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1 Introduction 

There is no need to expound on the central role of technologi
cal innovation in the continuing rise in the material well-being of 
mankind. Technological progress is essential to the improvements 
in efficiency that are necessary for sustained economic growth. 
There is overwhelming evidence that this progress does not oc
cur merely in a random manner (see Schmookler, 1962) but is 
governed by the interaction of two distinct forces. On the one 
hand, there are technological opportunities supplied by Mother 
Nature and by the current state of technological knowledge. On 
the other hand, there are the economic opportunities and mar
ket forces: changes in demand create new profit opportunities for 
thouse quick enough to exploit them. The same distinction exists 
in the literature as well: economists tend to treat technological 
innovation as a black box and to concentrate on the economic 
side of the pro blem. Technologists, on the other hand, have been 
interested in the contents of the black box and have neglected 
the economic environment within which the innovating firm must 
operate. 

The present work takes an approach closer to the former, 
economics-oriented, tradition, although it gets into certain tech
nological issues that have previously not received much attention 
from economists. The main body of the work consists of three 
theoretical studies each of which examines the effects of market 
structure - defined as the degree of concentration, size, and com
petitive organization of the market - on different aspects of the 
innovative process. The three studies analyze issues such as the 
choice of research strategy and risk taking in R&D, the incentives 
to patent innovations, and research joint ventures. Each of these 
topics is reviewed later in this chapter. The chapter begins with a 
brief overview of the nature of the innovation process, followed by 
a review of the development and present state of the economics of 
technological progress. The emphasis is on microeconomic stud-
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ies. However, as the interest in the micro analysis of technological 
progress stems from the realization of its importance at the macro 
level, a brief look at the macroeconomic aspects will be provided 
as well. 

1.1 On The N ature of Innovation 

1.1.1 A Taxonomy for R&D 

The production of a new technology is very different from the 
production of a normal economic good. The production technol
ogy for an innovation depends on the technological opportunities, 
the extent of which is often only verified ex post, that is to say, 
after the project is finished - or has failed. Indeed, often it 
is not known whether the innovation is possible at all. To un
derstand the stochastic nature of R&D it is instructive to start 
with a slightly modified version of the familiar taxonomy of the 
innovation process, which divides the production of technology 
into three stages (see Gomulka, 1990): research, invention, and 
innovation. 

Research involves the basic and applied sciences, with the pri
mary concern being on the discovery of new facts or principles 
about nature and society. An example of pure research is the 
search for laws of physics, for example, in electromagnetics. The 
research stage of R&D is undertaken almost solely by scientists. 

The next stage in the R&D process is invention, which may 
be the creation of a new product ora new method of organizing 
an economic activity. It may include the creation of a prototype, 
usually followed by a lengthy and costly process of improvement. 
The latter part of the inventive stage will be called development, 
as opposed to pure invention. Loosely, a pure invention can be 
though of as a completely new solution or approach to a problem, 
qualitatively different from what has been used before. Thus, 
while the creation of semiconductor technology as a whole can be 
classified as an invention, the realization that silicon chips can be 
used toprocess information - the pure invention - is separated 
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from the development process, during which the number of tran
sistors packed on a single chip has steadily grown tenfold every 
five years. These two parts of inventive work often have quite 
distinctive characteristics, as will be discussed shortly. 

The output of inventive work may never find its way to a com
mercial application. In case it does, the R&D process moves into 
its third stage, innovation. A technology becomes an innovation 
only after it has been commercialized. Because innovation is the 
end product of R&D, the term 'innovation process' is frequently 
used as a synonym for R&D process. 

In practice, of course, the R&D process is much more com
plex than this, and in many cases the different stages cannot be 
separated from each other. Still, this taxonomy provides a useful 
tool for structuring the analysis, and we will make use of it later 
in this work. 

1.1.2 Uncertainty and Divisibility 

The two key dimensions of innovation are the degree of uncer
tainty and the degree of divisibility. As will be shown below, 
these two are closely related and can be fit into the taxonomy 
presented above. 

Success in science is said to be one per cent inspiration and 
99 per cent perspiration. Stin, the research part of the process is 
undeniably stochastic. Nobody knows whether there will ever be 
a general and accurate theory of superconductivity, and whether 
it will be one that can be implemented in practical applications. 
In many fields, the uncertainties related to basic research are so 
great that research tends to be less of a search for the solution 
to a particular problem and more of a search for solvable prob
lems. In private firms such a research strategy is seldom viable. 
Therefore in commercial innovative work, research is considered 
to be the last resort - it is undertaken only if no other solution 
to the problem is available. Most scientific research relies on pub-
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lic funding. 1 In this work, the research part of the R&D process 
receives less attention. 

Saying that the first part of the invention stage - pure inven
tion - also involves a high degree of uncertainty borders on the 
tautological. By definition, pure invention means doing something 
nobody has done before. Creating something completely new nec
essarily involves elements that one does not comprehend at the 
beginning and so must involve some degree of uncertainty. An ex
ample of a class of highly uncertain research programs which aim 
at creating pure inventions is a branch of physical chemistry called 
explanatory synthesis (or 'shake and bake' chemistry, depending 
on the speaker's attitude towards the approach in question). In 
explanatory synthesis, one chooses (based on theory, experience, 
and guess work) mixtures from the periodic table of elements, 
cooks them up, and hopes something useful will come into being. 
Sometimes this approach works: a scientist team at IBM decided 
to have another look at a cheramic, 'shaked and baked' together 
by a group of French chemists more than a decade earlier. The 
cheramic turned out to be superconductive at a temperature far 
higher than any other known superconductor, and it brought the 
team the Nobel Prize in physics. 2 A less encouraging example 
of a pure innovation, apparently not yet realized, is cold fusion. 
No one knows if it can be achieved, and even the best experts 
can only guess where to start the search. In this case it might be 
more accurate to use the term ignorance instead of uncertainty to 
underline the complete lack of knowledge of the densities of the 
relevant probability distributions. 

The development stage, which follows the pure innovation, is 
typically characterized by less uncertainty. Once the basic proper
ties of semiconductor technology were known, designing new more 
efficient microprocessors seems to have been a fairly determinis-

lExeptions exist. In some countries, especially in Japan, a considerable 
share of basic scientific research is undertaken in private enterprises. This, 
however, is more a result of the modest amount of public funding devoted 
to basic scientific research than anything else. Japan's overall investment in 
scientific research is small compared to that in Europe or the USA. 

2This example is adopted from Romer (1992). 
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tie process. Every two years the major mieroprocessor produc
ers bring out another generation of more advanced microproces
sors, doubling or tripling the speed of its predecessor. When Intel 
announces - two years before the projected introduction - its 
plans to build a microprocessor containing 3.1 million transistors, 
there is little reason to doubt the company's ability to fulfill its 
promise.3 Even though for a single engineer working on a single 
clearly defined problem the solution may consist of a fortunate se
ries of clever small design innovations, at the aggregate level, the 
micro-Ievel stochasticity moreor less cancels out, making the cost 
and duration of the process highly predictable. As another exam
ple of very expensive R&D projects, improvements in car design 
also seem to include little technical uncertainty. Designing a more 
aerodynamic body, raising horsepower, improving suspension or 
fuel energy are all routine development projects to car makers.4 

The degree of uncertainty in an R&D program is often related 
to another distinctive characteristic of the program, namely the 
divisibility of the inventive process. Pure inventions are typically 
inherently discrete - one either succeeds in producing cold fusion 
or one does not - although even in extreme cases the outcome 
is seldom precisely binary (succeedsjfailure). For example, even 
though success in producing cold fusion would in itself be a great 
invention, the usefulness of it would depend crucially on whether 
and to what extent the created process produces more energy 
than it consumes. Still, with pure inventions it is rather easy 
to single out discrete steps of progress - from vacuum tube to 
transistor to microprocessor. Typically, the degree of uncertainty 
related to a certain invention is directly related to the size of the 
technological step it involves. 

In development work, technological reality does not usually 
limit R&D projects to discrete steps. A product almost always 
goes through a series of incremental improvements over its life cy-

3Whether the announced schedule will hold is another issue. Strategic 
factors may tempt the firm to announce an unrealistically tight scedule. 

4This does not mean that there is no uncertainty involved in designing 
and introducing a new car. It means that the uncertainty is mostly related 
to the market response instead of to the actual technological obstacles. 
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ele. The incremental nature of development work is easily blurred 
by the fact that a number of incremental improvements may be 
group ed together and introduced at the same time. Regardless of 
whether improvements are implemented one by one or are group ed 
together and introduced in a large scale remodeling, the distinc
tive feature of development work is that a project can be chosen 
from a large number of possible projects with essentially incre
mental differences. For example, the reason why, after designing 
a microprocessor with 1.2 million transistors (i486), Intel builds 
another with 3.1 million transistors (Pentium) is not that these 
two are the only technologically feasible alternatives. Intel could 
just as well have built a microprocessor with two or four million 
transistors; it could probably design aseries of microprocessors 
adding one transistor at a time, if it made economic sense. The 
reason for building a microprocessor with 3.1 million transistors is 
that Intel estimates that such a processor can be built with reason
able costs within a reasonable time frame so as to hit the market 
before Intel's old line of processors has lost too much market share 
to competitors, that it represents a sufficiently large improvement 
to compete with its present and future competitors long enough 
to recover the fixed costs involved in the R&D process, and finally, 
that it is elearly differentiated from Intel's existing products -
all economical, not technical, considerations.5 

To sum up, there are many types of inventive work: at one 
end of the continuum are projects characterized by high uncer
tainty and big technological steps, at the other projects involving 
low uncertainty and incremental technological steps. There is a 

. tendency to identify technological progress with the first, that is, 
with elearly visible major inventions. Economists do not avoid 
this pitfall either; most theoretical analyses of the economics of 
innovation concentrate on major inventions and emphasize the 
role of uncertainty. In reality, however, technological change con
sists of a steady stream of improvements and modifications to 

5The reason for this lengthy discussion is that economists often tend to 
overemphasize the role of uncertainty in R&D work. Some aspects of R&D 
involve more uncertainty than others but the majority of commercial R&D 
falls into a category characterized by less uncertainty. 

14 



existing technologies, dotted with infrequent occurrences of ma
jor innovations. Commercially, small improvements play a much 
greater role than major innovations. 

It is dear that the economics of these two types of innova
tion are considerably different and cannot be captured within a 
single model. One cannot analyze major innovations without in
troducing uncertainty. For development work, on the other hand, 
divisibility of the outcome is the characterizing feature, and the 
introduction of uncertainty into the model is usually an unneces
sary compIication. 

Rather than uncertainty, the feature shared by the different 
types of R&D processes is that they all produce outcomes that 
are diverse and hard to measure. Innovation is usually thought 
of as the creation of a new product, but it may also be one of the 
following (see KIine and Rosenberg, 1986): 

• a new production process; 

• the substitution of a cheaper material in an essentially un
altered product; 

• the reorganization of production or distribution, leading to 
increased efIiciency; or 

• an improvement in the instruments or methods of producing 
innovations. 

Product innovation is the most visible form of innovation. A 
product is usually easy to identify and patent. Innovations related 
to processes, methods, or organization are typically less tangible. 
These kind of innovations are often hard to patent, which is why 
the innovator instead of patenting such innovation may be indined 
to keep it secret. As a result, patents do not measure all kinds of 
technological innovation. Given the diverse nature of innovation, 
it is no wonder that no satisfactory measure of innovative output 
it has been found. 

A final technical feature of the innovative process worth rec
ognizing is that it is cumulative in nature. Each sequential step 
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provides knowledge useful in the next step. Research projects may 
fail, but yet they almost always provide some useful information. 
If a research project searching for superconductive materials ends 
after experimenting with a thousand different mixtures, none of 
which proves to be of any use, then at least the vast space of 
possibly useful mixtures not yet tried is infinitesimally smaller. 

1.1.3 Economic Properties of Technology 

The properties of technological innovation that set it apart from 
other economic goods can be summed up with two terms: tech
nology is shareable (or nonrival) and partially excludable. Share
ability means that the expenditures in R&D are sunk costs .. Pro
ducing the technical information required by an innovation may 
involve a large investment, but once it is produced the cost of 
reproducing of it is trivial. Sharing a technology does not reduce 
the initial owner's ability to use it. In this respect, technology 
resembles a public good. 

The second feature, partial excludability, means that, al
though shareable, the owner of the technology has some control 
over the use of it. This control may be partly due to the legal sys
tem (patent legislation), partly because of secrecy, and partly in 
consequence of complementarity with another asset, for example, 
when the use of the technology requires some firm specific know 
how. Whereas shareability distinguishes technology from private 
goods, partial excludability sets it apart from public goodsj it 
makes technology a tradable product. 

The degree of excludability variesover different kinds of in
novations from practically complete excludability to almost no 
excludability. An example of the latter could be an innovation in
cluding a simple application based on a very fundamental finding 
of the properties of the physical worldj the laws of physics can
not be patented. Also, some important innovations, once found, 
are so trivial that they cannot be patented: The most important 
innovation in the transport industry since World War II, con
tainerization, was.- for obvious reasons - never patented. On 
the other hand, the molecular structure of a new synthetic drug is 
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easy to patent and the property rights straightforward to enforce. 
In such a case, monopoly power can only be eroded by creating a 
substitute with a different chemical structure. 

Patenting is not always a prerequisite for excludability. In 
fact, since patenting necessarily involves some degree of disclo
sure, which may be used by competitors to create differentiated 
products, patenting can be downright harmful to the owner of the 
innovation. If the use of a certain innovation by competitors can
not be monitored - as is often the case with process innovations 
- then difficulties in verifying patent violations may lead the in
novator to conceal the innovation and use it internally instead of 
patenting it. 

The combination of shareability and partial excludability has 
important ramifications on the market for technology. Since the 
marginal cost of reproducing technology is zero, the socially op
timal price of technology is also zero - all information should be 
sha'red immediately and with no charge. Evidently, if this was 
the case, there would be little incentive to innovate in a perfectly 
competitive industry. Competition would dissolve any monopoly 
profits and thus such an industry would produce no innovation. In 
order for costly R&D to be sustainable, a deviation from marginal 
cost pricing - from the first best solution - is necessary. 

The partial excludability of technology enables a non-zero 
price for technology. On the other hand, that excludability is 
only partial impIies another reason why the competitive market 
does not attain the first best; there are positive externalities re
lated to technological progress. The innovator can seldom extract 
the social value of the innovation and tends therefore to inv:est 
too little in R&D.6 

To summarize this section, technology is a diverse product 
with characteristics that make market failure likely. Whether this 
market failure leads to too much or too little innovation, too many 
or too few firms in the market, and what further effects it has on 
firms' R&D strategy are questions that have become the focus of 

6This is often referred to as the appropriability problem. 
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economic analysis in the last two or three decades. This issue is 
addressed in the next section. 

1.2 Economic Analysis of Innovation 

1.2.1 History 

Considering that technological progress is a phenomenon that -
with the advantage of hindsight - should have been clearly ob
servable at least two hundred years ago during the industrial rev
olution, the start of microeconomic analysis on the subject took 
place surprisingly late. One explanation (although not a very sat
isfactory one) is that it was not until the turn of the century that 
macroeconomists began to understand the extent of the impact 
that the changing products and production methods were having 
on the people's lives. During the 19th century and well into the 
20th, growth was understood as the result of the accumulation of 
the physical factors of production. Not until World War II and the 
spurt in technological progress that it ushered in did economists 
grasp the importance of the role played by technological progress. 
Starting with the work by Abramowitz (1956), a series of studies 
showed that the accumulation of capital explained only 15-20 per
cent of the total growth in the labor productivity. The remaining 
80-85 percent was labeled "the extent of our ignorance" . 

In the era of neoclassical growth theory, from the mid 1950s 
untillate 1970s, this residual term, "Solow residual" - i.e. what 
was left after taking into account the accumulation physical fac
tors of production - was modeled as "exogenous technological 
progress." Technological progress was considered exogenous, i.e. 
as something unaffected by economic forces and so beyond the 
scope of economic science. It was not until the mid 1980s that 
economists took the step from the recognition of the phenomenon 
of technological progress to the first attempt to genuinely model 
and explain it at the macroeconomic level. In the new branch 
of growth theory, the theory of endogenous growth, technological 
progress and topics like human capital accumulation, technolog-
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ical externalities, and learning-by-doing play a central role (for 
classic articles, see Lucas 1988, and Romer 1990). 

The microeconomic analysis of innovation took off somewhat 
earlier, in the works of Joseph Schumpeter. His central thesis 
was that to promote technological progress society must sacrifice 
perfect competition and static efficiency (Schumpeter 1942). Ac
cording to Schumpeter, monopoly power and a sufficient scale of 
R&D was a prerequisite for technological innovation. Since much 
of the later formal microeconomic analysis has focused on Schum
peter's propositions, they will be reviewed in the next subsection. 

