostic tests for the residuals of the fitted model

This step includes the analysis of residuals. We first plot the standardized
residuals of the model fit in Figure B.2. If the model fits well, these residuals
should behave as a white noise sequence with mean zero and variance one.
The plot should be inspected for any obvious departures from this assumption.
One should look for trends, cycles and nonconstant variance, any of which
suggest that the fitted model is inappropriate. It can be noted that Figure
B.2 shows no obvious patterns and only one residual exceeds three standard
deviations in magnitude.

Time

Sta
nda

rdiz
ed 

res
idua

ls

1940 1960 1980 2000

−3
−2

−1
0

1
2

Figure B.2: Standardized residuals of the ARMA(0,0) model fitted to
SP500TRIy. Also the ±1.96 bounds (dashed) are drawn in the figure.

To further examine if the residuals behave as a white noise, we may also
inspect the sample ACF of the residuals of the model fit and test whether the
autocorrelations are equal to zero for lags greater than zero. If autocorrelation
is found, there is a need to modify the model by incresing the value of p and/or
q. In the case of the ARMA(0,0) model the individual elements of the sample
ACF are identical to those calculated and drawn for the data in Figure B.1(a).
Clearly, no significant peaks are seen in the figure.

The residuals of the model fit can be tested for residual autocorrelation
by general tests that take into consideration the magnitudes of the single
elements of the sample ACF as a group. We use the Box-Pierce test (or
the Portmanteau test) and Ljung-Box test (or modified Box-Pierce test) to
examine jointly if several residual autocorrelations are zero (see e.g. Shumway
& Stoffer, 2006; Brockwell & Davis, 2002; Tsay, 2005). Both tests show no
significant autocorrelation (i.e. p-value > 0.05) for the lags 1–20.

Note, that it is a common practice that the 5% significance limits of the
sample autocorrelations and the goodness-of-fit tests above are based on the
asymptotic results obtained for an IID process. For example, in ARMA mod-
els with non-independent innovations, the standard Box-Pierce and Ljung
Box tests can perform poorly (Romano & Thombs, 1996). For those more
interested in the behaviour of the residual autocorrelations in the framework
of ARMA models with non-independent error terms, we refer to Francq et al.
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Figure B.3: Normality check of the standardized residuals of the ARMA(0,0)
model fitted to SP500TRIy time series.

(2005). The turning point test, the difference-sign test and the rank test can
be used to check the hypothesis that the residuals are observed values of IID
random variables (see Brockwell & Davis, 2002).

A usual more strict assumption for the white noise series ǫt is that its re-
alizations are independent and indentically distributed according to a normal
distribution with mean zero and variance σǫ, i.e ǫt ∼ IID N(0, σǫ). In Step
4 also this normality assumption should be checked. According to Franses
& Dĳk (2000), the rejection of normality may indicate (1) the existence of
outlying observations, (2) heteroscedastic error process, and/or (3) that the
data should better be described by a nonlinear time series model.

As a first check of marginal normality one can draw a histogram and a
Q-Q plot (or a normal probability plot) from the estimated strandardized
residuals. These are shown in Figures B.3(a) and B.3(b), respectively. In Fig-
ure B.3(a) also the kernel estimate (solid) with bandwith = 0.3665441 and
normal distribution (dashed) with the parameters equal to the sample mean
and variance of the residuals are drawn. In the Q-Q plot, if the residuals
follow a normal distribution, the points should fall approximately along the
reference line. Fat tails show up as deviations below the reference line at the
lower quantiles and as deviations above the line at the upper quantiles. Both
the figures indicate slight deviation from the normal distribution, especially
at the tail ends. The normality assumption can also be inspected in Figure
B.2. If substantially more than 5% of the estimated standardized residuals
lie outside the bounds ±1.96 (dashed lines) or if there are rescaled residuals
far outside these bounds, then the normality assumption should be rejected.
In our case four (4.9%) of the estimated standardized residuals are greater in
magnitude than 1.96 and a few fall far outside the bounds. Also this reflects
a slight deviation from normality.

In addition to the visual inspection of the marginal normality, we may
also use various general tests for examining the normality of the residuals.
We use here the Jarque-Bera (Bera & Jarque, 1980) and the Shapiro-Wilk
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(Royston, 1980) tests, which both give us highly significant p-values leading
to the rejection of the null hypothesis, i.e. normality.

As mentioned earlier, one indication of non-normality may be that the
error process is heteroscedastic. According to Franses & Dĳk (2000) neglect-
ing the heteroscedasticity may have quite severe consequences. One way to
visually inspect the heteroscedasticity is to draw the sample ACF and PACF
of the squared residuals shown in Figures B.4(a) and B.4(b), respectively.
Positive autocorrelation in squared terms would, for example, indicate that
volatility comes in clusters. Both the sample ACF and PACF indicate that
there might be some sort of autocorrelation in the squared residuals. One may
also use the sample ACF of the absolute residuals for the visual inspection
of heteroscedasticity. In our case the sample ACF of the absolute residuals
shows a significant peak for the lag 1. Note, that the focus is in the absolute
and the squared residuals since our main interest, the variability (volatility)
of the residuals, cannot be observed. The observable quantities |Rt| and R2

t

are often considered as surrogates or estimators of σt and σ2
t , respectively.
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(a) The sample ACF. (b) The sample PACF.

Figure B.4: The sample ACF and PACF of the squared residuals of the
ARMA(0,0) fitted to SP500TRIy.

A general test for testing the null hypothesis of constant residual variance
against an unspecified alternative was developed by McLeod & Li (1983). The
statistic is actually computed in exactly the same way as the Box-Ljung test
except that it tests for autocorrelation in the squared residuals (see Franses
& Dĳk, 2000). We calculated the test statistic for the lags 1–20 and found
significant p-values (p-value < 0.05) for the lags 6, 7 and 8. We conclude that
despite no autocorrelation in the residuals (cf. the Box-Pierce and Ljung-Box
tests above), there may exist some other type of serial dependence in the error
process.