1.2.2 Schumpeter's Hypothesis 

Schumpeter's work "Capitalism, Socialism, 9-nd Democracy" 
pointed the direction for later microeconomic analysis- of inno
vation. He emphasized the central role of innovation in modern 
capitalist economies as well as the roles of the entrepreneur and 
the market structure in the innovation process. One of Schum
peter's central arguments was that perfect competition suppresses 
innovation and is therefore " ... not only impossible, but inferior, 
and has no title to being set up as a model of ideal efficiency" 
(Schumpeter 1942, p. 106). Schumpeter justified his argum~nt 
in several ways. First, he suggested that large firms are a nat
ural breeding ground for innovations because increasing returns 
are prevalent in R&D - two scientists or engineers work more 
efficiently if they combine efforts and share results. Secondly, 
he argued that large firms are better able to diversify the risks 
that are inherent in R&D. Thirdly, large firms are more eager 
to innovate because they can implement innovations in a larger 
scale. All these factors are related to the size of the firm rather 
than monopoly power. But Schumpeter also argued that bigness 
alone is not sufficient to bring about innovation and that some 
degree of monopoly power is essential for promoting R&D. Here, 
one can distinguish two arguments: The first was the old notion 
that the expectation of monopoly power encourages firms to in
novate. More original was his second argument that an existing 
monopoly position was an ideal ·platform for undertaking innova-
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tions, because a monopolist does not have competitors ready to 
imitate his innovations or to circumvent a patent on the innova
tion. Thus, one needs to distinguish between the pre-innovation 
and post-innovation market structures. 

As Geroski (1990) points out, if the Schumpeterian hypothe
sis were solely an assertion that innovation occurs only when the 
post-innovation monopoly profits at least tover the innovator's 
costs, it would be relatively uncontroversial. Some kind of post
innovation rent (or the expectation thereof) is crucial in order to 
cover the fixed costs involved in creating the innovation - oth
erwise no firm is willing to undertake R&D. However, few early 
participants in the debate were willing to go as far as Schumpeter 
in arguing that pure monopoly in the pre-innovation market is 
optimal for R&D. Galbraith (1952), for example, suggested that 
oligopoly market structures were more conductive to innovation 
than either monopoly or pure competition. One argument for this 
view that is often associated with the work of Leibenstein (see, 
e.g. Leibenstein 1966 or earlier Fellner 1951) is that competition 
acts as a "stick" that promotes innovative activity: when the ri
vals catch up, the profits of the incumbent drop, thus enhancing 
its incentive to introduce a new set of innovations. A highly con
centrated market structure protected from entry may create little 
incentive for innovation if the group of established firms is content 
with its old oligopoly position and faces no threat of competition. 
In contrast, Schumpeter's interpretation of the effect of poten
tial entry on the innovative activity of the incumbent was that 
the threat of entry deters innovation by forcing the incumbent to 
lower its price, thereby diminishing the resources left for innova
tion. These two opposing views illuminate the complex nature of 
the question and underlines the need of a formal framework to 
structure the analysis. The interaction of these two forces, the 
"carrot" of post-innovation monopoly power and the "stick" of 
pre-innovation competition, is one of the central themes in the 
literature of market structure and innovation. 

In a way, the dispute over the role of pre-innovation and post
innovation market structures is a rather academic one. This di
vision is meaningful only in a stylized, one-shot model of R&D 
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competition, in which firms compete over a single innovation. The 
separation of pre-innovation and post-innovation market struc
tures looses its meaning if - as is the case in most R&D work 
- technological progress is a never-ending sequence of innova
tions of different magnitude. The post-innovation market struc
ture for one innovation is the pre-innovation market structure for 
the next. The typical patent race paradigm in which the pre
innovation market is competitive and the post-innovation market 
essentially monopolized is very rarely observed in reality. 

1.2.3 Theoretical Approaches 

There are several thorough surveys of the theoretical work on 
the relationship between market structure and innovation (see 
Kamien and Schwartz 1982, Baldwin and Scott 1987, Gomulka 
1990, and also Reinganum 1989). Therefore, this section does not 
attempt, to cover all the theoretical work in the area. Rather, 
it attempts to isolate and classify the most frequently used ap
proaches. Regardless of the approach, most economic analysis of 
market structure and innovation has sought to answer two ques
tions. The first is one inspired by Schumpeter: what is the optimal 
market structure for promoting innovation? The second question 
is: does the industry equilibrium involve too much or too little 
R&D compared to the social optimum. It is no surprise that the 
answer depends on the framework chosen. 

The formal theoretical analysis of market structure and inno
vation started slowly in the 1960s, beginning with the seminal 
work by Arrow (1962). Arrow analyzed the polar cases of pure 
monopoly versus pure competition. In his model, R&D activity is 
monopolized: a single innovator, completely protected from com
petition, produces a cost-reducing innovation. Arrow examined 
two cases. In the first case, after producing an innovation the mo
nopolist licenses it to a competitive industry; in the second case 
he uses the innovation himself and (in the case of drastic innova
tion) also monopolizes the product market. In Arrow's model, the 
incentive for either drastic or nondrastic innovation is greatest in 
the case of a competitive industry. 
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Arrow's contribution inspired a large body of subsequent work 
which showed that the incentive to innovate is likely to depend 
on variables from which Arrow had abstracted. These studies in
troduced new elements by alIowing for bilateral monopoly (Fixler 
1983), uncertainty (Fixler 1983 and Donnenfeld 1983) and a more 
general n-firm structure in the production market (Kamien and 
Schwartz 1982). AlI of them folIowed Arrow in assuming that the 
production of technology is monopolized. Of course, this is not 
a competely satisfactory assumption. In most industries, there 
are a number of firms undertaking R&D simultaneously. Arrow's 
approach may be suitable in particular applications, but it is not 
useful to serve as a basis for a more general discussion of the 
economics of innoyation. 

Patent races are probably the most thoroughly analyzed class 
of R&D models. In a patent race,a number of firms compete 
for a single, welI defined innovation. The winner of the race, 
i.e., the firm that innovates first, receives a patent and a perpet
ual monopoly generating a perfectly anticipated flow of rewards, 
while other firms receive nothing. Some kind of uncertainty is an 
essential part of this type of model. It may co me in the form of 
uncertainty about the R&D intensity chosen by other firms (as in 
Kamien and Schwartz 1976a), or it may be related to the stochas
ticity in R&D technology (as in Kamien and Schwartz 1976b, 
Loury 1979, Lee and Wilde 1980, and many others). 

In a typical patent race model firm i invests a constant stream 
Xi in R&D. This investment produces a constant instantaneous 
probability h(Xi) 2: 0 that the firm succeeds in innovation. In 
other words, if the innovation is not ready at time t, then the 
probability that firm i completes the innovation by time t + dt, 
where dt is an infinitesimal increment of time, is h(Xi)dt. This 
formulation impIies that the probability of innovation is indepen
dent of the past. The amount of R&D undertaken in the past 
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plays no role; all that matters is the instantaneous rate of R&D 
investment.7 

In patent races, competition takes place in the pre-innovation 
market, whereas the post-innovation market is monopolized (there 
are some exceptions, as in Delbono and Denicolo 1991). This 
assumption has some important implications. Since competi
tion (measured by the number of competing firms) reduces pre
innovation profits but has no effect on post-innovation profits, one 
would expect that the incentive to innovate is positively related 
to the degree of competition. This is indeed the case. The stan
dard result is that the industry level R&D expenditure is higher 
- and therefore the expected date of innovation is earlier - the 
greater the number of firms (Loury 1979). If the function h(Xi) 
is concave, atomistic competition is the socially optimal market 
structure. Loury argues that it is more realistic to assume that 
h is convex for small values of Xi, so that there are initial scale 
economies in R&D, in which case an intermediate number of firms 
is optimal. Lee and Wilde (1980) elaborate this view by assuming 
that there is a fixed cost involved in R&D activity. 

Another result shared by most studies is that given a fixed 
market structure in the post-innovation market the industry equi
librium entails each firm investing more in R&D than is socially 
optimal. This result is quite intuitive: when the post-innovation 
market is monopolized and hence the appropriability problem 
does not arise, the departure from optimality is caused by the 
negative externality each firm imposes on its competitors by par
ticipating in the race. In a more realistic setting, post-innovation 
profits should also be related to market structure. The greater 
the number of pre-innovation competitors the more likely it is that 
competing products will appear side by side in the post-innovation 
market. Thus, patent races abstract from an important charac
teristic of R&D competition: the incentive to innovate depends 

7Because of this assumption, the optimization problem of a firm can be 
treated as a static one. Reinganum (1979) offers a genuinely dynamic model 
of R&D in which the factor determing the instantaneous probability success 
is a function of the cumulative R&D effort instead of the instantaneous effort. 
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on the difference between the winner's profit and the loser's profit, 
which should both be determined by the market structure. 

A further shortfall of patent races is that they are based on a 
narrow-minded view of technological change, in which technolog
ical progress comes solely in the form of distinct, major innova
tions. This view comes close to the definition of a pure inveIition, 
as classified above. The patent race framework is clearly not ap
propriate for analyzing incrementally accumulating technological 
progress. Furthermore, even in the case of pure inventions, the 
assumption of a memoryless R&D process is clearly unrealistic. 

A third, much more heterogeneous category of models concen
trates on the development part of the R&D process. Technological 
progress comes in the form of a reduction in production cost, and 
the relation between R&D expenditure and cost reduction is as
sumed to be deterministic. A seminal and representative work is 
the paper by Dasgupta and Stiglitz (1980). In their static model, 
firms choose simultaneously the level of cost-reducing investment 
and the level of production. Dasgupta and Stiglitz concentrate 
on symmetric equilibria, in which the number of firms is endoge
nous and determined by the zero-profit condition. Since both 
the number of firms and R&D expenditure are endogenous, the 
results cannot be directly compared to models in which an exoge
nous market structure determines R&D. However, their model 
implies' that in a cross-section study of different industries one 
should observe a positive relationship between research intensity 
and concentration. Several studies extend the work of Dasgupta 
and Stigliz by analyzing spillovers (Spence 1984), diffusion of in
novation (Mokherjee and Ray 1990), uncertainty (Clemenz 1992) 
and dynamic aspects of R&D competition (Flaherty 1980, Tandon 
1984). 

Apart from the (typical) lack of uncertainty, the feature that 
sets these models apart from patent races is that in the former 
R&D is usually redundant. Every firm is working on the same 
cost-reducing investment and adding more firms just adds to the 
duplication. A single firm completes the innovation in the same 
time as n firms working parallelly but with a fraction Iin of the 
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cost. Wasteful duplication is an inherent feature of these models.8 

It implies that atomistic competition which disseminates all prof
its in the post-innovation market cannot induce any R&D activity. 
The maximum amount of R&D is reached either with a monopoly 

. or, more frequently, with an intermediate number of firms. Given 
the market structure, industry equilibrium, as a rule, leads to 
R&D expenditure. 

1.3 Three Aspects of Market Structure 
and Innovation 

This section outlines the work presented in the three studies that 
follow this chapter. Each of these studies considers a distinct 
feature of the innovative process that has so far received little or 
no attention in the literature. The first study recognizes that the 
decision on a firm's R&D strategy involves more than deciding 
how much money to invest. Equally important is how the money 
is invested. This study allows firms to choose from a large set of 
research strategies and compares the butcome of the competitive 
equilibrium with the social optimum. The second study proposes 
an explanation for two empirical findings: large firms produce 
fewer patents per unit of R&D input than small firms and seem 
to patent a smaller fraction of their innovations than their smaller 
competitors. The final study contributes to recent discussion of 
the relative merits of research joint ventures and cartellized R&D. 

1.3.1 Market Structure and the 
Choice of Research Strategy 

Decision making regarding R&D is a complicated process. As 
Kamien et al. put it, R&D " .. .is a multidimensional heuristic 
rather than a one-dimensional algorithmic process." Nevertheless, 
an overwhelming majority of the theoretical work on innovation 

8Some models involve spillovers, which change the situation somewhat, as 
in Spence (1984). 
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has concentrated on a single dimension of the process, namely 
the size of the R&D budget. The first essay approaches the issue 
from another direction. Instead of analyzing the effect of market 
structure and rivalry on the scale of the R&D work, it takes the 
scale as given and analyzes the effect of market structure on the 
choice of research strategy. 

The work on this aspect of the R&D process has received very 
limited attention. The studies by Dasgupta and Stiglitz (1980b), 
Klette and de Meza (1986), Battacharya and Mokherjee (1986), 
and Dasgupta and Maskin (1987) shed some light on the issue. 
The latter two studies use a similar approach in which each firm 
chooses a distribution function from which it can draw the value 
of its innovation. The computation is simplified considerably by 
assuming a winner-take-all framework - only the single firm that 
draws the highest value actually receives the money. Under cer
tain severe restrictions on the shape of the distributions, these 
two studies find that in a symmetric market equilibrium firms 
choose a weakly riskier distribution (in the sense of second-degree 
stochastic dominance) than is socially desirable. In the work of 
Battacharya and Mokherjee, the distributions are restricted to (i) 
being symmetric around the mean, (ii) having identical means, 
and (iii) being such that for any two of them the distribution 
functions intersect only at their common mean. These assump
tions suffice to produce the stated result. Dasgupta and Maskin 
only restrict the distribution functions to having a common mean. 
In their analysis, market equilibrium is riskier, if the elasticity of 
each density function is everywhere greater than -1, i.e. if there 
is sufficient mass in the upper end of the distributions. 

Dasgupta and Stiglitz (1980b), and Klette and de Meza (1986) 
use a slightly different approach. They state the model in terms of 
a patent race in which the firms choose a distribution of innovation 
dates. The first firm to innovate wins the patent. Dasgupta and 
Stiglitz find that market equilibrium is excessively risky. How
ever, Klette and de Meza argue that this conclusion is erroneous 
in that their model has a tendency toward corner solutions in 
which both the market and the social optimizer choose the most 
risky strategy. With a modified version of the original model they 
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obtain the result that the symmetric market equilibrium is riskier 
than optimal. The result relies on strong assumptions. The dis
tributions, as in Battacharya and Mokherjee, are assumed to have 
identical means, to be symmetric around this mean, and he such 
that their distribution functions intersect only at their common 
mean. 

The analysis in Chapter 2 covers both approaches. In both 
cases, it öffers results opposite to those reached in the earlier 
studies. Using a measure of compensated increase in risk it shows 
that for aC wide class of plausible distribution functions market 
equilibrium, whether symmetric or asymmetric, is less risky than 
the socially optimal choice. The analysis is in several ways more 
general than that of the earlier studies. First, the restrictions 
on the distributions are considerably less severe: they need not 
be symmetric or have a common mean. Second, the analysis 
is not limited to symmetric equilibria: It is shown that in any 
asymmetric equilibrium there is a social gain if any . single firm 
shifts to a marginally riskier strategy. Finally, the analysis allows 
for an arbitrary number of competing firms, whereas Battacharya 
and Mokherjee (1986) and Dasgupta and Maskin (1987) restrict 
their analyses to the two-firm case. 

There are several reasons for the difference in the results. Most 
importantly, the studies that obtain results opposite to those of 
Chapter :2 postulate a one-to-one correspondence between the 
riskiness and the cost of a strategy: The riskier a strategy, the 
higher is the eost involved. As a consequence, the tendeney of the 
market to overinvest in R&D, characteristic to patent race mod
els, dominates any possible biases in the risk choice. Secondly, 
the concepts of riskiness employed differ slightly. In the earlier 
studies, an increase in risk is defined as a mean preserving spread 
in the distribution. This definition entails the problem of yielding 
corner solutions, as pointed out by Klette and de Meza (1986). 
Chapter 2 employs instead a compensated measure of risk: distri
bution A is riskier than distribution B if and only if the premium 
a person requires for choosing A instead of B is always higher the 
more risk averse he iso The definition incorporates second-degree 
stochastic dominance, as used in Battacharya and Mokherjee, and 
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Klette and de Meza. Finally, the results of Chapter 2 require that 
the distributions have sufficient mass at low payoffs. The earlier 
literature, e.g. Dasgupta and Maskin (1987), assumes essentially 
the opposite. 

1.3.2 The Propensity to Patent 

Schumpeter's central thesis was that large firms and concentrated 
market structures provide ä natural breeding ground for innova
tion. This thesis has been challenged by a number of empirical 
studies which show that R&D output, measured by the number 
of patented innovations, increases less than proportionately with 
R&D input. This has been interpreted as evidence of decreasing 
returns in R&D. 

The second study (Chapter 3) seeks an alternative interpre
tation of these findings. It argues that these results may be the 
consequence of systematic differences in the propensity to patent 
innovations. The work of Schmookler (1966), Branch (1973) and 
Scherer (1984) provides empirical support for this view. Accord
ing to these studies, there has been a growing discrepancy be
tween patenting and the actual pace of innovation, especially in 
the post-war period. In many industries the propensity to patent 
seems to be Iow particuIarIy in Iarger firms. 

The model framework is a two-stage patent race in which firms 
have the choice between patenting the first-stage innovation, in 
which case it can be licensed forward, or keeping it secret and 
using it to relative advantage in pursuing the final innovation. 
Licenses can be sold only to a patented innovation. The motiva
tion for not patenting the first-stage innovation is that patenting 
reveals information and makes it easier for competitors to create 
their own technologies. 

It is found that in concentrated markets firms have a tendency 
to keep their intermediate innovations secret, whereas in highIy 
competitive markets they tend to patent and Iicense forward. The 
relation between firm size and patenting is Iess straightforward 
and depends on informational assumptions. It is 'shown that un
der complete information, Iarge firms may be more or Iess prone 
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to patent than small firms. However, when information is incom
plete, in the sense that the potential licensee cannot verify the 
state of the licensor's R&D project at the time of the licensing 
agreement, then the propensity to patent is always inversely re
lated to the size of firm. 

These results provide an alternative explanation to results 
that could be interpreted as evidence against Schumpeter. Yet 
they cannot be characterized as "Schumpeterian" since they do 
not support the Schumpeterian recommendation to promote large 
firms and concentrated market structures. Instead, they point 
to another potentially serious problem related to such markets. 
Large firms operating in concentrated markets tend to keep their 
intermediate innovations secret, which results in unnecessary and 
inefficient duplication in R&D - each firm has to create its own 
intermediate innovations, which under a more competitive market 
structure would be shared. 

1.3.3 Research Joint Ventures and 
Cartels or Competitive R&D? 

The last study (Chapter 4) joins recent literature in analyzing 
the relative merits of research joint ventures (RJV s). An RJV is 
defined as a collection of firms which agree to share the results of 
their R&D work. Forming an RJV changes the incentive struc
ture of the firms in several ways. The firms in an RJV may be 
able to internalize a larger fraction of any positive technological 
externalities, which tends to increase R&D effort. On the other 
hand, if innovation merely redistributes (rather than increasing) 
industry profits, an RJV helps firms to avoid competition and 
tends to decrease R&D spending. 

The two most frequently cited recent contributions in the field 
are the papers by d'Aspremont and Jacquemin (1988) and Kamien 
et al. (1992). The framework for these studies is a two-stage 
game. In the first stage, firms undertake cost-reducing invest
ment. The cost level of an individual firm depends not only on 
the its own R&D investment but, through technology spillovers, 
also on the R&D investment of other firms. In the second stage, 
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firms engage in a Cournot competition in the product market 
where the demand structure is linear. The studies agree that an 
RJV, in which the individual R&D inputs are chosen to maxi
mize the joint profits instead of individual profits, is the most 
efficient way of organizing R&D. Itprovides both a higher rate of 
R&D investment and higher social welfare than does uncoopera
tive competition. 

Chapter 4 demonstrates that this result, besides depending on 
the specific demand function, depends crucially on the assumption 
that there is no market for the R&D output. It is shown that if 
firms are allowed to license their[technologies to each other, com
petition may well lead to highe~ R&D and higher welfare than a 
RJV cartel. More precisely, ?ompetition is more likely to entail 
a higher level of R&D when technology spillovers are small and 
substitutability between goods is high. Also, the larger the num
ber of firms in the market the better uncooperative competition 
performs. On the other hand, an RJV performs better with high 
spillovers, low substitutability, and a concentrated market. It is 
also shown that while an RJV cartel cannot overinvest in R&D, 
this is not the case under uncooperative competition. There is 
nothing to prevent competitive market from investing more than 
is socially desirable. 
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2 The Choice of Research Strategy 
in a Patent Race 

2.1 Introduction 

The patent race model, in which a number of firms compete for 
a given prize which a single winner captures completely, has been 
a central tool in the analysis of the relationship between market 
structure and R&D (Loury 1979, Lee and Wilde 1980). A typi
cal patent race concentrates on the dependence of R&D scale on 
market structure. In its basic form, the patent race paradigm 
represents a rather one-dimensional view of innovation: there is 
only, one path leading to the innovation, and a firm needs only 
to decide the size of its R&D budget, which determines how fast 
it will proceed along the path. In reality, making a decision on 
R&D is much more complicated than this. First, the goal of an 
R&D process is not generally a single, well defined innovation but 
rather to meet the demand for a new product or process, which 
demand can be satisfied by a number of ways, or to exploit a 
technological opportunity, from which a variety of widely differ
ent usable innovations may flow. Second, even if the goal of R&D 
were a single innovation, identical for all competing firms, there 
would almost always be more than one way of achieving it. 

Aside from -the mainstream analysis, a small thread of articles 
has approached the R&D process from another direction. These 
papers employ more or less the same stylized framework as in the 
case of ordinary patent races: a given number of firms compete 
for a single prize. The fact that a competing firm is only inter
ested in its own chance of winning the race, whereas society is 
indifferent between which individual firm is the winner, creates 
a distortion. However, instead of examining how this distortion 
affects the scale of R&D, these papers pose another question: how 
does the distortion affect the risk-taking behavior of firms? More 
precisely, when each firm can choose from a set of research strate-
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gies, each providing a different distribution for the discovery date, 
is there a bias in the market solution, as compared to the social 
optimum? 

The first to address this question were Dasgupta and Stiglitz 
(1980a). They argued that if riskiness involves a mean-preserving 
spread in the distribution and the cost of an R&D project is con
stant, then the market solution is safer, at the margin, than the 
socialoptimum. Klette and de Meza (1986) claim that this con
clusion is erroneous. They show that although in a symmetric 
competitive equilibrium an incremental shift towards riskiness 'by 
all firms would leave the society better off, such a shift is usually 
not possible. Klette and de Meza show that if (in addition to the 
assumptions of Dasgupta and Stiglitz) the probability distribu
tions are symmetric, then the competitive equilibrium as well as 
the social optimum coincide with the riskiest available strategy. 
In their own analysis, Klette and de Meza facilitate interior solu
tions by allowing the cost of R&D to differ between strategies or, 
effectively, to increase with riskiness. They go on to demonstrate 
that for symmetric distributions which are such that their cu
mulative distribution functions intersect only once (at their cam
mon mean) , the competitive equilibrium involves a riskier strategy 
than the social optimum. They also show (by example) that if 
the distributions are sufficiently skewed, the market may be bi
ased against riskiness. Two related papers by Battacharya and 
Mokherjee (1986) and Dasgupta and Maskin (1987) obtain similar 
results in a slightly different framework. 

Klette and de Meza interpret their result as an indication that 
the market is biased toward riskiness. The central theme of this 
chapter is to show that this interpretation is misleading. In their 
model, the choice is essentially between a risky project, which 
provides higher expected payoff, and a safe project, which involves 
lower cost. Hence, the question is not one of a pure risk choice but 
rather a decision regarding both the scale and the strategy of R&D 
investment. The departure from optimality found in their paper 
is a combination of the tendency of the market to overinvest in 
patent races and, possibly, a bias in the choice ofresearch strategy. 
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The analysis by Klette and de Meza does not offer an answer as 
to whether the latter bias exists and in what direction it works. 

In order to focus on the pure risk choice, this chapter re
stores the assumption of Dasgupta and Stiglitz (1980) that all 
strategies have the same cost. In order to obtain interior solu
tions, the analysis departs from the definition of riskiness based 
on mean-preserving spread in the distribution, and instead em
ploys a measure of compensated risk similar to the concept of 
mean utility preserving increase in risk as defined in Diamond 
and Stiglitz (1974). The definition allows the means of the dis
tributions to differ and assumes nothing regarding the symmetry 
of the distributions. It is shown that for a wide class of distribu
tions, including practically all commonly used ones, competitive 
equilibrium leads to a less risky strategy than is socially optimal. 
This is shown both for the unique symmetric equilibrium as well 
as for all arbitrary asymmetric equilibria. 

These changes in the framework also change the intepretation 
of the model. It is not evident how to intepret a model in which 
cost and riskiness of R&D are positively linked and expected out
come is kept constant, as, for example, in Dasgupta and Maskin 
(1987) and Klette and de Meza (1986). If risk is something one 
needs (and wants) to pay for, the intepretation is certainly not 
v~ry intuitive. In the present model, intepretation is easy. In 
the short run, a firm's R&D resources are largely fixed. Dras
tic changes in the size of R&D investment generally necessitate 
major organizational rearrangements, which are likely to be dis
tributed over a longer period. The relevant decision in the short 
run is therefore not how big a research lab to build or how many 
researchers to employ but rather how to use the existing research 
staff in the most productive fashion. This decision is the focus of 
this study. 

The chapter is organized as follows. The next section intro
duces a definition of risk which is applicable to distributions with 
arbitrary means. In section 2.3 the relation between market equi
librium and the social optimum is analyzed on the basis of this def
inition. Section 2.4 appIies the same approach within the frame-
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work used by Dasgupta and Maskin (1987). Section 2.5 concludes 
the chapter. 

2.2 The Definition af Risk 

In the patent race studies mentioned above, increasing risk was 
defined as a mean preserving spread in the distribution of the 
discovery date. Diamond and Stiglitz (1974) introduced an alter
native definition which they referred to as mean utility preserv
ing increase in risk. A change in a distribution is a mean utility 
preserving increase in risk if it keeps the mean utility constant 
for some individual and decreases (increases) utility for all more 
(less) risk averse individuals. Greater risk aversion is defined in 
the familiar Arrow-Pratt sense (Pratt 1964, Arrow 1970).1 This 
chapter adopts the definition of risk by Diamond and Stiglitz in 
a somewhat stronger form: 

Definition 2.1 Let Hl and H 2 be cumulative distribution func
tions of random variables in R+ such that there exist Xl, X2 E R+ 
for which Hl(Xl) > H2(Xl) and Hl (X2) < H2(X2) and for some 
nondecreasing bounded utility function Uj (x) 

(2.1) 

If for all utility functions Ui (x) showing more risk aversion than 
at least one such Uj(x) 

(2.2) 

then H l is riskier than H2 • If the inequality is strict for some 
Ui(X), then H l is strictly riskier than H2 . 

Hence, if Hl is riskier than H2 and the shift from H2 to Hl is 
mean utility preserving (as defined by Diamond and Stiglitz 1974) 

lRecall that by the Arrow-Pratt definition, idividual i is more risk averse 
than individual jif there exists a function <p, <p' > 0, <P" < 0, suchthat 
Ui(X) = <P(Ui(X)). 
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for an individual j, then the shift must deere ase expeeted utility 
for all individuals that are more risk averse than individual j. 
This eorresponds well to our intuition: individuals that are more 
risk averse ehoose less risky assets. Notiee that Definition 2.1 is 
stronger than that in Diamond and Stiglitz (1974); in their paper 
it is sufficient that (2.2) holds for all u/s that are more risk averse 
than some Uj satisfying (2.1), whereas here it is required that the 
same holds for all such Uj. 

The following theorem establishes that the single crossing 
property, which was sufficient for an increase in risk by the defini
tion of Diamond and Stiglitz, is now both sufficient and necessary 
for ordering by Definition 2.1 (see the Appendix): 

Theorem 2.1 Distributions H 1 and H 2 fulfill the conditions of 
Definition 2.1 if and only if there exists x* E R such that 

[H1(x) - H 2(x)] (x - x*) ~ 0 for all x E R. (2.3) 

Hence, two distributions can be ranked if and only if their 
eumulative distribution funetions intersect exactly once.2 The 
distribution with the lower slope at the intersection point is the 
riskier. As is the case with second-order stoehastic dominance, 
Definition 2.1 provides a partial ordering. This ordering is con
sistent in the sense that if H 1 is strictly riskier than H 2 and H 2 

in turn is riskier than H 3 , then H3 cannot be riskier than H1. 
However, unlike second-order stochastic dominance, the ordering 
is not transitive, since H 1 and H 3 do not necessarily satisfy the 
single erossing condition. Another interesting observation is that 
second-order stochastic dominance is not sufficient for ordering 
by Definition 2.1; that is, if H 1 dominates H 2 in the second-order 
sense, and their cumulative distribution functions intersect more 
than once, one can always construct a situation in which one indi
vidual prefers the less risky asset H 1 while another individual with 

2Strictly speaking, the distribution functions need not intersect. Since 
distribution functions need not be continuous, one distribution funtion may 
discretely jump from below to above the other. For lack of a better term, the 
term "intersection" is streched here to cover all cases where the difference of 
the distribution functions changes sign. 
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Figure 2.1 Distribution functions 
that intersect once 

1 ------------------------------------------------------------------------------------------------------------------- ------ -------

x 

greater risk aversion chooses the riskier asset H2 •
3 Only if the 

difference of the cumulative distribution functions changes sign 
exactly once can such a counterintuitive situation be excluded. 

Figure 2.1 illustrates some distribution functions that can be 
ranked according to this measure. Distributions H 3 is riskier than 
H 2 , while both are riskier than distribution H 1 • 

2.3 The Model 

The market consists of n ~ 1 identical risk-neutral firms that 
compete for a single, well defined innovation. The value of the 
innovation at the beginning of the game (at time t = 0) is normal-

3In order for this to occur, it is necessary that these individuals have 
partly concave and partly convex utility functions. 
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ized to unity, and it declines over time at the exogenous ra-te r. 
Thus, at time t the vaIue of the innovation is e-rt . The discount 
rate r can be interpreted as the sum of the interest rate and an 
additional term which can be Iabelled the "rate of obsolescence," 
by whieh we mean eitherthe steady rate at which the vaIue of 
the patent is eroded by further technical progress, or the instan
taneous probability at any moment of time that the innovation 
will be made completely obsolete by another innovation. In the 
spirit of patent races, the vaIue of the innovation is rewarded to 
the single firm that innovates first. The model follows Dasgupta 
and Stiglitz (1980a) in assuming that the scale of R&D is fixed 
and the choice of researeh strategy is the only control variable. 

Each firm can choose its researeh strategy from a possibly infi
nite or innumerable set of researeh strategies K. A research strat
egy k E K is characterized by its distribution funetion F(t, k), 
which gives the probability that using this research strategy the 
firm completes the innovation on or before time t. All members 
of K are proper distributions in that limt->oo F(t, k) = 1. The 
eorresponding density funetion is denoted by j(t, k). As in pre
vious studies, the probability distributions of the different firms 
are assumed to be independent of each other. 

Before appIying Definition 2.1 in the present context, some 
discussion about the application of risk measures in patent races 
is in order. As mentioned ab ove , previous studies (i.e. Dasgupta 
and Stiglitz 1980a, KIette and de Meza 1986) define an inerease 
in risk as a mean preserving spread in the distribution of the dis
covery date. This definition is problematie for various reasons. 
First, as demonstrated by Klette and de Meza, it tends to lead 
to eorner solutions if the eost of R&D is kept constant. Seeondly, 
the way Klette and de Meza apply mean preserving increse in 
risk disconnects the eoncept of risk from utility theory. When 
applied to distributions over payoffs, mean preserving spread in 
distribution ean be termed an inerease in risk in a well justified 
sense: no risk-averse individual chooses the asset with the riskier 
distribution. However, applying mean-preserving spread to dis
tributions over time does not have the same justification; a mean 
preserving spread in the distribution of the discovery date is not 
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mean preserving in terms of distributions of payoffs. Translat
ing the definition, a mean preserving spread in the distribution of 
payoffs (or second order stochastic dominance) in terms of distri
butions over time yields the following condition for strategy k1 to 
be riskier than strategy k2 : 

100 

e-ru [F(u, k1 ) - F(u, k2 )] du:::; 0 for all t ~ 0, (2.4) 

with equality holding at t = 0.4 This condition guarantees that 
the two strategies produce the same expected payoff and that 
the relevant integral conditions are satisfied. The drawback of 
condition (2.4) is immediately evident: the ordering of strategies 
depends on the interest rate. Two strategies that can be ordered 
for a certain r cannot generally be ordered when r changes. 

Finally, a definition of risk that requires the mean of the dis
tribution to be constant over strategies is overly restrictive and 
unrealistic. The probability distributions are given by the techno
logical reality; there is no reason to believe that different strategies 
would have the same expected discovery date, nor that the man
agement of the firm would seek to adjust R&D inputs to keep 
this date constant, as the approach of Klette and de Meza can be 
interpreted. 

Using the compensated measure of risk instead of second-order 
stochastic dominance solves these problems: the ordering retains 
a sound basis in utility theory and the means of the distributions 
are not restricted in any way. It also turns out that the interest 
rate does not affect this ordering: the single crossing condition 
for the distributions of payoffs translates to an equivalent single 

4This condition is obtained by starting from the definition of second order 
stochastic dominance 

where the H functions are the cumulative distribution functions over the 
payoffs x. This is the condition for strategy k1 to stochastically dominate 
k2 • To get the equivalent condition for distributions over time one needs to 
substitute x = e-rt and F(t,ki) = 1- H(e-rt,ki), which gives the above 
result. 
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crossing condition for the distributions of discovery dates. That 
is, strategy k1 is riskier than k2 if and only if F( t, k1) intersects 
F(t, k2 ) exactly once and from above. 5 Here, it is assumed that all 
elements in K can be ordered pairwise by this measure and that 
the index k arranges the strategies in increasing order of riskiness: 
if k1 > k2 , then F(t, k1) is riskier than F(t, k2 ). 