To summarize the results of the whole procedure, among all the fitted
linear time series models the ARMA(0,0) model seems to be most appropriate
for the log returns yt. This means that ARIMA(0,1,0) model is suggested for
the logarithmic index values ln Pt. For the model formula and the estimated
model we refer to Equations 4.9 and 4.10 in Section 4.6, respectively. However,
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according to the diagnostics in Step 4 there are strong arguments for using
nonlinear time series models instead of linear models. This is consistent with
the numerous authors who have obtained better agreement for their financial
data using nonlinear models.

B.2 S&P 500 yearly Total Return Index 1955–

2006

Among the ARMA models, the ARMA(0,0) model seems to be most appro-
priate for the log returns, i.e. the ARIMA(0,1,0) model is suggested for the
logarithmic index series. For the estimated model we refer to Equation 4.11
in Section 4.6, respectively. The diagnostics support our model choice quite
nicely. However, the squared residuals indicate that there still might be some
serial dependence left in the residuals and hence nonlinear models should also
be considered.

B.3 S&P 500 monthly Total Return Index 1955–

2006

Among the fitted linear time series the ARMA(0,0), model seems to be most
appropriate for the logarithmic index series, i.e. the ARIMA(0,1,0) model is
suggested for the log prices. For the estimated model we refer to Equation 4.12
in Section 4.6. However, the diagnostics reveal that linear time series model
might be insufficient for the monthly data and nonlinear models should be
used instead.
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Appendix C

GARCH modelling

In this chapter we report and discuss the most essential findings and results
of the GARCH modelling described in Section 4.7. We will base the modelling
on the log returns yt. The R software is used for the model estimation. Similar
to Appendix B, also here we aim at giving a comprehensive description only
on the modelling of the S&P yearly Total Return Index 1925–2006. For the
other two data series we content with only brifely commenting the chosen
models. The modelling procedure for all three data sets is exactly the same.

C.1 S&P 500 yearly Total Return Index 1925-

2006

Step 1: Specify a mean equation by testing for serial dependence in the data
and, if necessary, build a model for the time series to remove any linear de-
pendence

This step was accomplished in Appendix B, where the ARMA(0,0) model
with a drift was chosen.

Step 2: Use the residuals of the mean equation to test for ARCH/GARCH
effects

The form of the mean equation was identified in Appendix B. In the
sequel, the residuals will be denoted by rt. We now proceed by studying if the
residuals of the fitted mean equation model show evidence of ARCH/GARCH
effects. When a time series is said to have the ARCH effect or GARCH effect,
it exhibits autoregressive conditionally heteroskedasticity, that is volatility
clustering. Volatility clustering implies a strong autocorrelation in squared
returns. Hence, a simple method for detecting ARCH/GARCH effects is to
calculate the first-order autocorrelation coefficient in squared residuals. The
ARCH/GARCH effetcs were actually tested already in Step 4 of the ARIMA
modelling procedure in Appendix B. For SP500TRIy, the sample ACF and
PACF as well as the McLeod & Li test indicated autocorrelation in squared
residuals. Hence, ARCH/GARCH effects, i.e. volatility clustering, seem to be
present in the data. More on testing ARCH/GARCH effects can be found e.g.
in Franses & Dĳk (2000).

Before moving to the next step, we may take a look at the standardized
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Figure C.1: The squared residuals of the ARMA(0,0) fitted to SP500TRIy.

residuals of the fitted mean model in Figure B.2 and also at their squared
terms in Figure C.1. The purpose is to see wheather the series exhibit volatility
clustering or varying volatility which are typical, especially, for high-frequency
financial time series. However, in a yearly data like this the clusters may not
be as clearly observed as they usually are in more frequent financial time se-
ries. Figure C.1 shows certain higher peaks and longer calm periods reflecting
possible changes in volatility during the study period.

Step 3: Specify a volatility model if ARCH/GARCH effects are statistically
significant and perform a joint estimation of the mean and volatility equations

The PACF of r2
t can be used to determine the ARCH order but it may

not be effective if the sample size is small (Tsay, 2005). Also more generally,
the orders obtained this way are not very accurate. Figure B.4 in Appendix B
suggests setting the ARCH order s equal to 6. The specification of the order
of the GARCH model is more difficult and we will not suggest any tools for
that. Since overparameterization is not recommended, we confine ourselves
with only lower order models such as e.g. GARCH(1,1), GARCH(1,2) and
GARCH(2,1). Usually, GARCH(1,1) is already good enough to capture the
variance’s performance. We also consider some pure ARCH models.

We use R to find the maximum likelihood estimates of the conditionally
normal model, i.e. assuming that ǫt are i.i.d. standard normal. The estimation
of the ARMA(p, q)-GARCH(r, s) model can be done in two phases: Phase 1
consists of fitting a pure ARMA (ARIMA) model to the data, i.e. modelling
the mean equation, and Phase 2 consists of modelling residuals, i.e. volatility,
with an ARCH/GARCH model. In R the model estimation in Phase 2 can be
done, for example, by function garch() contained in tseries package. With
this function the only option for the conditional distribution is normal. We
will here proceed by fitting the model with simultaneous estimation procedure
using the R function armagarch(). By simultaneous estimation we mean
that both Phase 1 and Phase 2 are accomplished at once. The function is
written by Dr. Arto Luoma and the code is available at http://mtl.uta.fi/
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codes/tser/armagarch.R. This function has two options for the conditional
distribution: the normal and the Student t-distribution. The simultaneous
estimation can also be done in R by the function garchOxFit()in fSeries
package. This function offers several choices for the conditional distribution.