2.4 The Analysis 

2.4.1 Symmetric Equilibrium 

The strategy of the individual firm i is denoted by ki . When 
choosing its strategy, each firm takes the actions of the other 
firms as given. The problem of firm i is to choose ki E K to 
maximize the expected revenue 

Thus, firm i weights the payoff e-rt at time t by the probability 
density of innovation f(t, kk) and the probability that no other 
firm has innovated by time t, given by II#i(l - F(t, kj)). 

The market equilibrium will be compared with what would be 
obtained under joint profit maximization. The symmetric coop
erative optimum is determined by the maximum of 

(2.5) 

over all strategies k. If the social vaIue of the innovation is equal 
to its private vaIue, as is the case if the winner can establish a per
fectIy discriminatory monopoly, then the cooperative equilibrium 

5The relationship between the distribution over discovery dates and the 
distribution over payoffs is 

where x = e-rt
. If F(t, k1) - F(t, k2 ) changes sign exactly once at the 

point t = t', then H(x, k1 ) - H(x, k2 ) changes sign exactly once at the point 
x = e-rt'. 
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is also the social optimum. The strategy that maximizes (2.5) is 
referred to below as the social optimum. 

Generally, the competitive game may possess several equilib
ria, symmetric and asymmetric. Here, the focus is first on sym
metric equilibria, for which the following proposition is established 
in the appendix. 

Proposition 2.1 There exists at most one symmetric competi
tive equilibrium. 

Proposition 2.1 applies very generally - it is not limited to 
distributions that can be ranked according to riskiness. It also 
holds in situations where there is nonzero probability that the in
novation is never achieved, i.e., when limt-tooF(t, k) < 1. Notice 
also that Proposition 2.1 does not guarantee the existence of a 
symmetric equilibrium. Indeed, it is easy to construct counterex
amples in which no symmetric equilibrium exists. 

In the comparison of market equilibrium with the social opti
mum, a crucial role will be played by the function 

_ f(t,k) 
h(t, k) = 1- F(t, k)" 

The function h( t, k) is often referred to as the hazard rate. It gives 
the instantaneous probability of innovation; the probability that 
the innoyation takes place in the next small time increment ö.t is 
h( t, k )ö.t. The results presented later are based on the following 
assumption: 

Assumption 2.1 For all strategies in K, the hazard rate h(t, k) 
is nondecreasing in t. 

How restrictive is it to assume a nondecreasing hazard rate? 
Not very. There are both statistical and intuitive reasons for this 
assumption. A nondecreasing hazard rate is exhibited by not only 
all the probability distributions that exist in the patent race litera-
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ture but by virtually all other distributions as well.6 For exampIe, 
the gamma distribution (which is often the preferred probability 
model for waiting times) and the exponential distribution and the 
normal distribution(as Iimiting cases of the gamma distribution) 
fall into this class.7 The Weibull, extreme vaIue, and uniform 
distributions also have nondecreasing hazard rates. 

Intuitively, an increasing hazard rate can be viewed as resuIt
ing from knowledge accumuIation. Suppose the instantaneous 
probability of success of a research team is a function not only of 
the flow of resources devoted to the project, but also of the ex
perience of the group and the reIevant knowledge on the subject. 
Then as experience and knowledge accumuIate over the course of 
research, the hazard rate should increase accordingly - at Ieast 
when the resources are kept constant, as is assumed here.8 

The anaIysis has so far impIicitIy assumed that when choosing 
a strategy, a firm commits itself to following that strategy to the 
end of the game.9 With this restriction, the game is essentially a 
static one. What happens if firms are allowed to switch to another 

6The most widely used parametric probability distribution is the expo
nential distribution, for which the hazard rate is constant (see, for example, 
Loury 1979, Dasgupta and Stiglitz 1980a). The reason for the frequent use 
of the exponential distribution has probably more to do with computational 
simplicity than anything else. In models with knowledge accumulation, the 
hazard rate is typically increasing (Reinganum 1979). In models with more 
general distributions, the assumption of constant or increasing hazard rate 
is commonplace - so much so that it is often made without providing any 
justification (see the survey by Kamien and Schwartz 1982, p.115, 180). 
Grossman and Shapiro (1986) offer a discussion of the role of the hazard 
rate. 

7Having infinitely long tails, the normal distribution is not feasible in the 
current framework. One can, however, easily construct a sequence of.feasible 
distributions with nondecreasing hazard rates that converges to the normal 
distribution. 

8 Actually, Reinganum (1979) shows that if firms are allowed to change 
their R&D investment over the course of the race and knowledge accumulates, 
then it is optimal for the firms to increase also the rate of R&D investment 
over time. This serves to further strengthen the upwardness of the hazard 
rate. 

9This practice is also followed in each of the previous papers mentioned 
above. 
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strategy at any time during thegame? The problem is, that even 
if all strategies in K can be ranked by the definition of risk given 
in the previous section, the same is not generally true for the new 
strategies formed by switching from one strategy to another at 
some point of the game. Therefore, commitment will be assumed 
throughout the paper. The following proposition demonstrates 
that this assumption is not always restrictive. For the proof of 
this proposition, see the Appendix. 

Proposition 2.2 Let Assumption 2.1 hold and let kc be the sym
metric competitive equilibrium given the strategy space K. Then 
kc is a subgame perfect equilibrium also when switching to other 
strategies is allowed. 

Proposition 2.2 establishes that if hazard rates increase over 
time, then in a symmetric equilibrium, sticking to the original 
strategy throughout the game is optimal at each point of time 
even if switching is allowed. 

The following proposition states the main result of this chap
ter. (AIso proved in the appendix.) 

Proposition 2.3 Let Assumption 2.1 hold and let kc be a sym
metric competitive equilibrium and ks be the socially optimal (co
operative) solution for n ~ 2 firms. Then ks is riskier than kc' 

Hence, whether the market is biased against riskiness depends 
on the behavior of the hazard rate. If the hazard rate is ev
erywhere nondecreasing for both the market equilibrium strategy 
and the socially optimal strategy, then the market equilibrium 
is always less risky than the social optimum. Intuitively, nonde
creasing hazard rate guarantees that there is sufficient mass'in the 
right tale of the distribution over t (i.e. at low payoffs) so that 
when a competitor shifts to a riskier strategy, the gain from the 
increased probability of winning at high t's more than outweighs 
the decreased probability of winning at low t's. Notice that a 
nondecreasing hazard rate does not imply that the distribution 
is left skewed; it is consistent with positive as well as negative 
skewness. 
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The result in Proposition 2.3 differs markedly from the find
ings of Klette and de Meza (1986). The reason for this difference 
is straightforward. In the model of Klette and de Meza an in- -
crease .in risk, i.e. a mean preserving spread in the distribution, is 
alw~ys deSirable. A firm gains more risk only by investing more 
in R&U.'Increasing the riskiness of a firm's strategy always exerts 
a negative externality on its competitors. Since the firm does not 
take this into account, it "buys" too much risk, from society's 
viewpoint. Thus, in the model of Klette and de Meza, the result 
that market equilibrium involves a riskier strategy than the so
cial optimum is a consequence of the tendency of the market to 
overinvest in R&D rather than evidence of a bias against risk. 

In the present model, the new definition of risk makes it un
necessary to resort to variable costs in order to obtain interior 
solutions. A spread in the distribution may be accompanied by 
a change the mean value as well, and hence risk is not inherently 
desirable. The choice concerns only the riskiness of the project 
- the overinvestment effect does not exist. 

As noted above, the compensated measure of risk used here 
and the definition based on mean preserving spread are not mu
tually exclusive. It may be that the social optimum and the com
petitive equilibrium can be ranked using both measures. How 
does the result in Proposition 2.3 relate to previous results in this 
case? First, notice that the result of Klette and de Meza appIies 
only for symmetric distributions. If both in the socially optimal 
solution and in the competitive equilibrium the distributions ~re 
symmetric, have identical means, and are such that their distribu
tion functions intersect exactly once, then both Proposition 2.3 
and the result by Klette and de Meza apply. This means that 
one distribution is riskier by Definition 2.1 and the other by the 
definition based on mean preserving increase in risk. But since 
the two definitions never contradict the solutions have to be in
dentical. For asymmetric distributions, the two solutions either 
coincide or the social optimum is riskier by both measures. 
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2.4.2 Asymmetric Equilibria 

The above analysis has followed previous papers by assuming that 
the equilibrium is symmetric; that is, every firm chooses the same 
strategy. When both the market equilibrium and the social op
timum are assumed symmetric, one gains not only mathematical 
but also conceptual simplicity; the comparison of the two solu
tions is identical to comparison of two distributions. If one wants 
to allow for asymmetric equilibria, the comparison of the solutions 
becomes much more difficult. The market equilibrium as well as 
the social optimum may consist of n different distributions instead 
of just one. Only in the case where every strategy played in the 
market equilibrium is riskier than all strategies involved in the 
social optimum, could the two solutions be definitively ranked . 
This certainly is not the case generally. Comparing the joint prob
ability distributions of the discovery date is not possible either; 
the joint distributions cannot generally be ranked by a measure of 
risk even if the individual distributions can. If one wants to fur
ther generalize the analysis by allowing firms to be of different size 
or to choose the R&D investment level endogenously, the compli
cations involved make a general comparison of the two solutions, 
for all practical purposes, impossible .. 

To allow for the introduction of such asymmetries in the 
model, this su bsection examines the risk choice from a partial 
equilibrium point of view. Each firm chooses both its level of 
R&D investment and research strategy. It is assumed that for 
any given level of R&D investment, the distribution functions of 
any two strategies intersect exactly once, and thus they can be 
ordered by the compensated measure of risk as defined above. 
The question asked is: Given the resources invested in R&D and 
all the choices made by other firms, could welfare be improved 
by adopting a strategy other than the individual optimum for the 
particular firm and, if so, is there a systematic bias in the risk
iness of the individual optimum? As before, the level of R&D 
investment is taken as given. Allowing the social planner to ad
just both the strategy and the scale of the R&D activity would 
make general comparison between risk choices impossible - first, 
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because an explicit specification of the R&D production function 
would be needed and secondly, because it would not be reasonable 
to expect any measure of risk to apply across all strategies and 
alllevels of R&D investment.10 

It turns out that using the partial approach, very strong results 
follow. The following proposition is proved in the Appendix: 

Proposition 2.4 Let Assumption 2.1 hold. Then, given the 
strategies played by the other firms and the RBD investments of 
all firms, the individually optimal strategy ki for firm i is less risky 
than the socially optimal choice kis . 

Proposition 2.4 applies very generally. It holds for any asym
metric equilibrium as well as in the case where the competitors' 
choices are not optimal. It does not depend on the sizes of the 
R&D projects. The two crucial elements are that the strategies 
played by the competitors have a nondecreasing hazard rate and 
that the distribution function of the socially optimal strategy in
tersects that of the individually optimal strategy exactly once. 
From these assumptions it follows that society always prefers a 
(weakly) riskier strategy than is individually optimal for firm i. 

Overall, the results of this section are quite strong. It has been 
shown that if each firm chooses its strategy to maximize individual 
expected profit, the symmetric market equilibrium is less risky 
than the socially optimal strategy, defined as the strategy· that 
maximizes industrywide expected profits. This bias against risk 
appIies also in the level of an individual firm: the strategy that 
maximizes an individual firm's profit is always less risky than the 
strategy that maximizes industrywide profits, independently of 
whether or not the other firm's choices are optimal in any sense. 

lOTo illustrate the difficulty of ranking the riskiness of R&D projects of 
different size, consider the comparison of a project of size zero with another, 
very large project. It would be implausible to assume that the distribution 
functions for the discovery date always intersect; i.e. that there always exists 
some range of t for which the infinitesimally small R&D lab is more likely to 
attain the solution than the very large one. 
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2.5 A Modification: Stochastic Payoffs 

In this seetion, the results of the previous seetion are reprodueed 
using the framework of Dasgupta and Maskin (1987) and Bat
taeharya and Mokherjee (1986). Whereas in the patent raee 
framework the ehoiee was over different distributions of the dis
eovery date, here the game is east direetly in terms of distributions 
of payoffs. Firm i ehooses its strategy ki E K, whieh gives rise to 
a probability distribution H(x, ki ), where x E [0, x] is the value of 
the innovation. All the strategies in K ean be ordered by riskiness 
aeeording to Definition 2.1. Again, risk eomparison reduees to the 
single-erossing eondition; strategy k1 is riskier than strategy k2 if 
H(x, k1) interseets H(x, k2 ) onee and from above. 

Only the firm that realizes the most valuable innovation ae
tually reeeives the payoff - i.e. the winner-take-all assumption 
is retained. This framework ean be interpreted, for example, as 
the redueed form of a game in whieh firms first undertake eost 
reducing investment and then engage in Bertrand eompetition in 
the produet market. If there is a small fixed eost involved in the 
produetion, only the single firm with lowest produetion eost en
ters the market. The diseounted value of the monopoly profits 
the firm gets ean be interpreted as the value of the innovation x. 

Henee, firm i seeks to maximize 

!oli xh(x,k) rr.H(x,kj)dx 
J-r-~ 

(2.6) 

over all strategies k. The function h(x, k) is the probability den
sity funetion eorresponding to the distribution H(x, k). Expres
sion (2.6) is the expeeted payoff where eaeh x is weighted by 
IIj"/=i H(x, kj), which is the probability that no other firm realizes 
a more valuable innovation. 

Here the role of hazard rate is taken by the elasticity of the 
eumulative distribution funetion 

_ xh(x, k) 
z(x, k) = H(x, k) . 

Assumption 2.1 is modified aeeordingly: 
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Assumption 2.2 For all strategies k in K, the elasticity func
tion z(x, k) is nonincreasing in x. 

It can be shown that z decreases weakly in x for almost all 
common nonnegative distributions, such as the uniform, exponen
tial, log-normal and gamma distributions. The normal distribu
tion also falls into this class as a limiting case. Notice that while 
in the previous section nondecreasing hazard rate means that the 
right tail has sufficient mass, here it is the left tail that needs to 
be sufficiently thick. ll 

Propositions 2.3 and 2.4 can now be modified to yield: 

Proposition 2.5 Let Assumption 2.2 hold. Then the symmetric 
social optimum is riskier than the symmetric. market equilibrium 
strategy. 

Proposition 2.6 Let Assumption 2.2 hold. Let the strategies 
played by firms other than firm i be given. The socially optimal 
choice of firm i is riskier than the individually optimal strategy. 

These propositions can be directly contrasted with those in 
Dasgupta and Maskin (1987). They obtained the result that if 

llThat noninereasing elasticity of the distribution funetion is equivalent to 
nondeereasing hazard rate in the previous seetion ean be shown as follows. 
The relationship between the payoff and the diseovery date is x = e-rt , and 
the distribution over the diseovery da;te is related to the distribution over the 
payoff aeeording to 

Henee 

f( ~) 1 xh(x) x - r Xr 

H(x) = l-F(-~) 
1 f(t) 

=;:l-F(t)' 

from whieh the equivalenee is evident. 
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distributions can be ordered according to second-order stochastic 
dominance, if the cost of R&D increases with riskiness, and if 

1 + xh:r;(x, k) > 0 
h(x, k) - , (2.7) 

then the market solution is excessively risky. On the other hand, 
the condition for decreasing elasticity in Assumption 2.2 can be 
written.as 

1 + xh:r;(x, k) _ xh(x, k) < O. 
h(x, k) H(x, k) -

(2.8) 

The effect of the different assumptions can be explained as fol
lows. A move toward riskiness infiicts a twofold externality on 
its rivals: it decreases the competitors' chances of winning at low 
payoffs but increases them at high payoffs. Condition (2.7) re
quires that probability distributions have sufficient mass at the 
high payoffs so that in the model of Dasgupta and Stiglitz, the 
latter effect dominates the former. For the present model, on the 
other hand, condition (2.8) guarantees that what happens at low 
payoffs is more important, and thus the externality caused by a 
move towards riskiness is positive. 

Again, this explains only part of the difference. The two con
ditions are not mutually exclusive; both hold, for example, in 
the case of the uniform distribution. As in the previous section, 
this is explained by the tendency of the market to overinvest in 
R&D. In the model of Dasgupta and Stiglitz, the only way a firm 
can increase its probability of winning is by shifting to a riskier 
strategy. 

2.6 Conclusions 

Several studies analyzing the relation of market structure and the 
choice of research strategy conclude that the market is biased 
toward riskiness. The analysis of this chapter shows that under 
certain plausible assumptions the opposite is true: for practically 
all common distributions of payoffs, risk-neutral firms choose a 
more conservative strategy than is socially optimal. 
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This disparity in the results originates from two differences 
in the framework. First, it is assumed here that the probability 
distributions have sufficient mass at the low payoffs so that the 
externality from a firm shifting to a riskier strategy is positive. In 
the case of patent races, a sufficient condition for this is that the 
hazard rate increases over time. This distributional assumption 
is relatively weak and is fulfilled by all common distributio:us. 

Secondly, and more importantly, the earlier studies defined 
risk in a way that makes it desirable; in the class of symmetric 
distributions a risky strategy is always preferred to a safe strategy 
by individual firms as well as by society. Interior solutions are 
then obtained only by letting the cost of the project increase with 
riskiness. The outcome of such a model is that firms tend to 
"buy more risk" than is socially desirable. It is argued above that 
since the possible bias in the risk choice intermingles with the 
tendency of firms to.overinvest in patent races, this result cannot 
be interpreted as evidence of a bias toward risk. 

In this paper, a measure of compensated risk is adopted; an 
increase in risk is compe1?-sated with a change in the mean of 
the distribution. This approach facilitates interior solutions with
out having to resort to variable cost of R&D. It is shown that 
when the risk choice is analyzed separately the original results 
of Dasgupta and Stiglitz (1980) are retained in a stronger form: 
market equilibrium is biased against riskiness in both symmetric 
and asymmetric situations. 

The policy intepretation of the analysis is that in a compet
itive setting similar to the one described in the present chapter, 
risk taking should be encouraged. Indeed, R&D subsidies that 
effectively deerease the risk involved in R&D projects are being 
used in many countries; in Japan, for example, the govetnment 
provides designated loans for R&D projects with the condition 
that the loan is paid back only to the extent that the profits cre
ated by the project cover the loan. 
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Appendix to. Chapter 2 

The following two lemmas are used in the proofs: 

Lemma A2.1: Let M(X) and e(x) be two functions, not identically 
zero, on the nonnegative real axis with the following properties: 

(i) M(X) > 0, if 0 < x ::; x' 
(ii) M(x) < 0, if x 2: x' 

(iii) 10
00 

M(x) dx. > 0 

(iv) e(x) > 0 for x > 0 
(v) e'(x) < 0 for x 2: o. 

Then Jooo M(X)e(X) dx 2: O. This inequality is strict if the inequal
ity in (iii) is strict. 

Proof: N otice that these properties imply that J~ M( x) dx 2: 0 for 
all s > O. Integration by parts yields 

((X) M(X)e(X) dx = lim ~(x) r>o M(S) ds - r>o e/(s) rs M(x) dxds. 
Jo x->oo Jo Jo Jo 

The first term on the r.h.s. is positive by properties (iii) and (iv). 
The integrand in the second term is negative by property (v) and 
the fact that J~ M(X) dx 2: O. Thus the expression is positive and 
the lemma is proved. 

Lemma A2.2: For all positive unequal real numbers x and y and 
integer n 2: 2, 

Proof The Lemma is an intermediate result in the proof of The
orem 41 in Hardy, Littlewood and P61ya (1952). 

Proof of Theorem 2.1. Sufficiency is shown first. Let condition 
(2.3) hold; then H1 and H2 intersect exactly once at point x*, 
where H 1 - H 2 changes sign from positive to negative. Let Uj be 
a nondecreasing bounded utility function for which (2.1) holds. 
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Integrating equation (2.1) by parts produces an equivalent condi
tion 

Notice that the integrand changes sign exactly once (at the in
tersection point of the distribution functions) and qualifies as the 
function j.t(x) as defined in Lemma A2.1. 

It then holds fOI any increasing and concave transformation c/J 
of Uj that 

10
00 

c/J(uj(x))dH1(x) - 10
00 

c/J(Uj (x))dH2 (x) 

= [c/J(Uj(x)) (H1(x) - H2(X))l~ 

-100 

c/J'(Uj(x))uj(x) (H1(x) - H2(x)) dx 
00° 

= - 10 c/J'(Uj(x))uj(x) (H1(x) - H2(x)) dx. 

Since the function c/J' ( Uj (x)) qualifies as function e (x) as defined 
in Lemma A2.1, the expression is nonpositive. This proofs the 
sufficiency part. 

To prove the necessity part, notice that as the difference of 
two dis~ribution functions, H 1 - H 2 ~s continuous from the right. 
It follows that if condition (2.3) fails to hold, it must fail in a set 
of nonzero size. Thus, if condition (2.3) is violated, there exist 
two convex sets A C R+ and B C R+ of nonzero size such that 
sup A ::; inf B and H1(x) - H2(x) < 0 fOI x E A and H1(x) -
H 2(x) > 0 for x E B. Define ZA and ZB as 

ZA = - JA H1(x) - H2(x)dx 
ZB = fB H1(x) - H2(x)dx. 

Clearly, ZA, ZB > O. Define the utility function Uj as follows: let 
Uj(O) = 0 and Uj(x) be the integral of 

ifxEA 

{ 

ZB 

uj(x) = ZA ,if x E B 
o ,otherwise. 
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It then holds that 

((X) Uj(x)dH1(x) _ ((X) Uj (x)dH2 (X) 
Jo 00 Jo 

= -l uj(X) (H1(x) - H2(x)) dx 

= - I uj(x) (H1(x) - H2(x)) dx 

-1 uj(x) (H1(x) - H2(x)) dx 

= -ZB 1 (H1(x) - H2(x)) dx 

-ZA k (H1(x) - H2(x)) dx 

= ZBZA - ZAZB 

=0. 

Thus, condition (2.1) holds and the shift from H1 to H2 is mean 
utility preserving for Uj. For any increasing and strictly concave 
transformation c/J 

10
00 

c/J(Uj (x))dH1 (x) - 10
00 

c/J(uj(x))dH2(x) 

= - 10
00 

c/J'(Uj (x))uj (x) (H1(x) - H2 (x)) dx. 

(A2.1) 

The function -uj(x) (H1(x) - H2(x)) changes sign only once from 
positive to negative, and its integral over R+ is zero, so it satisfies 
the conditions required of function JL(x) in Lemma A2.1. On the 
other hand, c/J' ( Uj (x)) decreases weakly in x so it qualifies as the 
function ~(x). It then follows from the lemma that the expression 
in (A2.1) is positive, violating condition (2.2). Hence, H1 cannot 
be riskier than H 2 by Definition 2.1 and necessity is established. 

Proof of Proposition 2.1. The proposition is proved by contradic
tion. Let k1 be a competitive equilibrium of an n-firm race and k2 

any other strategy such that F(t, k2) =1=- F(t, k1) ior some t. From 
the definition of an equilibrium we know that 

(A2.2) 
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It will be shown that for all strategies k2 it holds that if n - 1 
other firms play k2, then the nth firm prefers strategy k1 to k2,~ 
and hence k2 cannot constitute a symmetric equilibrium. 

Suppose the contrary holds; Le. 

100 

e-rtf(t, k2)(1 - F(t, k2))n-l dt 
o (OO 

~ Jo e-rtf(t, k1)(1- F(t, k2)t-1 dt. 

(A2.3) 

Combining the inequalities (A2.2) and (A2.2) yields 

10
00 

e-rt(f(t, k1) - f(t, k2)) (A2.4) 

x [(1 - F(t, k2))n-l - (1 - F(t, k1))n-l] dt < o. 

The expression on the 1.h.s. of this inequality can be written 

10
00 

(f(t, k1) - f(t, k2 )) 

x [(1 - F(t, k2 )) - (1- F(t, k1))] G(t)dt, 

where 

G(t) [(1 - F(t, k1 ))n-2 + (1 - F(t, k1))n-3(1 - F(t, k2)) 
+ ... + (1- F(t, k1))(1- F(t, k2 ))n-3 

+(1- F(t, k2))n-2] e-rt 

The function G(t) is positive and strictly decreasing and ap
proaches zero as t grows without bound. Hence, 
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where the last inequality follows from the fact that G'(t) < O. 
Thus 

1000 

e-rt(j(t, k1) - f(t, k2)) (A2.5) 

x [(1 - F(t, k2))n-l - (1 - F(t, k1))n-l] dt> O. 

This contradicts with (A2.4); inequality (A2.3) cannot hold. If 
k1 constitutes a symmetric equilibrium, a firm would still prefer 
k1 to k2 even if the other firms were playing k2• This means that 
k2 cannot constitute a symmetric equilibrium. Hence, k1 must be 
the unique equilibrium. The proof is complete. 

Proof of Proposition 2.2. The formal proof of Proposition 2.2 
is straightforward but lengthy. The outline of the proof goes as 
follows: 

Let kc constitute a symmetric competitive equilibrium. De
note (the current value of) the aggregate expected profit of all 
firms at time s by v(s, kc). It can be shown that since the hazard 
rate increases over time, v(s, kc ) increases over time as well. It 
follows that the individual expected profit, equal to v(s, kc)/n, 
also increases over time. 

Denote the expected profit at time s of a firm that at that 
time shifts from the equilibrium strategy kc to another strategy 
kj by d(s, kj). Since the hazard rate of the competitors increases 
over time, d(s, kj) decreases over time. The shift from strategy kj 
is profitableonly if d(s, kj) > v(s, kc)/n. 

By the definition of equilibrium d(O, kj) ::::; v(O, kc)/n. But 
since d decreases and v increases in s, it must be that d( s, kj) ::::; 
v(s, kc)/n for all s > O. Hence, deviating is never strictly prof
itable and playing kc is a subgame perfect equilibrium. 

Proof of Proposition 2.3. Assume the contrary: Let kc be the 
symmetric competitive equilibrium for n firms, and let the socially 
optimal strategy ks be strictly less risky than kc • 

_ The social optimizer maximizes the expected present value of 
the patent over all symmetric solutions. The problem can be 
written as one of maximizing 

(A2.6) 
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over all strategies k. Thus 

(OO e-rtf(t, ks)(l- F(t, ks))n-1dt 
Jo 00 

> 10 e-rt f(t, kc)(1- F(t, kc)t-1dt. 

It was shown in the proof of Proposition 2.1 that if strategy kc 

is a symmetric equilibrium, then for any other strategy, if all 
n - 1 other firms play that strategy, then the nth firm still prefers 
strategy kc to it. The same appIies to strategy ks , so 

Combining these two inequalities gives 

10
00 

e-rt f(t, kc) 
x [(1 - F(t, ks))n-l - (1 - F(t, kc))n-l] dt > O. 

(A2.7) 

Integrating (A2.6) by parts shows that the social objective can 
be represented equivalently as one of minimizing 

10
00 

e-rt(l - F(t, k))ndt 

over all strategies k. Thus, it must hold that 

10
00 

e-rt [(1 - F(t, ks)t - (1- F(t, kc)n] dt < O. (A2.8) 

Multiplying this by (n - l)/n and using Lemma A2.2, equation 
(A2.8) implies that for nonidentical functions F(t, ks) and F(t, kc) 

10
00 

e-rt (1 - F(t, kc)) (A2.9) 

x [(1 - F(t, ks))n-l - (1 - F(t, kc))n-l] dt < O. 

The negative of the integrand can be verified to satisfy the condi
tions for function j.t in Lemma A2.1. By assumption, the hazard 
rate f(t, kc)/(l- F(t, kc)) increases in t, and thus qualifies as the 
function ~. According to the lemma, (A2.9) then implies that 

/000 e-rt f(t, kc) (A2.10) 

x [(1 - F(t, ks))n-l - (1 - F(t, kc))n-l] dt < O. 
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But this contradicts with A2.7; thus, kc cannot be riskier than ks 

and the proposition is established. 

Proof of Proposition 2.4. Define the distribution function G(t) as 

1- G(t) = II(1- F(t, kj)), (A2.11) 
ji.:i 

where kj is the strategy played by firm j. Hence, G(t) is the 
distribution of the first innovation by firms other than i. The 
corresponding density function g(t) is then given by 

It is immediately seen that g(t)/(1 - G(t)), the joint hazard rate 
of firms other than i, is the sum of the individual hazard rates 
f(t, kj )/(1- F(t, kj)), and thus nondecreasing by assumption. 

Suppose that given G(t) firm i prefers strategy ki , which is 
strictlyriskier than the socially optimum strategy ks . Then it 
holds that 

(A2.12) 

Again, given G(t) the social planner's problem can be represented 
as one of choosing ks to maximize 

10
00 

e-rt [(f(t, ks )(1 - G(t)) + g(t)(1 - F(t, ks ))] dt, 

or alternatively, to minimize 

10
00 

e-rt (1 - F(t, ks ))(1 - G(t))dt. 

Thus 

100 

e-rt [(f(t, ks )(1 - G(t)) + g(t)(1 - F(t, ks ))] dt 

(A2.13) 

(A2.14) 

o JOO 
> Jo e-rt [(f(t, ki )(1 - G(t)) + g(t)(1- F(t, ki ))] dt. 
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Combining this with (A2.12) gives 

10
00 

e-rtg(t) [(1- Fk.(t)) - (1- Fki(t))] dt > O. (A2.15) 

Since ks minimizes (A2.14), the following holds 

Multiplying the integrand of (A2.14) by the increasing function 
g(t)/(1- G(t)) retains, by Lemma A2.1, the sign of the inequality 

10
00 

e-rtg(t) [(1 - F(t, ks )) - (1 - F(t, ki ))] dt < O. 

This contradicts with (A2.15): ki cannot be riskier than ks . The 
proof is established. -

Proof of Proposition 2.5. Let the opposite hold: assume that kc 

is riskier than ks ' Then since kc maximizes (2.6), the following 
holds: 

fox x (h(x, kc) - h(x, ks)) H(x, kct-1dx > O. 

Parallelly to the proof of Proposition 2.1, it can be shown that ks 

cannot be an equilibrium, and that a firm still prefers strategy kc 

if other firms play ks : 

foX x (h(x, kc) - h(x, ks )) H(x, kst-1dx > O. 

The social planning problem is to maximize 

fox xh(x, k)H(x, kt-1dx. 

Thus, it follows that 

(A2.16) 

(A2.17) 

fox xh(x, ks)H(x, ks)n-1dx > fox xh(x, kc)H(x, kct-1dx. (A2.18) 

Combining (A2.16) and (A2.18) yields. 

fox xh(x, kc) [H(x, kst-1 - H(x, kct-1
] dx > O. (A2.19) 
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The social optimizer's maximizing problem (A2.17) can be 
stated equivalently as one of minimizing 

Thus, it follows that 

which, according to Lemma A2.2, implies that 

Multiplying this by the nonincreasing function xh(x, kc)/ H(x, kc ) 

retains, by Lemma A2.1, the sign: 

This contradicts with (A2.19) and establishes the proposition. 

Proof of Proposition 2.6. The proof of this proposition follows the 
method used in the proof of Proposition 2.4 and is omitted. 
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3 Market Structure and 
the Propensity to Patent: 
Patenting or Secrecy? 

3.1 Introduction 

What is the optimal firm size for technological innovation? 1s a 
large number of small R&D labs better than a few big ones? 1n 
other words, what are the scale economies of innovative work? 
A hypotheses most commonly associated with Schumpeter - al
though part of the credit belongs to J .K. Galbraith - is that large 
firms are the natural breeding ground for innovation. The natu
ral advantage may be related to greater ability to diversify risk 
in a large firm, to the ability to implement new technologies on a 
larger scale, or to increasing returns to scale inherent in R&D. 

This view has been challenged by a series of empirical stud
ies examining the relation between firm size and R&D input and 
output (see Mansfield, 1968a, 1968b, 1977, and Scherer, 1965, 
1983). Empirical research seems to indicate no systematic devia
tion from linearity in the relation between firm size and patenting 
(i.e. R&D output) but gives some evidence in favor of a convex 
relationship between firm size and R&D input. Thus, if anything, 
these studies suggest that there are decreasing returns to scale in 
innovation. 

The problem with these empirical studies is, of course, the 
poor quality of the data. More precisely, the measurement of 
R&D output is extremely difficult. The most widely used proxy 
for innovative output is the number of patents. This poses at 
least two problems. First, patents are extremely heterogeneous 
products, with their market value varying from zero to very high. 
Another potential complication that seldom receives attention is 
that sometimes it may be beneficial for an innovator not to patent 
an innovation. 1ndeed, as Schmookler (1966) and Branch (1973) 
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found, there has been an increasing discrepancy between patent
ing and the actual pace of innovation, especially in the post
war period. Reduced incentive to patent innovations has been 
attributed to a more hostile political and legal attitude toward 
patents. Freeman (1982, p. 136) asserts that although there has 
been a tendency to assume that large firms have a higher propen
sity to patent than small firms and thus that studies measuring 
inventive output using patent statistics would understate the con
tribution of small firms, the opposite seems to be true. This view 
is supported by Schmookler (1966, p. 33), who presents convinc
ing evidence that large firms in the United States have a lower 
propensity to patent than small ones. The work by Scherer (1984, 
p. 179) and, using British data, Smyth, Samuels and Tzoan
nos (1972) provide similar results, at least for many industries. 
Scherer suggests that this may be because the inventive output of 
larger firms includes a higher proportion of unpatentable contri
butions to pure knowledge or because patents afford less marginal 
benefit to large firms than their smaller and more vulnerable com
petitors. If it is true that larger firms have a lower propensity to 
patent their innovations, the effect on the interpretation of the em
pirical studies mentioned above would be considerable; instead of 
being an indication of diminishing returns on R&D, the relatively 
poor R&D output (measured by number of patents) of large firms 
might be the result of systematic measurement error. 