The AIC, BIC and AICC values of our model candidates are displayed in
Table C.1. It can be seen that the ARMA(0,0)-ARCH(1) and ARMA(0,0)-
GARCH(2,1) models provide the smallest criteria values. The AIC and AICC
values are only slighty better (smaller) for the ARMA(0,0)-GARCH(2,1) re-
flecting that the more parsimonious ARMA(0,0)-ARCH(1) model might be
adequate. A closer look at the estimated models shows that for this par-
ticular model all the parameters are significant (α̂ = 0.1163, σ̂α = 0.0160,
ω̂ = 0.0183, σ̂ω = 0.0051, α̂1 = 0.5829, σ̂α1

= 0.2493) and should hence be
included in the model. This is not the case for the other model candidate. We
choose ARMA(0,0)-ARCH(1) model for further analysis.

Table C.1: Criteria values of the various GARCH(r, s) models when mean
equation is ARMA(0,0) and the original data series is SP500TRIy. Note that
GARCH(0,s) = ARCH(s).

r s m AIC BIC AICC neff

0 1 3 -41.759 -34.576 -41.448 80
0 2 4 -40.724 -31.146 -40.197 79
1 1 4 -40.338 -30.760 -39.812 80
2 1 5 -42.259 -30.287 -41.459 79
1 2 5 -38.840 -26.867 -38.040 79
2 2 6 -36.923 -22.556 -35.788 79
AIC = −2C log(L)+2m, BIC = −2C log(L)+m log(n), AICC
= −2C log(L) + 2mn/(n − m − 1), L = the likelihood of the
model, m = the number of estimated parameters in the model,
n = the number of observations, C = n/neff is a correction
term, where neff is the effective number of observations used
in the computation (see, Brockwell & Davis, 2002, p. 355)

Step 4: Check the fitted model carefully and refine it if necessary

The GARCH models assume that the innovations (shocks) are indepen-
dent and indentically distributed. Hence, if the model is correctly specified,
the standardized residuals (residuals devided by their estimated conditional
volatility) should possess a constant variance, lack of serial correlation etc. In
particular, the adequacy of a fitted mean model can be checked by examining
standardized residuals while squared standardized residuals can be used to
test the validity of the volatility equation. To verify that the previous model
is appropriate we use the diagnostics introduced in Appendix B (in Step 4).

The mean and standard deviation calculated for the estimated standard-
ized residuals are -0.0692 and 1.004, respectively. The residuals of the GARCH
model fit in Figure C.2 seem to show better compatibility with the assump-
tion of behaving as a white noise than those of the pure ARIMA model. This
conclusion is supported by the sample ACF and PACF functions which do
not indicate autocorrelation in the estimated residuals. As the presence of
autocorrelation in the residuals is tested by the Box-Pierce and Ljung-Box
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Figure C.2: The standardized residuals of the fitted ARMA(0,0)-ARCH(1)
model.

tests, highly nonsignificant p-values (i.e. all p-values >> 0.05) are reported
for the lags 1–20.

As the marginal normality1 of the residuals is checked we first draw a
histogram and a normal Q-Q plot of the estimated standardized residuals.
The histrogram and the Q-Q plot are shown in Figures C.3(a) and C.3(b),
respectively. The residuals show slightly better compatibility with normal
distribution than those of of the pure ARMA model. The kurtosis and the
skewness of the estimated standardized residuals are 2.540 and -0.4027, re-
spectively. The negative skewness supports the conclusion of the distribution
which is skewed left. As the marginal normality is tested by the Jarque-Bera
and the Shapiro-Wilk tests, neither of the tests give significant p-values (i.e.
p-values > 0.05). Hence, we accept the null hypothesis of marginal normality.
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(a) Histogram of the residuals. (b) Normal Q-Q plot of the residuals.

Figure C.3: Normality check of the standardized residuals of the ARMA(0,0)-
ARCH(1) model fitted to SP500TRIy.

1Normal distribution was assumed for the conditional distribution.
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(a) The sample ACF. (b) The sample PACF.

Figure C.4: The sample ACF and PACF of the squared model residuals of
the ARMA(0,0)-ARCH(1) fitted to SP500TRIy.

The sample ACF and PACF of the squared and absolute residuals can
be used for visual inspection of heteroscedasticity, more specifically, of au-
toregressive conditional heteroscedasticity. The sample ACF and PACF of
the squared standardized residuals are shown in Figures C.4(a) and C.4(b),
respectively. Generally, the GARCH model is well specified, if there is no au-
tocorrelation in the squared standardized returns (Alexander, 2001). It can
be seen, that neither of the figures show any significant peaks. The McLeod
& Li test supports the conclusion by giving highly non-significance p-values
(i.e. all p-values >> 0.05) for the lags 1–20 indicating that the model is ap-
propriate. However, if the sample ACF of absolute residuals were drawn, a
significant peak could be seen for the lag 4.

To summarize the results, the ARMA(0,0)-ARCH(1) model seems to pro-
vide a good fit for the log return series. For the model formula and the esti-
mated model we refer to Equations 4.17 and 4.18 in Section 4.7, respectively.
The normality check of the model residuals shown slight negative skewness
which indicates that large negative returns occur more often than large posi-
tive ones. This feature cannot be captured by the standard ARCH or GARCH
models but some more advanced time series models should be applied if the
asymmetric feature needs to be taken into account.

C.2 S&P 500 yearly Total Return Index 1955-

2006

Our investigations indicate that no ARCH/GARCH terms are needed for
SP500TRIs. Hence, we will confine ourselves in the ARMA(0,0) model which
regards the conditional volatility as a constant.
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C.3 S&P 500 monthly Total Return Index 1955-

2006

For the monthly log returns we suggest the ARMA(0,0)-GARCH(1,1) model.
For the model formula and the estimated model we refer to Equations 4.19
and 4.20 in Section 4.7, respectively. The model seems to capture well the con-
ditional autoregressive heteroscedasticity observed in the original data series.
However, criticism can be addressed to the choice of conditional distribution.
The diagnostics clearly indicate that normal distribution is not appropriate
but a more fat-tailed distribution might a better choice. The standardized
residuals also reflect skewness which cannot be captured by the standard
GARCH models.
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Appendix D

Regime-switch modelling

In this chapter we report and discuss the most essential findings and results
of the regime-switch modelling described in Section 4.8. We will base the
modelling on the log returns yt (cf. Appendix A).