This chapter builds a model of innovation that offers an expla
nation for this empirical observation. The point of departure is 
the assumption that patenting involves disclosure, which reveals 
useful information to the competitors. In the model, firms patent 
their intermediate innovations only if they want to license them 
to the competitors.1 If licensing is not desirable, firms keep their 
jnnovations secret. It is shown that the incentive to patent and li
cense an intermediate innovation is lower the more concentrated is 
the market structure and, depending on the informational struc-

1 Actually, it is also a possible that a firm would use patenting as a signal 
of the state of its research project without licensing the innovation, as shown 
later in this chapter. 
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ture, large .firmi may have less incentive to patent innovations 
than their smaller competitors. 

There has been practically no work done which seeks to con
nect the prbpensity to patent with firm size or market concentra
tion. There is a rather extensive literature on when it is optimal 
for a firm to license a patented innovation (see e.g. Gallini 1984, 
Shapiro 1985, Hill 1992), but the role of firm size has been a 
mere footnote in this literature. One reason for this is that the 
typical framework, in which the innovation reduces the unit cost 
of production, does not readily lend itself to such analysis; there 
is no state variable that could be intepreted as size. One might 
consider adding capacity constraints to play this role, but the re
sulting calculations are likely to be messy. In the present model, 
"size" means the size of the R&D lab, which is assumed to remain 
constant throughout the game. 

Although ofIering an alternative explanation for an empiri
cal observation that seems to dispute Schumpeter's hypothesis, 
the results can hardly be intepreted as "Schumpeterian"; they 
do not support Schumpeter's central idea that concentrated mar
ket structure is optimal for technological progress. However, it is 
suggested that the reason why a concentrated market structure 
may perform worse than atomistic competition is not decreasing 
returns to scale in R&D, but the tendency of concentration to de
crease the sharing of intermediate innovations and thereby to slow 
the dissemination of new knowledge. This explanation adds an
other dimension to the discussion of the optimal market structure 
for inducing technological progress. The model in this chapter 
shows that the relation between the degree of concentration and 
wasteful duplication is not necessarily monotonic. Instead, the 
degree of duplication first increases with the number of competi
tors, but decreases (and actually disappears) after some threshold 
point where the licensing of innovations becomes commonplace. 

This chapter is organized as follows. The next section intro
duces the basic setup of the model. Since informational assump
tions play a crucial role in many respects, the actual analysis is 
divided in two parts. Section 3.3 presents the results under com
plete information; that is, when a firm can monitor the stage of its 
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competitors' R&D programs. In section 3.4 information is incom- . 
plete; it is assumed that firms cannot observe the state variables. 
The last' section concludes the chapter. 

3.2 The Basic Setup 

The market consists of n identical, risk-neutral firms. In the tra
dition of patent races, these firms compete for a single final in
novation, the value of which is normalized to unity. This prize is 
captured entirely by the single firm that first patents the final in
novation. This winner-takes-all assumption, although unrealistic, 
is standard in patent race literature and considerably simplifies 
the calculations. 

The path to the final innovation consists of two stages. In the 
first stage, each firm tries to develop an initial technology. A firm 
needs to have access to an initial technology before it can proceed 
to develop the final innovation. Having an initial technology does 
not produce a direct payoff - the only benefit is that it enables 
a firm to proceed to the final stage of the game, i.e. to develop 
the final innovation. Nevertheless, being the first firm to develop 
an initial technology is valuable, not only because it gives the 
firm a head start, but also because the initial technology can be 
patented and licensed to other firms. , 

While there is only a single, well defined final innovation, the 
number of possible initial technologies is assumed to be large so 
that if two firms independently develop their own initial technolo
gies, the probability that the two technologies are similar enough 
that patenting one would preclude the use of the other is zero. 
On the other hand, all initial technologies are perfect substitutes 
for each another. Thus, even though in a legal sense there is no 
duplication, from a technological point of view, developing more 
than one initial technology is wasteful. 

Thus, after a firm has developed an initial technology, it has 
several options: It can keep the technology secret and move on to 
the second stage alone, it can patent the technology and retain 
exclusive rights to the use of the it, or it can patent the technology 

62 



and license it to one or more other firms. If the firm decides to 
keep the technology secret, then no other firm will know about its 
existence and the R&D efficiency of other firms is unaffected. If, 
on the other hand, the firm decides to patent the initial technol
ogy the situation is more complicated. An assumption that plays 
a crucial role in the analysis is that by patenting an initial technol
ogy, a firm produces knowledge spillovers that enhance the ability 
of competing firms to develop their own initial technologies. The 
rationale behind this assumption is that patenting always involves 
some degree of exposure. Although complete secrecy regarding an 
innovation is seldom possible, patenting certainly reveals more in
formation about the technology than competitors would otherwise 
obtain. Moreover, when there are a large numberof variations of 
the same innovation, it is easier to take an existing design and 
make the adjustments necessary to comply with patent laws than 
it would be to create a product from scratch. It is assumed that 
patenting is necessary in order to sell licenses for the use of the 
technology - if a firm licenses an unpatented technology to an
other firm, there is nothing to prevent the licensee from patenting 
the technology itself. Further, it is assumed that patenting is the 
only credible way to inform other firms that a firm has developed 
a technology. If a firm decides to keep its technology secret, then 
the other firms have no way to find out that the technology exists. 

Thus, when making the decision whether to patent a technol
ogy or not, a firm faces two conflicting incentives. On one hand, 
patenting enables the firm to sell licenses and extract immediate 
revenues from the technology. On the other hand, spillovers con
nected to patenting the technology reduce the value of alicense. If 
these spillovers are large, a firm may prefer to keep the technology 
secret and use it as an advantage in pursuing the final innovation. 

Since patenting a technology without licensing it does not pro
duce any revenue to the innovating firm but does help competing 
firms complete their own technologies, one is tempted to conclude 
that no firm would patent an initial technology unless it intended 
to license it to other firms. This, however, is not generally true. 
It will be seen later, that in some cases, it may be beneficial for 
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a firm to patent for strategic reasons without intending to license 
the innovation to anybody. 

The game takes place in continuous time. The flow of R&D 
inputs per firm is constant, exogenous and, for the sake of sim
plicity, assumed to be identical for all firms. R&D expenses are 
contractual, i.e. independent of the duration of the game. A firm 
cannot save money by, for example, giving up the race when it 
realizes it is hopelessly far behind. Also, there is no discounting; 
the present value of the patent remains at unity over an infinite 
time period. Thus, firms are only interested in their probability 
of winning the game and do not care about the duration. Neither 
of these assumptions - contractual costs and zero discounting
is likely to have a substantial effect on the main results. Their 
role is to simplify the analysis by transforming the game into a 
zero-sum game. 

R&D technology is stochastic at both stages. In the tradi
tion of patent races, the elapsed time before completion of an 
innovation (either the initial technology or the final innovation) 
is assumed to be an exponentially distributed random variable. 
In the first stage, the time it takes a single firm to develop an 
initial technology, when no firm has patented one, is distributed 
according to 

Fa(x, t) = 1 - e-ah(x)t, a> 0, (3.1) 

where x is the R&D input of the firm and h(.) is an increasing 
function determining the scale economies of R&D. Since x is same 
for all firms, h(x) will cancel out in all relevant subsequent calcu
lations and, without loss of generality, h(x) can be normalized to 
unity. Thus, (3.1) can be written as 

Fa(t) = 1 - e-at , a> O. (3.2) 

The corresponding density function is 

fa(t) = ae-at . 

The coefficient a is the instantaneous (Poisson) probability of in
novation, usually referred to as the hazard rate. If the initial tech
nology has not been completed by time t, the probability that the 
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a firm will develop it before time t + dt approaches a . dt as dt 
approaches zero.2 When one,firm patents an initial ltechnology, 
the R&D technology of those firms that do not have an initial 
technology changes to 

Fb(t) = 1 - e-bt, b > a. (3.3) 

The assumption b > a means that this probability distribution 
stochasticaily dominates Fa in the first order sense; patenting an 
initial innovation improves the R&D technolog.y of other firms. 

After a firm has gained access to some initial technology, it 
begins to pursue the final innovation. Again, it is assumed that 
the moment of the final innovation is exponentially distributed: 

Fc(t) = 1 - e-ct, c> O. (3.4) 

From these distributions, it follows that the probability distribu
tion for the duration of the whole two-stage R&D project, given 
that no other firm has patented or is expected to patent an ini
tial technology (that is, the firm will not be able to benefit from 
spillovers connected to patenting), denoted by Fac(t), is 

Fac(t) = IJ fa(s) Its fc(u)duds (3.5) 
IJ ae-as (1- e-c(t-s))ds 

{ 

ae-ct - ce-at 
1- ,ifa#c 

a-c 
1 - (1 + at)e-at ,if a = c. 

Similarly, the probability distribution for the duration of the R&D 
project for a firm without an initial technology, after another firm 
has patented one, is 

Fbc(t) = 1 - b _ c ' if b # c 
{ 

be-ct _ ce-bt . 

1 - (1 + bt)cbt ,if b = c. 
(3.6) 

Some additional informational assumptions are still needed to 
make the game well specified. We shall return to these assump
tions in the next section in the context of the actual analysis, 
where they are easier to put into perspective. 

2With a constant hazard rate a, both the expectation and the variance of 
the distribution is equal to lfa. 
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3.3 Concentration and Patenting: 
Complete Information 

In this section, it is assumed that information is complete in the 
sense that a licensee can verify that, at the time of the licens
ing agreement, the licensor does not have the final innovation 
ready and waiting to be patented. That is, a firm cannot "cheat" 
its competitors by keeping the initial technology secret until it 
finishes the final innovation and then, just before patenting and 
publishing the final innovation, license the initial technology to its 
competitors - a technology that becomes effectively worthless a 
moment later. The effect of allowing such a possibility is studied 
later in this chapter. 

The game may generally possess several equilibria, both sym
metric and asymmetric. Here the analysis is restricted to sym
metric equilibria. As will be seen, even with this restriction, 
more than one equilibrium may exist. The solution concept in 
the subsequent models is subgame perfect Nash equilibrium in 
pure strategies. First, the circumstances under which the imme
diate patenting of an initial technology is an equilibrium strategy 
is analyzed. Later, equilibria involving secrecy are examined. 

3.3.1 Patenting Equilibrium 

Let us denote the patenting strategy by Sp and define it as follows. 
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1. At the time the initial technology is ready, 

(i) if no other firm ha~ patented a technology before, patent 
the new technology immediately and license it to all other 
firms at the highest possible price; 

(ii) if one or more firms already have a patented initial tech
nology, keep the new technology secret. 

2. If before completing one's own initial technology, another 
firm offers a license to an initial technology, buy it if the 
price is lower than a threshold price 1r; otherwise, continue 
working on your own initial technology. 



Strategy Sp specifies rules for several contingencies. It tells 
what a firm does when it develops an initial technology, both in 
the case that no other firm has patented a technology before, and 
in the case when one or more firms have patented a technology. 
It also tells how to respond if another firm patents a technology 
and offers the firm a license for it. In the following, we examine 
the conditions under which strategy Sp is the optimal response 
from firm i when it expects all other firms to play that strategy 
as well. 

To establish the conditions under which Sp constitutes a sym
metric equilibrium, one needs to show that no unilateral deviation 
from strategy Sp is profitable. The space of possible deviations is 
very large and cannot be exhausted. Fortunately, however, this 
is not necessary; only a few candidates need to be considered. If 
we define the state of the game as the information about which 
firms have and do not have a patented technology, then strat
egy Sp is a Markov (or state space) strategy with respect to this 
state variable; it specifies rules as a function of the current state 
of the game. When the state changes (a firm patents an initial 
technology), strategy Sp specifies an immediate reaction. A gen
eral result of dynamic games states that if a player's opponents 
use Markov strategies, that player has a best response which is a 
Markov strategy as well - a firm has nothing to gain by play
ing a more complicated strategy.3 Thus, all strategies that are 
contingent on time, i.e. of the form "if A takes place, wait for a 
period sand then do E", can be ruled out as a direction in which 
to deviate. The optimal response to other firms playing strategy 
Sp must involve immediate responses. The set of such strategies 
is small and straightforward to analyze. 

In order to calculate the payoff from playing strategy Sp, one 
needs to specify the optimal licensing strategy. First, suppose 
that a firm succeeds in developing an initial technology before 
any other firm has patented one; then, knowing that other firms 
play strategy Sp (which involves immediate patenting), it cor-

3See e.g. Fudemberg and Tirole 1991. 
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rectly concludes that no other firm yet has an initial technology; 
Hence, alI its competitors are potentiallicensees. 

FolIowing Katz and Shapiro (1986), we characterize the opti
mallicensing strategy among the folIowing class of sales schemes. 
The licensor arranges a k-unit sealed bid auction, which may or 
may not involve a minimum bid. By arranging a k-unit auction, 
the licensor renounces its right to sell further licenses, even if not 
alI k licenses are sold. AlI n -1 competitors are alIowed to submit 
bids. Once the bids are submitted, the k licenses are sold to the 
k highest bidders for a fixed fee equal to the bid, provided those 
bids exeed the minimum bid. Ties are resolved by random choice. 

As in Katz and Shapiro, it is easy to show that in such a 
setting the optimal strategy takes one of the folIowing two forms. 
The licensor may offer k < n - 1 licenses for auction with no 
minimum bid. Alternatively, it may offer n - 1 licenses with a 
minimum bid equal to Iin (the expected payoff to a firm if every 
nrm has a license) minus the expected payoff to a firm if it is the 
only firm without alicense. In the present context, this result 
can be strengthened further. The following lemma is proved in 
the Appendix: 

Lemma 3.1 The Iicensor maximizes its expected payofj by ofjer
ing n - 1 Iicenses for saIe and setting the minimum bid equal to 
1i' defined by 

n-l c 
1i'= 

n b + c(n -1) 
(3.7) 

All Iicenses will be sold at that price. 

It is shown in the Appendix that this strategy is not the unique 
maximum; the licensor would have the same expected payoff by 
instead auctioning n - 2 licenses without a minimum bid. It will 
be assumed from here on that the licensor always sells to every 
competitor, i.e. to n - 1 firms. Using the the alternative solution 
would not change the payoffs and would cause only trivial changes 
in the results. 

Each of the n - 1 licence transactions creates a surplus to 
the parties of that transaction; a surplus that, in a zero sum 
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game, is offset by a 10ss if expected profit of other firms. By 
choosing the optima1 sa1es strategy, the licensor extracts the tota1 
surp1us from each bilatera1licensing agreement. For each 1icensee, 
the expected payoff decreases as other firms buy licenses, but 
is independent of whether the licensee itse1f buys a license or 
not. In other words, this auction structure allocates all bargaining 
power to the licensor and maximizes the incentive to patent an 
innovation. The effect of shared bargaining power is examined 
1ater in this chapter. 

An interesting observation can be made regarding resu1t (3.7). 
The price of the license is not monotonic in the number of firms. 
For 1arge n, the price of a license decreases with the number of 
firms, as expected. However, for n smaller than 1 + ~, the 
price of a license actually increases with the number of firms. 
The reason for this is that for n < 1 +~, the fallback profit of 
the licensee (i.e. its probabi1ity of winning if it does not buy the 
license) decreases in n faster than 11n, the probability of winning 
in a symmetric situation. This shows up as increasing price of a 
license. 

The total expected payoff for the innovating firm, after selling 
the license to the n - 1 other firms, consists of its own probability 
of winning, 1 I n, and n - 1 times the price of a license 1f: 

1 (n - 1)2 c 

n + n b + c( n - 1)" 
(3.8) 

The total payoff for the innovator and the price of a license both 
decrease with b I c; increasing b relative to c makes it more 1ikely 
that a firm, if not buying alicense, finishes its own initial tech
nology before any of the firms with a license can finish the :fi
naI innovation, hence lowering the va1ue of the license for the li
censees. It can also be observed from (3.8) that the total revenue 
from licensing increases with the number of competing firms. For 
n > 1 +~, the net effect on the licensor's payoff of an increase 
in n is positive; the increase in licensing revenue is strong enough 
to dominate the negative effect caused by tighter competition in 
the final stage of the game. The licensor's maximum payoff is 
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always reached when n goes to infinity (payof! approaches unity). 
Hence, although it is true that as long as no firm has an initial 
technology, it is in each firm's intrests to reduce competition; once 
a firm attains the initial technology, it prefers that the final stage 
of the innovation process be as close to atomistic competition as 
possible.4 

To establish Sp with the described auction structure as the 
best response to the playing of Sp by others, only two possible 
deviations need to be shown suboptimal. The first is that instead 
of patenting an innovation the innovator keeps it secret and uses 
it as an advantage in pursuing the final innovation. The second 
is that the innovator patents the innovation but does not license 
it to any competitor. 