D.1 S&P 500 monthly Total Return Index

1955-2006

We will denote the models described in Section 4.8 as follows. The versions of
the Hamilton model will be denoted by Hamilton0, Hamilton1 and Hamilton2,
where the index represents the order of the autoregressive process. Var.model1
and Var.model2 represent the models described in Equations 4.21 and 4.22,
respectively.

For all models we obtained noninformative prior distributions for p and
q by specifying as prior parameters αp = βp = αq = βq = 0.5. These values
correspond to the Jeffreys uninformative prior distribution in the standard
Bernoulli model. In the Hamilton model we gave improper, noninformative
prior distributions for α0, φ and σ2

ǫ . Also in Var.model1 and Var.model2 we
used improper, noninformative prior distributions for α0, but for σ2

0 and σ2
1 we

gave informative conjugate prior distributions. It is essential to give proper
prior distributions for σ2

0 and σ2
1 so that the posterior distributions will be

proper in the case when the entire data is estimated to be in one regime.
As hyper-parameters we used the values vσ2

0
= 10, s2

σ2

0

= s2, vσ2

1
= 10 and

s2
σ2

1

= s2, where s2 corresponds to the variance of the observed data. (In

principle, the prior distribution should not be dependent on the data but we
used s2 here to get a rough idea of the value range of σ2

0 and σ2
1.) The value

10 as a degree of freedom was chosen, since smaller values would produce
extremely large values from the scaled inverse-chi-square distribution. The
prior distribution of α1 prevents it from getting a positive value (that is,
the state can then be interpreted as a ’low price’ state). In all models we
specified the values of the prior parameters to be m = −0.1 and v2 = 0.12,
which results in a fairly noninformative prior distribution. In the Hamilton
model we made the restriction α1 < −0.03 and in Var.model1 the restriction
α1 < −0.01. In the latter model the restriction was set to be milder because
otherwise the estimation became too slow.
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Table D.1: Criterion values of different models.

Model DIC Davg p

Var.model1 -2049.78 -2234.631 184.851
Var.model2 -2108.642 -2227.576 118.934
Hamilton0 -2206.699 -2333.851 127.152
Hamilton1 -2235.731 -2340.967 105.2360
Hamilton2 -2231.287 -2341.459 110.172
Random Walk -2190.972 -2192.983 2.011

In Table D.1 all the basic information criteria (see Section 4.4) for all
our models are presented. Since the Hamilton model with AR(1) or AR(2)
has less effective observations than the other models, we have done a bias
correction by multiplying the likelihood function by n/(n− r), where r is the
order of the autoregressive process. According to the DIC, the best model is
the Hamilton model with the AR(1) process. According to Davg Hamilton1

and Hamilton2 are almost as good. Hamilton2 has a slightly better value but
the difference is very small. Hamilton1 has also the lowest value in the number
of effective parameters.

Below are some results from the best model, that is, Hamilton1. In Figure
D.1, one simulated chain, produced by the Gibbs sampler, is shown. The chain
does not converge rapidly to its stationary distribution, but after achieving
the convergency the component series of the chain mix well, that is, they are
not too autocorrelated. With all the Hamilton models the convergency was
sometimes slow and some chains did not converge at all. One can alleviate
this problem by using good initial values, especially by setting the initial
value of p to be close to 1. Figure D.2 shows the simulated marginal posterior
distributions of the Hamilton model with the AR(1) process. Figure D.3 shows
the growth rate of the original index series, i.e. Pt, and the probabilities of
the low price state. The summary of the estimation results, based on ten
simulated chains, as well as Gelman and Rubin’s diagnostics (Gelman et al.,
2004) are given below in Table D.1. The values of the diagnostic are close to
1 and thus indicate good convergence.
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Figure D.1: Iterations of the Gibbs sampler.
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Figure D.2: Simulated posterior distributions of the parameters.
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Figure D.3: The growth rate of Index and the probabilities of the low price
state.

Table D.2: Estimation results of Hamilton1 model.

Number of chains = 10

Sample size per chain = 1000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

alpha0 0.012640 0.0018619 1.862e-05 2.100e-05

alpha1 -0.098657 0.0133508 1.335e-04 1.544e-04

phi -0.037307 0.0475509 4.755e-04 5.071e-04

sigmaE 0.001370 0.0001045 1.045e-06 1.193e-06

p 0.970413 0.0131783 1.318e-04 1.679e-04

q 0.354141 0.1283483 1.283e-03 1.269e-03

sum(St) 26.295600 9.2277048 9.228e-02 1.248e-01

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

alpha0 0.009011 0.011380 0.012651 0.013922 0.016248

alpha1 -0.127994 -0.106189 -0.097589 -0.089878 -0.075753

phi -0.130511 -0.069180 -0.037038 -0.005452 0.056659

sigmaE 0.001180 0.001298 0.001364 0.001436 0.001589

p 0.939601 0.962899 0.972043 0.979866 0.991318

q 0.113637 0.264646 0.349628 0.440199 0.615193

sum(St) 9.000000 20.000000 26.000000 32.000000 46.000000

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

alpha0 1.00 1.00

alpha1 1.00 1.00

phi 1.00 1.00

sigmaE 1.00 1.00

p 1.00 1.00

q 1.00 1.00

sum(St) 1.00 1.00
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Appendix E

Stochastic interest rate and eq-
uity modelling

In order to experiment with actual data and to estimate the unknown pa-
rameters of the models (5.2a) and (5.2b), we chose the following data sets:
As an equity index we use the Total Return of Dow Jones EURO STOXX
Total Market Index (TMI), which is a benchmark covering approximately 95
per cent of the free float market capitalization of Europe. The objective of
the index is to provide a broad coverage of companies in the Euro zone in-
cluding Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy,
Luxembourg, the Netherlands, Portugal and Spain. The index is constructed
by aggregating the stocks traded on the major exchanges of Euro zone. Only
common stocks and those with similar characteristics are included, and any
stocks that have had more than 10 non-trading days during the past three
months are removed. In estimation, the daily quotes from March 4th, 2002
until December 6th, 2007 are used.