In order to analyze the first deviation strategy - keeping the 
technology secret - we need.to make an additional assumption. 
What happens if firm i develops an initial technology and keeps it 
secret and later another firm (firm j) develops its own technology 
and patents it? It is assumed that in this case the two firms with 
licensable initial technologies cannot collude but instead face of! 
in a Bertrand competition that drives the price of a license to 
the level of the marginal cost, i.e. to zero. Thus, in this case, all 
firms get a license gratis. From the point of view of firm i, the 
consequence of this process is that it returns to par with other 
firms without gaining any licensing revenue. 5 

4Notice that the threshold value of n, for which the licensor's payoff turns 
upward, is the value at which the price of a license turns downward. Thus, 
the rather peculiar result is that the number of competitors that maximizes 
the price of a license minimizes the revenue of the innovator. . 

5The alternative outcome of this subgame would be that no trading takes 
place at all. Any strategy with nonzero price of licence could only be an 
equilibrium in a weak sense; if firm i is selling a licence for price p, then -
no matter what the strategy of firm i - by setting the price of its own license 
infinitesimally smaller than p, firm j could do no worse and could often do 
better than by letting firm i take the trade. 
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Given this assumption, the probability that the innovator 
(firm i) wins the game if it keeps the technology secret is 

Pi = {OO fc(t)(l - Fa(t))n-1dt 
Jo 00 

+ (1- 10 fc(t)(l - Fa(t)t-1dt) n-1
. 

(3.9) 

The first integral in (3.9) is the probability that firm i completes 
the final innovation before any other firm develops an i:riitial tech
nology. The second term is the probability that the opposite takes 
place, multiplied by 11n, which is the expected payoff to firm i 
conditional on that this scenario is realized. Substituting the spe
cific distributions into (3.9), we obtain 

Pi = 1000 

ce-cte-a(n-l)tdt + (1 - 1000 

ce-cte-a(n':"1)tdt)n-1 (3.10) 

1 n -1 c - + ----,-----,---
n n a(n-1)+c· 

Comparing (3.8) and (3.10) it follows that patenting and licensing 
yields a higher expected payoff for the innovating firm if and only 
if 

1 (n - 1)2 c 1 n - 1 c - + > - + -----,-----,---
n n b + c(n - 1) n n a(n - 1) + c· 

By solving this inequality, we get the result that patenting and 
licensing yields a higher expected revenue if and only if 

(3.11) 

Hence, immediate patenting and licensing is preferred to keeping 
the innovation secret if bla is lower than a threshold value which 
increases with the number of firms. The intuition behind this 
result is simple: A high b means that patenting reveals plenty 
of useful information to the other firms, which shows up as low 
price for the license. A Iowa, on the other hand, means that the 
expected time before any of the other firms develops an initial 
technology is long and the probability that firm i completes the 
final innovation before that is high. Thus, high values of b and 
low values of a tend to reduce the incentive to patent. 
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The role of n is related to the externalities involved in licens
ing. The price of a license is given by the ip.crease in the proba
bility of winning that the technology gives to the licensee. In a 
zero sum game, this improvement in the position of the licensee 
is counterbalanced by a deterioration in the position of the other 
players. The larger the number of the firms in the market the 
larger the portion of the improvement that comes at the expense 
of firms other than the licensor. In other words, when the num
ber of firms is large, the price of the license represents mostly the 
negative externalities to other firms and only to a small extent a 
compensation for the weakening position of the licensee. At the 
other extreme, if there are only two firms in the market, no ex
ternalities are involved; the revenue the licensor receives for the 
license is fully offset by its weakening competitive position. As a 
consequence, a duopolist would be indifferent between patenting 
and not patenting if b = a, in which case patenting would re
veal no useful information. Under the present assumption, b > a, 
a duopolist never patents its technology. On the other hand, if 
n = 11, then patenting is still preferred if b = 100 . a; Le. if 
patenting reveals so much information that the expected time it 
takes another firm to develop a competing technology drops to 
one-hundredth of its previous value. 

The second possible deviation which needs to be considered 
was to patent the technology but not license it to anyone. The 
motivation for this kind of strategy could be that by patenting the 
technology the firm would send a signal to other innovators that 
there are no revenues to be gained by patenting their technologies 
since that would only lead to Bertrand competition and a zero 
price for the license. This threat would preclude the patenting of 
technologies and would slow down diffusion among other firms. 
However, that this strategy is not optimal in the present setting 
can be shown as follows. The expected profit of firm i if it licenses 
its technology to all other firms was shown in the proof of Lemma 
3.1 to be l/n+(n-l)1f = 1-: (n-l)pj, where Pj is the probability 
of winning for a firm without an initial technology when all other 
firms have a patented technology. Denote by Pk the probability 
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of winning for a firm without technology when only one of the 
competing firms has a patented technology. Then 

Pk = 10
00 

fbc(t)(l - Fb(t))(l - Fbc(t))n-2dt 

> 100 

fbc(t) (1 - Fb(t)t-1dt 

Pj, 

(3.12) 

where the inequality follows from the fact that Fb(t) > Fbc(t) 
for all t. The probability of winning for firm i, if it patents its 
technology but does not license it to any other firm, is 1-(n-1 )Pk. 
But according to (3.12), this is less than the expected revenue 
1 - (n - 1 )Pj that the firm gets by licensing the technology to all 
other firms. Thus, patenting without licensing is not profitable. 

The following proposition summarizes the results of this sec
tion: 

Proposition 3.1 The paieniing siraiegy Sp consiiiuies a sym
meiric equilibrium if and only if 

3.3.2 Equilibrium without Patenting 

In this subsection, the conditions under which an outcome in 
which no firm patents its technology can be sustained as an equi
librium. Suppose firm i expects other firms to play strategy Sn, 
defined as follows: 

1. Keep the initial technology secret until somebody else pat
ents, in which case, patent and license the technology to all 
firms at the highest attainable price. 

2. If, before developing your own technology, one or more com
petitors patent technologies and offer alicense, buy the least 
expensive license if the price is lower than or equal to the 
threshold value 7r. 
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The assumptions of the previous subsections are maintained. 
A firm has no way to verify which firms have developed their 
initial technology - it only knows the probability distributions 
given above. Theonly way a firm can let others know that it has 
developed 'an initial technology is to patent it. Thus, patenting is 
the only way of signaling. Also, information is complete; a firm 
cannot "cheat" by selling a worthless technology. 

If firm i develops an initial technology at time t and decides 
to keep it secret, it has the probability of winning the game 

s 00 1 - Fae S 
( 

( ))

n-l 

Pi (t) = 1 Je(S - t) 1 _ Fae(t) ds. (3.13) 

The second term inside the integral is the probability that none of 
the n - 1 other firms completes the final innovation on or before 
time s, conditional on that none of them have completed it on 
or before time t < s. If, on the other hand, the firm decides to 
patent the innovation and selllicenses to other firms, it has the 
expected payoff 

1 ( 1 - Fa (t) ) n-l _ 
pf(t) = ; + 1 _ Fae(t) (n - 1)7r. (3.14) 

Here, l/n is the probability that after selling licenses to all firms 
the firm itself wins the race for the final innovation. The second 
term is the expected revenue from selling the licenses. If no other 
firm has a secret technology at the time firm i patents its own 
technology, the revenue from licensing is (n -1)1f'. However, since 
other firms play strategy Sn, one or more of the competitors may 
already posess a secret technology, in which case the price of a 
license is driven to zero. The term ((1 - Fa(t))/(1 - Fae(t)))n-l 
is the probability that at time t no other firm has a technology, 
conditional on the information that no firm has completed the 
final innovation. 

Substituting the distributions directly into expressions (3.13) 
and (3.14) would lead to considerably complicated expressions. 
Fortunately, this is not necessary, as is established in the following 
lemma. The lemma is proved in the Appendix. 
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Lemma 3.2 If the payoff pi(t) is greater than or equal to the 
payoff pf(t) at time t = 0, then the same is true for every t > O. 
Hence, if pi(O) ~ pf(O), then nonpatenting is an equilibrium. 

According to Lemma 3.2, pi(O) ~ pf(O) is a sufficient .condition 
for nonpatenting to be an equilibrium. It is, of course, also a 
necessary condition, far if this condition fails, then a firm would 
be better off by patenting if it succeeds in developing the initial 
technology very quickly when it can be relatively sure that no 
other firm yet has an initial technology.6 

Hence, only the conditions under which pi(O) ~ pf(O) holds 
need ta be checked. Substituting t = 0 and the exponential dis
tributians in (3.13) and denoting pi(O) = pi, we derive for a =1= c 

( )

n-l 

ln
oo ce-as - ae-CS 

ce-cs ds 
o c-a 

c Joo [t (n - ~) cn- i( _a)i-le-cacn-i)+ci)S] ds 
(c-a)n-lJo i==l n-'/, . 

By straightforward but rather tedious integration, this yields 

This can be represented as a function of cia: 

s cia n (~=D(cla)n-i(-1)i-l 
Pi = (cia - 1)n-l tr n + (cia -1)i 

(3.15) 

60ne should not conclude from this that a strategy in· which the firm 
patents if it succeeds in developing the final innovation before some time t', 
but otherwise keeps the technology secret, could constitute an equilibrium. 
It can be shown that this kind of time contingent strategy cannot form a 
symmetric equilibrium. 
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For a = c, this simplifies to7 

pi = 1000 

c(1 + CS)n-le-cnsds 

n (n - 1)! 
~ (i - 1)! nn+1- i ' 

(3.16) 

The expected payoff when patenting, given by expression (3.14), 
can be solved as in (3.8) to obtain 

pf = .!:. + (n - 1)2 c . 
Z n n b + c( n - 1) 

(3.17) 

Thus, the condition for nonpatenting to dominate patenting is 
pi - pf 2': 0, which can be solved for bla to obtain 

bl 
n(n - 1)(1- pi) I a> c a, 

- npi- 1 
(3.18) 

where pi is as in (3.15). Since pi is a function of cia and n, the 
expression on the right hand side of (3.18) is a highly nonlinear 
function of these variables. Numerical simulations shows that 
this function increases in both n and cia over the relevant range. 
It is easy to see that for n = 2, inequality (3.18) holds for any 
parameter values, whereas for n ----7 00 it always fails. For any set 
of parameter values, there exists a threshold value n' such that 
for n < n' nonpatenting is an equilibrium, whereas for n > n' it 
is not. 

Figure 3.1 illustrates the two equilibria, patenting and non
patenting, for the special cases n = 3 and n = 4. The area 
with diagonal hatching consists of the parameter combinations for 
which a patenting equilibrium exists. It is bounded from above by 
the line b I a = (n - 1)2. The area with vertical hatching gives the 
parameter combinations for which a nonpatenting equilibrium ex
ists. This area is bounded from below by the inequality in (3.18). 
In both cases the two areas overlap. This is a general feature: It 
can be shown that when cia goes to infinity, the right hand side of 

7The following integral can he solved hy a recursive application of inte
gration hy parts. To save space, the intermediate results are omitted. 
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Figure 3.1 Existence of equilibria 
for cases n = 3 and n = 4 
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~ Patenting equilibrium exists. [[I]] Nonpatenting equilibrium exists. 

(3.18) approaches (from below) n(n -1)/2, which is smaller than 
(n - 1)2, except at n = 2, where the two coincide. Thus, for any 
n, if patenting equilibrium exists for any parameter combination, 
then for some parameter combinations both kinds of equilibria 
exist. 

Are the two equilibria analyzed above the only possible types 
of symmetric equilibria? The answer is that given the assump
tions, they are the only symmetric equilibria that exist in a set 
of parameter values that has a measure greater than zero. An 
example of a symmetric equilibrium that exists in a set of pa
rameter values of size zero is one in which a firm patents and 
licenses its technology immediately if it manages to develop it be
fore some point of time t l

, but keeps it secret if the developing 
time is longer than that. This constitutes a symmetric equilib
rium for any (common) value of t l if and only if (3.18) holds with 
equality. A number of asymmetric equilibria may also exist but 
they are not examined in the present setting. 

It was assumed above that patenting is the only way for a firm 
to let other firms know that it has an initial technology. What 
happens if this assumption is relaxed and firms can signal to each 
others about the current state of their research project? More 
precisely, suppose that a firm can at any time announce that it 
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has developed an initial technology, and that the other firms have 
no means to verify the truthfulness of the announcement. It is 
easy to show that this does not provide a basis for the exchange 
of credible information. If a firm finds it profitable to patent an 
innovation, then in a zero sum game, it must necessarily leave 
its competitors worse off. Consequently, a firm always wants to 
prevent any other firm from patenting. If a firm can do this by 
announcing the existence of its own technology (at zero cost) , it 
will do so. Thus, each firm, regardless of whether it has an initial 
technology or not, has an incentive to claim to have an initial 
technology and thereby prevent other firms from patenting their 
innovations later in the game. 

It can be concluded that the incentive to patent intermediate 
innovations grows rapidly as the number of firms in the market 
increases. This shows up as increasing probability for the exis
tence of a patenting equilibrium and decreasing probability for 
the existence of a nonpatenting equilibrium. For a fixed set of 
parameters, the general picture is the following: First, for a small 
number of firms no patenting takes place. When the number of 
firms increases, the amount of wasteful duplication increases up 
to the point where patenting equilibrium appears. For some range 
of n, both patenting and nonpatenting equilibria exist. Finally, 
when n exceeds some upper threshold value, only the patenting 
equilibrium remains and no wasteful duplication takes place. 

3.3.3 A Generalization: Shared Surplus 

It was assumed above that the innovating firm captures all the 
surplus from the trade of alicense. What happens if another 
sharing rule is adopted? In this subsection, the surplus is divided 
between the seller and the buyer in exogenously fixed proportions. 

Let Pj denote the probability of winning of a firm without an 
initial technology when all other firms have a technology. It was 
shown in the proof of Lemma 3.1 that 

b 1 
Pj=n+c(n-l)n' 
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It was also shown in the same proof that the highest possible price 
for alicense, when one is sold to each firm, is 1fU = Iin - Pj. On 
the other hand, the lowest possible price, denoted by 1ft, is equal 
to 

1ft = 1- Pi 1 
n-l n 

Here the first term is the probability that a firm with an ini
tial technology wins when one of its competitors does not have 
a technology. The lower bound 1ft is the difference between this 
probability and Iin, the latter being the probability of the firm 
winning when every firm has a technology. If the price of the 
license is 1ft, then the innovating firm is just indifferent between 
selling ,and not selling the license to the last firm; the revenue 
from the license exactly offsets the loss the licensee suffers as its 
competitive position weakens. 

It is a$sumed that the actual price of the license is a weighted 
average of the two extremes 1fU and 1ft: 

Substituting and arranging terms gives 

_ c a(n - 2) + 1 
1f - - ---'--.,-----'---:-

- n b + c( n - 1) . 

The total expected payoff of the innovating firm if it sells n - 1 
licenses is therefore 

~ + (n _ 1)1f = ~ + (n - l)ca(n - 2) + 1. 
n n n b + c( n - 1) 

(3.19) 

Again, the firm compares this to the payoff it gets if it keeps the 
innovation secret, given in (3.10). Patenting is preferred if 

~ + (n - l)ca(n - 2) + 1 > ~ + n -1 c . 
n n b+c(n-l) - n n a(n-l)+c 

Solving for b la gives 

bla::; (n - 1)(a(n - 2) + 1) - (1- a)(n - 2)cla. (3.20) 

79 



For a = 1, condition (3.20) simplifies to condition (3.11), which 
is independent of e. However, for a < 1, the threshold value of 
b I a for which the innovating firm is indifferent between patenting 
and not patenting is linear and decreasing in cia. The greater cia 
the less likely it is that patenting is an equilibrium. Notice that 
the negative effect of cia on the threshold value of b I a is stronger 
the greater the number of firms in the market. Is it possible 
that this effect dominates the first term so that some parameter 
combinations that support a patenting equilibrium may not do so 
if the number of firms is increased? It can be shown that although 
there are combinations of bla and cia for which (3.20) holds for 
n+1 firms and fail for n firms, this can only happen when bla < 1, 
which is infeasible given the assumptions. Thus, the earlier result 
generalizes; if for a feasible parameter combination, patenting is 
preferred for n firms, then it is also preferred for any number of 
firms greater than n. 