As a proxy for riskless short-term interest rate, we use Eurepo, which
is the benchmark rate of the large Euro repo market. Eurepo is the rate
at which one prime bank offers funds in euro to another prime bank if in
exchange the former receives from the latter Eurepo GC as collateral. It is
a good benchmark for secured money market transactions in the Euro zone.
In the estimation of the interest rate model we use the 3 month Eurepo rate,
since it behaves more regularly than the rates with shorter maturities. Both
the index and interest series are presented in Figure E.1.

We had no remarkable convergence problems when estimating the model
parameters. We used three chains in MCMC simulation, and all chains con-
verged rapidly to their stationary distributions. The summary of the estima-
tion results, as well as Gelman and Rubin’s diagnostics (see Gelman et al.,
2004), are given in Table E.1. The values of the diagnostic are close to 1
and thus indicate good convergence. All computations were made and figures
produced using the R computing environment. To speed up computations the
most time consuming loops were coded in C++. The code and data needed to
replicate the results can be found at http://mtl.uta.fi/codes/savings.
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Figure E.1: The equity index and interest series.

Table E.1: Estimation results

Number of chains = 3

Sample size per chain = 5000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

mu 0.079225 0.067939 5.547e-04 0.0042595

log nu 3.402534 0.327204 2.672e-03 0.0219129

alpha 0.880626 0.055834 4.559e-04 0.0037286

kappa 0.052439 0.045232 3.693e-04 0.0018596

beta 0.221869 0.132709 1.084e-03 0.0060462

tau^2 0.009487 0.001697 1.386e-05 0.0001046

gamma 0.683214 0.087154 7.116e-04 0.0051778

rho 0.091389 0.025618 2.092e-04 0.0016489

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

mu -0.048659 0.026263 0.079805 0.12508 0.21444

log nu 2.769493 3.176798 3.401768 3.61407 4.04341

alpha 0.772006 0.843013 0.881094 0.91714 0.98700

kappa 0.001606 0.018515 0.039505 0.07354 0.16534

beta 0.035210 0.126786 0.200871 0.29001 0.53552

tau^2 0.006695 0.008333 0.009257 0.01045 0.01355

gamma 0.504586 0.627500 0.687341 0.74042 0.84705

rho 0.041503 0.075450 0.090498 0.10661 0.14419

Gelman and Rubin’s diagnostics

(Potential scale reduction factors):

Point est. 97.5% quantile

mu 1.01 1.04

log nu 1.01 1.02

alpha 1.01 1.02

kappa 1.01 1.03

beta 1.01 1.03

tau^2 1.02 1.06

gamma 1.04 1.10

rho 1.01 1.03
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The posterior distributions of the parameters α (Equation 5.2b) and γ
(Equation 5.2a) are shown in Figure E.2. As already noted, the CEV model
becomes the geometric Brownian motion (GBM) when α = 0. The figure
reveals clearly that the posterior probability of α being around zero is van-
ishingly small, which makes the GBM highly improbable. Both models have,
under the risk-neutral probability measure, equal expected yields for the un-
derlying index, but the volatility will be greater with the GBM, since in the
CEV model the volatility decreases as the level of the process increases. But
greater volatility increases the probability of great profits, while not increas-
ing the probability of great losses, since the accumulated capital is guaranteed
to the customer. Consequently, the price of an option is greater in the case of
the GBM. This illustrates how the approach to use general models efficiently
prevents the model error resulting from the use of a too simple model. On
the other hand, we see that γ = 1/2 is not highly improbable in the interest
rate model, so the model error would not be large if the CIR model were used
instead of the more general model.
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Figure E.2: Posterior distributions of the parameters α (index model) and γ
(interest rate model).

There is an error related to the use of Euler discretization in estimation
and simulation. However, the effect of discretization is vanishingly small, since
our discretization interval is very short, one working day. If daily data were not
available, one could use the high frequency augmentation technique described
in Jones (1998) for estimation. On the other hand, it is important to select
correct index and interest rate models. For example, a failure to choose a
realistic model for the stock index might lead to over- or underestimation of
volatility, which would make the price estimates biased.
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Appendix F

HJM modelling

The aim in this Appendix is to present a HJM model where each of the
factors has been determined by Principal Component Analysis. We first aim
at obtaining the initial forward rate curve from the zero-coupon bond yields
and estimating the volatility function(s) of the HJM model using PCA. In
this part we closely follow Jarrow (2002, Chapter 16). In the latter part of this
Appendix we briefly discuss how to price derivatives when the forward rate
process follows a HJM model. This part of Appendix closely follows Wilmott
(2001). The purpose of the Appendix is purely illustrative.

F.1 Interest rate data

For estimating the volatility function(s) we have chosen to use the U.S.
monthly nominal interest rates which span from January 1952 to February
1991. The zero-coupon bond yields are obtained from the extended McCulloch
dataset1 (see McCulloch, 1975; 1990, and Kwon, 1992). Our dataset consists
of a time series of monthly zero-coupon yields given as percentage per an-
num with eight different maturities (3 and 6 months, and 1, 2, 3, 5, 7 and 10
years). Rates are on a continuous-compounding basis and they represent the
afternoon of the last business day of the month indicated.

The initial forward rate curve used for calibrating the HJM model is es-
timated based on U.S. monthly yields from January 1997. These yields are
based on constant maturity yields taken from the Federal reserve H.15 Sta-
tistical Releases2.

For various techniques for obtaining the zero-coupon bond prices implicit
in observed coupon bond prices we refer to James & Webber (2000).

F.1.1 Some data-analysis

Unlike with equity index series, we omit any deeper data-analysis of our in-
terest rate data. Data is, however, described in some detail. Various summary
statistics used in this section were introduced in Appendix A.

1The dataset is available in http://www.econ.ohio-state.edu/jhm/ts/mcckwon/

mccull.htm [cited November 11, 2008]. It consists of monthly zero-coupon rates from 1947
to 1991.

2The Federal reserve H.15 Statistical Releases are available in http://www.

federalreserve.gov/releases/h15/.
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F.1.1.1 Zero-coupon bond yields

In Table F.1 we display the summary statistics of the monthly zero-coupon
bond yields for the period January 1952 to February 1991, for a total 471
months. It can be seen, that on average the yield increases as the maturity
increases. The standard deviation is slighly smaller for the longer maturities
than for the short ones. The larger variation in the long end can be guessed
also by comparing the minimum and maximum values of different maturities.
The kurtosis and skewness are also reported. The skewness indicates that
the data is not symmetric for any maturity. All skewness values are positive
indicating that the data is skewed right, i.e. the right tail is long relative
to the left tail. This feature can be observed also by taking a look at the
histograms in Figure F.1.

The evolution of the observed zero-coupon yields over the studied time
period is graphed in Figure F.2. The yields for different maturities are seen
to evolve in a similar kind of manner indicating strong correlation between
different maturities. Correlation matrix given in table F.2 support the con-
clusion of strong correlation (close to one) between the maturities contained
in the analysis.

Table F.1: Summary statistics of the monthly zero-coupon yields.

Maturity N Mean Median Min Max Sd Skew Kurt

3 months 471 0.0586 0.0528 0.0062 0.1600 0.0315 0.810 3.561
6 months 471 0.0593 0.0561 0.0069 0.1651 0.0319 0.756 3.431
1 year 471 0.0616 0.0592 0.0085 0.1634 0.0320 0.649 3.096
2 years 471 0.0632 0.0626 0.0115 0.1614 0.0314 0.612 2.964
3 years 471 0.0648 0.0638 0.0141 0.1583 0.0314 0.533 2.689
5 years 471 0.0663 0.0661 0.0177 0.1570 0.0312 0.519 2.557
7 years 471 0.0668 0.0655 0.0207 0.1528 0.0308 0.516 2.502
10 years 471 0.0677 0.0657 0.0234 0.1507 0.0307 0.459 2.313

Table F.2: Correlation matrix for the zero-coupon bond yields.

3 m 6 m 1 y 2 y 3 y 5 y 7 y 10 y

3 m 1.000 0.997 0.990 0.975 0.962 0.943 0.934 0.923
6 m 0.997 1.000 0.995 0.983 0.971 0.953 0.945 0.933
1 y 0.990 0.995 1.000 0.994 0.986 0.971 0.964 0.954
2 y 0.975 0.983 0.994 1.000 0.996 0.989 0.984 0.976
3 y 0.962 0.971 0.986 0.996 1.000 0.996 0.993 0.988
5 y 0.943 0.953 0.971 0.989 0.996 1.000 0.998 0.996
7 y 0.934 0.945 0.964 0.984 0.993 0.998 1.000 0.998
10 y 0.923 0.933 0.954 0.976 0.988 0.996 0.998 1.000
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Figure F.1: Histograms of zero-coupon yields for various maturities.
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Figure F.2: Evolution of zero-coupon yields for various maturities.
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F.1.1.2 Monthly forward rate changes

For the methods deriving the monthly forward rate changes see the subsequent
sections of this appendix. In Figure F.3 we may see how the monthly changes
in forward rates for various maturities evolve in time. The summary statistics
calculated for the forward rate changes are displayed in Table F.3.

Table F.3: Summary statistics of the monthly changes in forward rates.

Maturity N Mean∗ Median∗ Min Max Sd∗ Skew Kurt

0–3 m 470 1.04 3.15 -0.046 0.024 5.79 -1.69 16.27
3–6 m 470 0.84 2.10 -0.052 0.027 6.36 -1.09 14.92
6 m–1 y 470 1.42 0.75 -0.038 0.040 6.21 0.11 10.49
1–2 y 470 1.17 3.10 -0.030 0.031 1.17 0.03 9.19
2–3 y 470 1.46 2.15 -0.034 0.039 5.64 -0.07 12.82
3–5 y 470 1.45 3.72 -0.018 0.025 4.14 -0.06 7.87
5–7 y 470 1.21 2.50 -0.039 0.028 5.21 -1.32 14.87
7–10 y 470 1.41 1.05 -0.020 0.029 3.96 0.25 10.57
∗To get the actual mean, median and standard deviation, the first two values need

to be multiplied by 0.0001 and the third one by 0.001.

Later in this Appendix we will apply PCA to estimate the number of fac-
tors that explain the data in a satisfactory way and to specify the volatility
functions required to generate the forward rate evolutions using HJM model.
Since PCA is employed for the monthly changes in forward rates, one should
check if these rates are multivariate normal. Unfortunately, in practice, test-
ing for multivariate normality is more diffucult than testing for univariate
normality and relatively few formal methods are available in this context. We
here omit the testing of multivariate normality. However, to get some sense
on whether there exists at least marginal normality in monthly forward rate
changes, we plot their histograms with a normal distribution superimposed on
each of the figures (Figure F.4). The normality assumption can be examined
also by taking a look at the summary statistics (e.g. skewness and kurtosis)
in Table F.3. Clearly, all kurtosis values are greater than three indicating
that the sample distibutions have sharper peak and heavier tails than the
corresponding normal distributions.
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Figure F.3: Evolution of monthly changes in forward rates for various matu-
rities.
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Figure F.4: Histograms of changes in forward rates of various maturities.
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Figure F.5: Forward rate curve evolution over the period from January 1951
to February 1991.

F.2 Forward rate curve estimation

Instantaneous forward rates are not observable. As a proxy one often uses the
continuously compounded forward rate from t + x to t + x + τ , with x and τ
non-negative constants, that is

(F.1) F (t, t + x, t + x + τ) = − log P (t, t + x + τ) − log P (t, t + x)

τ
.

It is worth noting, that (F.1) does not provide a satisfactory proxy when τ is
large. This is because the approximation of the derivative may then be fairly
inaccurate. Another method to obtain instantaneous forward rates would be
to interpolate the term structure with a smooth curve (e.g. cubic spline) and
then differentiate the curve.

We use (F.1) as a proxy for the instantaneous forward rate. The zero-
coupon bond prices necessary for (F.1) we obtain from the zero-coupon bond
yields of our dataset using the relationship

P (t, T ) = e−R(t,T )(T−t),

where R(t, T ) denotes the yield to maturity at time t of the zero-coupon bond
maturing at time T .

Figure F.5 contains a time series graph of the estimated forward rates
over the time period from January 1951 to February 1991, that is total 471
months. It can be seen that the forward rate curves evolve across time in a
nonparallel fashion. These forward rates are used to estimate the volatility
functions, i.e. to study the forward rate’s stochastic evolution later in this
appendix.
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Table F.4: Forward rates and zero-coupon bond prices on January, 1997.

Zero-coupon
Maturity Forward rate Maturity bond price

0 − 3 months 0.05170 3 month 0.9871582
3 − 6 months 0.05450 6 month 0.9737994
6 months – 1 year 0.05910 1 year 0.9454446
1 − 2 years 0.06410 2 year 0.8867431
2 − 3 years 0.06460 3 year 0.8312705
3 − 5 years 0.06585 5 year 0.7286950
5 − 7 years 0.06820 7 year 0.6357817
7 − 10 years 0.06836 10 year 0.5178861

The difficulty encountered when estimating the forward rate curve is that
we have observed zero-coupon bond yields/prices in discrete spacings, not con-
tinuously in time. The observed zero-coupon bond prices are hence insufficient
to price interest rate derivatives which have cash flows occuring on days with
no observed yield/price information. In Figure F.5, the forward rate curves
are plotted piecewise linear. That is, linear interpolation is used to determine
the missing forward rates. To get around the missing zero-coupon bond price
observations, Jarrow (2002) uses the approach which assumes constant for-
ward rates over the missing maturities. According to Jarrow, this approach
which approximates the forward rate curve with a piecewise constant step
function is the simplest but perhaps most robust.

As we estimate the initial forward rate curve needed for the calibration of
the HJM model, we follow the approach of Jarrow and assume the forward
rates to be constant over various maturity time intervals. Table F.4 contains
the estimated forward rates and zero-coupon bond prices obtained for Jan-
uary, 1997. The forward rate for 0–3 month is 0.0517. It can be seen that the
rates increase as we move to the sequential maturity points.

F.3 Factors and volatilities

We use historic volatility estimation to obtain volatility function(s), which
means that we utilize time series observations of past forward rates. Another
approach would be implicit volatility estimation which uses current market
prices of various interest rate derivatives and inverts the computed price for-
mulas to obtain the volatility functions such that the computed prices best
match market prices. This approach is sometimes called curve-fitting (see
Jarrow, 2002).

We concern with Gaussian models where the volatility function(s) are
deterministic functions that depend only on time to maturity. Hence, f(t, T )
is a Gaussian process. An important feature of Gaussian models is analytical
tractability, as they may lead, for simpler options, to explicit formulae. This
follows from bond prices being log-normal. A drawback of these models is
that forward rates may go negative.

As discussed in Section 5.8.3, two or three factors are usually needed to
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explain a high percentage of the variation in the yield curve. We may hence
specify the volatility structure as

σk(t, T ) = σk(T − t), k = 1, 2, 3.

The one-factor model is obtained if σ2(T − t) and σ3(T − t) vanish, and the
two-factor model is obtained if σ3(T − t) vanishes. The functions σi(T − t)
will be estimated using PCA.

We perform PCA for monthly changes of instantaneous forward rates. Us-
ing mathematical notations, monthly changes of instantaneous forward rates
can be expressed as

∆fi(t) = f(t + δ, i) − f(t, i),

where i = 1, . . . , N , is indexing a maturity point (we have assumed N dif-
ferent maturity points) and δ corresponds to the time period over which the
differences are computed, that is one month. Then, ∆f(t) = (∆f1(t), . . . ,
∆fN(t))′ is a time-homogeneous N -dimensional normally distributed random
process. Note that in our analysis N = 8.

We then compute the N × N sample covariance matrix Σ̂ for ∆f(t) and
decompose it as

(F.2) Σ̂ = ALA′,

where the N × N matrix A = (a1, . . . , aN) gives the N eigenvectors (ai) of
Σ̂, and the N ×N diagonal matrix L = diag(l1, . . . , lN) provides the N eigen-
values (li). Finding principal components reduces to finding all eigenvalues
and eigenvectors of Σ̂. The eigenvectors are the principal components, and
the eigenvalues indicate the amount of variance explained by each compo-
nent. The eigenvector with the largest eigenvalue is hence the first principal
component, the eigenvector with the second largest eigenvalue is the second
principal component, and so on. The decomposition (F.2) gives the estimates
of the N volatility functions as

(F.3)




σi(x1)

...
σi(xN)



 = ai

√
li, for i = 1, . . . , N.

See Jarrow (2002) for more details.
There is a normality assumption underlying the theory of PCA. By taking

a look at Figure F.4, we may get sense of if the normality (at least marginally)
holds for the monthly forward rate changes in our dataset. The normality
assumption seems to appear reasonable. As the PCA analysis is done, one
should also check if the data include jumps. This is because PCA assumes
that the underlying process is a diffusion, i.e. jumps are not allowed. Since it
is an empirical reality that the data do jump (e.g. do to interest rate setting
by the monetary authorities), one may need to remove jumps from the data
before doing the PCA (James & Webber, 2000, p. 462). The results on the
analysis of PCA conducted to the monthly forward rate changes are presented
in Table F.5
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Table F.5: Results of PCA.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Eigenvalue∗ 1.300 0.284 0.232 0.187 0.112 0.076 0.066 0.054
Sd∗ 1.139 0.532 0.481 0.432 0.334 0.275 0.257 0.232
% 56.3 12.3 10.0 8.1 4.8 3.2 2.8 2.3
Cum-% 56.3 68.5 78.6 86.6 91.5 94.8 97.6 100

Eigenvectors
0 months -0.414 0.341 -0.318 0.316 -0.313 0.250 0.520 -0.283
3 months -0.512 0.178 -0.110 0.217 -0.283 -0.189 -0.527 0.504
6 months -0.481 0.103 -0.020 -0.110 0.795 0.328 -0.064 0.021
1 year -0.380 -0.119 -0.136 -0.343 0.030 -0.687 -0.013 -0.481
2 years -0.299 -0.069 0.901 0.213 -0.115 0.011 0.057 -0.177
3 years -0.222 -0.144 0.104 -0.577 -0.175 0.020 0.511 0.542
5 years -0.148 -0.818 -0.194 0.461 0.107 -0.052 0.175 0.121
7 years -0.171 -0.365 -0.088 -0.363 -0.365 0.564 -0.389 -0.308
∗To get the correct eigenvalues and standard deviations (sd), the former values

need to be multiplied by 0.0001 and the latter ones by 0.01.

Since the data is eight dimensions, a total of eight principal components
are computed. All eight components are given in Table F.5 and the estimates
of volatility functions, obtained from (F.3), are contained in Table F.6. As
discussed in Section 5.8.3, various studies show that a very high proportion
of the movement of the forward rate curve is explained by just three compo-
nents. This suggests a three-factor model. In our analysis, the first component
alone counts for 56.3%, and the second and third components together for an
additional 22.3%. As a result the three first components explain about 79%
of the total variance. We graph the first three (most significant) principal
components against the relevant maturity in Figure F.6. The first component
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Figure F.6: The three most significant principal components.
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is roughly flat, so it moves the forward rates up and down together. The second
component is downward sloping causing the short and long end forward rates
to move in opposite directions. The third component is hump-shaped and
causes the term structure to flex.

The first three volatility functions are given in Table F.6. They are the
inputs required in the next section to generate forward rate evolution.

Table F.6: The estimated volatility functions (×10−3).

VF1 VF2 VF3

0 months -4.725 1.817 -1.528
3 months -5.834 0.946 -0.527
6 months -5.489 0.548 -0.096
1 year -4.336 -0.632 -0.655
2 years -3.414 -0.369 4.336
3 years -2.536 -0.769 0.498
5 years -1.691 -4.358 -0.934
7 years -1.950 -1.944 -0.425

F.4 Pricing derivatives

Pricing derivatives is all about finding the expected present value of all cash-
flows under the risk-neutral probability measure Q. So, when we come to
pricing derivatives we must do so in the risk-neutral world.

Since the HJM model is very general and not necessarily Markov, it is
usually not possible to do the calculations via a finite-dimensional partial
differential equation. It thus often leaves us with only two alternatives for
estimating the necessary expectations. The first alternative is to simulate
the random evolution of the risk-neutral forward rates. The other alternative
is to build up a tree structure. We here discuss the Monte Carlo simula-
tion approach in some more detail. This discussion closely follows Wilmott
(2001). For the tree structure approach we refer to Jarrow (2002) and James
& Webber (2000). Matlab software (Financial Derivatives Toolbox) provides
functions to generate HJM forward rate trees. Matlab also provides functions
to calculate the price of any set of supported instruments, based on an HJM
interest rate tree.

When using a Monte Carlo simulation method, we must first simulate
the evolution of the whole forward rate curve, then calculate the value of all
cashflows under each evolution and finally calculate the present value of these
cashflows by discounting at the realized short rate rt. As we perform a Monte
Carlo simulation, we need to proceed by the following steps (see Wilmott,
2001, pp. 324–325):

1. Simulate a realized evolution of the whole risk-neutral forward rate
curve for the necessary length of time T .

2. At the end of simulation we will have the realized prices of all maturity
zero-coupon bonds at every time up to T .
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3. Using this forward rate path calculate the value of all the cashflows that
would have occured.

4. Using the realized path for the short rate rt calculate the present value of
these cashflows. Note that we discount at the continuously compounded
risk-free rate, not at any other rate. In the risk-neutral world all assets
have an expected return of rt.

5. Return to Step 1 to perform another realization, and continue until you
have a sufficiently large number of realizations to calculate the expected
present value as accurately as required.

The Monte Carlo simulation from the HJM model may be very slow. The bond
prices at all maturities are, however, trivial to find during the simulation.

We illustrate Step 1 of the above list in Figure F.7. The HJM model that
serves as the basis for the simulation has been calibrated by the initial forward
rate curve obtained in Section F.2 (January, 1997) and the volatility func-
tions specified by PCA in Section F.3. We have chosen to use a three-factor
HJM model. The simulation has been carried out by applying the spreadsheet
formulae and Visual Basic programs provided by Wilmott (2001). The imple-
mentation is that provided by Wilmott, except for some modifications made
to match the volatility structure with that estimated by PCA above. The
timestep was chosen to be one month, i.e. 1/12 years. Simulation methods for
HJM models are discussed e.g. in James & Webber (2000). For information on
methods for HJM models one should also see Clewlow & Strickland (1998).

The simulation outcome is displayed in Figures F.7 and F.8. Figure F.7
shows how the simulated forward rates for various maturities evolve over
a time period of four years. Figure F.8 shows how the whole forward rate
curve evolves during the same time period in our simulation study. Note that
this is only one realization of the random process. For the derivative pricing
we should generate a large number of evolutions from the same model (cf.
Step 5 above). The pricing of put and floor options and more complex exotic
options is relevant for some life insurance products (see Section 5.6). We
note also that Step 3 above in life insurance applications may not always be
straightforward under the risk neutral measure (for instance customer and
management actions are typically assessed under the real world measure).

Evaluation of of term structure models is quite often performed in terms
of pricing accuracy. For the scope of this report, we omit any evaluation of our
model calibrated above. Naturally, it would be important and highly essential
to know how well the model serves its purposes.
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Figure F.7: Simulated paths of forward rates for various maturities.
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Figure F.8: Simulated forward rate curves at various times.
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