The major difference between this case and the one analyzed in 
section (3.3.1) is that whereas in the previous version the existence 
of a patenting equilibrium depended solely on bla (i.e. the extent 
of spillovers related to patenting), here the relative importance 
of the initial technology, reflected in the term cia, also plays a 
role in determining the existence of an equilibrium. Condition 
(3.20) shows that the larger the' step represented by the initial 
technology is (i.e. the smaller the value of cia) the more attractive 
the patenti!.lg alternative. This latter effect is especially strong 
when a is small, i.e. when the negotiating power of the licensor is 
small. 

It was shown in the previous section that if a = 1, then patent
ing without licensing cannot be an equilibrium. However, if a < 1, 
things may be different. Suppose a firm patents its technology but 
decides not to selllicenses. By doing this, it sends a credible mes
sage to other firms that further patenting can only lead to a price 
war in the market for licenses and therefore cannot be profitable. 
Thus, patenting serves as a means to block any attempts by other 
firms to license their future innovations. The probability of win
ning for the innovating firm if it patents but does not license is 
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then 

Substituting for the distributions and solving the integral as in 
equation (3.15) gives 

10
00 (be-et - ce-bt)n-l 

Pi = ce-et dt 
o b - c 

c n (~=Dbn-i( _c)i-l 

= (b - c)n-l ~ b(i - 1) + c(n - i + 1)· 

(3.21) 

The innovating firm compares this payoff to the one given in equa
tion (3.19). ):;icensing is preferred if 

1 (n-1)ca(n-2)+1 c ~ (~=Dbn-i(-c)i-l 
-+ > L.J . . n n b+c(n-1) - (b-c)n-l i=lb(2-1)+c(n-2+1) 

or, aIternativeIy, if 

1 (n - 1) a(n - 2) + 1 - + -'--------,----
n n b/c+n-1 

1 n (~=D(b/c)n-i(-l)i-l 
- (b/c _l)n-l ~ (b/c)(i -1) + n - i + 1 2:: o. (3.22) 

Condition (3.22) defines the feasibIe vaIues of b/c as a function of 
n and a. This expression cannot generally be solved for b/c (in 
terms of algebraic functions). Numerically, it can be verified that 
for given n the expression on the right hand side of (3.22) is neg
ative or positive depending on whether b/c is smaller or greater 
than a threshold vaIue and that this threshold vaIue decreases as 
the number of firms increases. If a = 1/2, then for n = 3 the 
threshold vaIue is 1/2; for n = 4 it is approximately 0.434 and for 
n = 6 approximately 0.345. IntuitiveIy, this can be expIained as 
follows: When b increases reIative to c, creating an initial technol
ogy becomes easier reIative to completing the final innovation and 
consequently the price of a license decreases. However, the proba
bility.that the innovating firm wins the game if it does not Iicense 
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Figure 3.2 
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Existence of patenting equilibrium 
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it to competitors decreases even more rapidly, making licensing 
more profitable relative to patenting without licensing. 

Another result that can be easily seen from condition (3.22) 
is that the larger is a the more likely it is that the condition 
holds. This is, of course, plausible: a large a means that the 
innovating firm can negotiate a high price for the licenses, which 
makes licensing more attractive. 

Figure 3.2 illustrates the situation in the case where a = 1/2 
for n = 3 and n = 4. The area in which an equilibrium exists is 
bounded from above by the downward sloping line given by con
dition (3.20) and from below by the upward sloping line given by 
(3.22). When the number of firms increases, the set of parameter 
combinations that support patenting equilibrium increases. 

Naturally, also non-patenting equilibria exist when a < 1. As 
can be expected, the effect of decreasing a (changing the negotia
tion power in favor of the licensee) makes secrecy more attractive, 
and hence, the smaller is a, the larger is the set of parameter com
binations supporting non-patenting equilibrium. Non-patenti~g 
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equilibria with a < 1, however, will not differ qualitatively from 
the equilibrium for a = 1, and thus are not analyzed here. 

3.4 'Concentration and Patenting: 
Incomplete Information 

The game above was one of complete information. It was assumed 
that when a firm offers a license to its competitors, the potential 
licensees can verify whether the licensor, at the time of the offer, 
already has the final innovation developed. In this subsection, 
this assumption is changed. If a firm, after developing an ini
tial technology, chooses to keep it secret and manages to finish 
the final innovation before anyone else has developed a compet
ing initial technology, it can postpone the patenting of the final 
innovation for a while, selllicenses to its initial technology, and 
publish the final innovation only after that. It is assumed that 
this process takes only an infinitesimal increment of time, during 
which the probability that another firm will finish the final inno
vation is zero. The potentiallicensees do not know whether the 
licensor, at the time of the offer, has the final innovation ready
thus, we have a game of incomplete information. If the licensor 
does not have the final innovation ready and everybody buys a 
license, then all firms stand an equal chance of Iin to win the 
final innovation. On the other hand, if the licensor has the final 
innovation ready, then immediately after the trade the licensor 
will publish and patent the final innovation, making the licenses 
worthless to the licensees. Figure 3.3 plots the relevant part of 
the game in extensive form for the case of two players A and B.8 

The first node represents the choice made by Nature, N, which 
determines whether firm A or B succeeds first in developing an 
initial technology. Only that part of the game tree that follows 
firm A's success is drawn here. At the second level, firm A has 

8The case n = 2 is not a very good example since patenting can then 
never be an equilibrium in it, as will be seen below. However, it is the only 
case for which an extended form game tree can be drawn and serves thereby 
to clarify the decision process. 
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Figure 3.3 Extended form subgame when A is 
the first to develop an initial technology 

N 

A 

B ----------

(1/2,1/2) 

(1/2+ 7t,1/2 -7t) (q,l-q) (1+7t,-7t) (1,0) 

the technology and the decision is whether to license it or keep it 
secret. If A keeps the technology secret, then in the next move 
Nature determines whether A succeeds in finishing the final tech
nology before B creates an initial technology. The probability of 
this happening is denoted by p = Jooo fc(t)(l -" Fa(t))dt. With 
probability 1 - p, B creates its own initial technology first, after 
which both firms have an equal probability of winning the game. 

Let us consider the decision problem of B when A offers an 
initial technology to license. Firm B does not know whether A 
has the final innovation ready, i.e. whether the game is at node 
b' or at node b. If the game is at node b', in which case A has 
the final innovation, B knows it will lose the price it pays for 
the license since A will publish and patent the final innovation 
immediately after the trade. On the other hand, if A does not have 
the final innovation (i.e. b is the true location) and B approves 
the offer, then both will have an equal probability of winning. If 
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E rejects the offer, the payoffs are either (q,l - q), where q = 

J~ fc(t)(l - Fb(t))dt, if A does not have the final innovation or 
(1,0) if A has it. 

Suppose A expects E to always accept its offer. Then it is 
straightforward to see that A chooses immediate patenting if and 
only if 1/2+1f ~ p(I+7r). For firm E, accepting is an equilibrium 
if it expects A to patent immediately and 1/2 -1f :> 1- q. Com
bining these two inequalities gives the condition for the existence 
of a patenting equilibrium. 

The equivalent condition is straightforward to derive in the 
general case. Suppose each firm expects others to play strategy 
Sp, as defined in the previous section, and firm i is the first to 
create an initial technology. Then if firm i deviates from Sp and 
instead keeps the technology secret, the probability p that it will 
also finish the final innovation before any other firm develops an 
initial technology is 

c+ a(n -1)" 

Thus, p is the probability that deviating pays off and firJ? i gets 
both the final innovation with value equal to unity and, in addi
tion, n - 1 times the price of the license 7f" given by (3.7). On the 
other hand, with probability 1-p, one of the other firms develops 
its initial technology and offers it to everybody before i has the 
final technology, in which case each firm has the probability l/n 
to win. Hence, by "cheating" firm i gets the expected payoff 

p(l + (n - 1)7f") + (1 - p)n-1 

_ c [1 + """'-----( n -----'--1)2 c ] 
- c+(n-l)a n b+(n-l)c 

+ [1- C+(:-I)a]~' 
Setting this smaller than or equal to the payoff obtained by play
ing strategy Sp (Le. by not deviating), given in (3.8), and manip-
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uIating gives the condition for the existence of patenting equilib
rium 

b/a < (n _1)2 - (n -l)c/a. (3.23) 

Compared to condition (3.11), the effect of incomplete informa
tion shows up in the new term (n - l)c/a on the r.h.s. of the 
inequality. Thus, unlike under complete information, the exis
tence of a patenting equilibrium now depends on the importance 
of the initial information. The easier it is to complete the final 
innovation compared to the initial technology (the Iarger is cia) 
the more likeIy it is that by choosing the cheating strategy the 
firm actually gets an opportunity to cheat - to sell an obsolete 
technology - and hence the Iess likely it is that patenting can 
be sustained as an equilibrium. The set of parameter vaIues for 
which a patenting equilibrium exists is uniformly smaller than in 
the complete information case. As before, this set is larger the 
larger the number of firms. 

The effect of incomplete information on the existence of the 
nonpatenting equilibria is more drastic; in this case, an equilib
rium essentially identical to the nonpatenting equilibrium exists 
for all parameter combinations. To see this, consider a strategy in 
which the deveIoper of an initial technology keeps the technology 
secret and tries to license it only after it has the final innovation. 
Suppose all firms expect each other to pIay this strategy. Then, 
if a firm is offered a licence to a technology, it correctly takes this 
as an indication that the licensor has already finished the final 
innovation and thus the license would have zero vaIue. Hence, 
the buyer would not accept any offer with a price greater than 
zero. But knowing that no revenue can be extracted by selling 
licenses, no firm ever tries to patent before it has completed the 
fina;! innovation and has nothing to loose. Hence, all firms playing 
this strategy constitutes an equilibrium. 9 

9 Actually, since the innovating firm knows that no firm will buy the license 
anyway, it is indifferent between offering and not offering licenses after finish
ing the final innovation. However, the equilibrium is unique in the trembling 
hand sence, Le. offering licenses is preferred if there is an infinitesimally small 
probability that some competitor accidentally approves the offer. 
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The result that the nonpatenting equilibrium exists for any 
parameter combination depends crucially on the limited set of 
negotiation options allowed for the firms. If, for example, the 
licensor could credibly commit itself to exit from the game after 
selling the licenses, then the set of parameter values for which a 
nonpatenting equilibrium exists would shrink considerably. There 
are a number of other strategies that would have the same effect 
on the outcome. They will not be elaborated on further. 

3.5 Firm Size and Patenting: 
Complete Information 

The analysis above compared the propensity to patent under dif
ferent degrees of concentration. It does not address the question 
in intepretating the empirical studies referred to earlier: 1s the 
superior patenting performance of small firms, as compared to 
their larger competitors, a true indication of decreasing returns 
to scale in R&D or just a result of large firms' lower propensity to 
patent their innovations. This section approaches the question by 
analyzing the re1ationship between firm size and the propensity 
to patent in a market with firms of different size. 

1n abandoning the assumption of symmetric firms, the dimen
sionality of the problem increases by an order of magnitude: the 
incentives to patent depend not only on a firm's own re1ative size 
but a1so on the sizes of all other firms. Hence, simp1e analytical 
conditions like those provided above cannot always be obtained. 
The answers provided here are partial and depend on the infor
mational assumptions. The first part of this section concentrates 
on complete information. 1n the following subsection, incomp1ete 
information is ana1yzed. 

The focus of the analysis is on patenting equilibria - i.e. every 
firm expects others to p1ay strategy Sp as specified in section 
(3.3.1). The R&D output of firm k is denoted by Xk. Throughout 
this section, the 'size' of a firm refers to the size of its R&D output. 
Without 10ss of generality, R&D outputs can be normalized to 
sum to unity: L:k=l Xk = 1. The probabi1ity distribution for the 
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date of discovery of the initial technology is as in equation (3.1) 
but with h(·) a linear function: 

F. (x t) = 1 - e -axt a , , 

and similarly for distributions Fb(x, t) and Fe(x, t). Given this 
probability function and the normalizations, the probability of 
firm k being the first to develop an initial technology is simply 
Xk. The combined probability function Fae is then 

aXe-ext - Cxe-axt 
Fae (x, t) = 1 - , 

a-c 
a# c. 

Function Fbe can be derived similarly. 
For simplicity, it is again assumed that the licensor can arrange 

an auction and thus effectively set the price of alicense. To solve 
for the equilibrium price of alicense, consider again the situation 
where all firms except firm j have alicense. If firm j buys a license 
from another firm, it has the probability Xj of winning the game. 
If, on the other hand, it decides to pursue the initial technology 
by itself, it has the probability of winning 

Substituting the distributions, this becomes 

By Taylor expansion, p(Xj) can be shown to behave like (b/c)xJ for 
near zero values of Xj. For Xj close to unity, p(Xj) is approximately 
Xj. Thus, the fallback probability of the licensee is sensitive to 
the size of the firm and diminishes with the square of the market 
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share for small firms. The highest price firm j is willing to pay 
for the license is 

Xj - p(Xj) 
c(1- Xj)Xj 

bXj + c(1 - Xj) . 

(3.24) 

As before, the price of a license is not monotonic in the size of the 
buyer. Instead, it increases with Xj for small firm sizes, reaches 

a maximum at Xj = Jc/(c + b), and decreases thereafter. For Xj 
close to zero, equation (3.24) is approximately 7i'(Xj) = Xj. 

The total expected revenue of firm i, if it licenses the technol
ogy to all other firms, is 

(3.25) 

Not surpricingly, the expected profit from licensing the initial 
technology does not dep.end solely on the market share of firm 
i but also on the distribution of the rest of the market over its 
competitors. It can be verified that the price of a license is a 
concave function of x. This has several immediate consequences. 
First, given the number and the aggregate market share of the 
licensees, the revenue from selling the licenses is maximized when 
all the licensees are of equal size. Secondly, the value of the initial 
technology rises when a licensee is split into smaller firms, each of 
which buys alicense. It follows from the second point that given 
the size of firm i, the revenue in (3.25) is maximized when the rest 
of the market is shared by an infinite number of atomistic firms. 
Actually, in this case the expected total revenue is equal to one, 
regardless of the size of the licensor. 

The strategy alternative to patenting is to keep the technology 
secret. The expected profit of the innovating firm i if it decides 
to follow this strategy is 

?f(Xi) = Iooo fc(Xi, t) Ih:;ti(1 - Fa(Xk, t)dt 
+ [1 - It fc(Xi, t) TIk:;ti(1 - Fa(Xk, t)dt] Xi, 

89 



(3.26) 

Comparing this with VP(Xi) in (3.25) gives the condition for pat
enting to be an equilibrium: 

(3.27) 

Expression (3.27) is of a dimensionality to karge to allow for gen
eral results. However, two special cases shed light on the problem. 
Suppose that in addition to firm i the market consists of n - 1 
symmetric firms; i.e. Xj = (1 - xi)/(n - 1), j =1= i. Using this 
identity, the definition of 1i'(Xj) , and some algebra one obtains the 
following condition for firm i to prefer patenting strategy: 

n-2 
Xi < b/a -1· (3.28) 

Inequality (3.28) provides an upper bound for Xi under which 
patenting is an equilibrium. This upper bound increases with the 
number of competitors and decreases when b/a (the externality 
connected to patenting) increases. A useful result is that for any 
b> a > 0, ifthe rest ofthe market is atomistic (n is infinite)r then 
firm i finds it profitable to patent. On the other hand, comparing 
(3~25) and (3.26) for Xi approaching zero shows that if the total 
number of firms in the market is greater than 2, then regardless 
of the structure of the rest of the market, a very small firm al
ways finds it profitable to patent. Combining these two results 
shows that in a market consisting of a single dominant firm and a 
large number of very small firms patenting is an equilibrium. In 
contrast, it is easy to show thatif there are two dominant firms 
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of equal size and a large number of small firms, then if the joint 
market share of the dominant firms is large enough, they pre
fer keeping their intermediate innovations secret. This, example 
shows that the generalization of the results from the symmetric 
case is not straightforward; a diffuse market structure does not 
always provide greater incentive to patent than a concentrated 
one. To achieve complete licensing and quick dissemination of 
technological knowledge, it seems that either a large number of 
small firms or a single dominant firm and many small firms are 
desirable whereas a market with a handful of dominant firms is 
not. 

To examine the relationship between firm size and patenting, 
the following setting will be used. There are two firms, denoted 
by A and B, with x A > X B. The sizes of the rest of the firms are 
taken as given. The aggregate market share of all firms other than 
A and B is denoted by z so that XA + XB + z = 1. Substituting 
into expression (3.27) yields the following condition for firm A to 
find patenting profitable: 

c(1 - XA)XA > 0 
CXA + a(1 - XA) -

or, after taking into account the identity XA + XB = 1 - z, 

~ _ () c( 1 - X A - z) (x A + z) 
L..J 1[' x j + -:---'--------:-----'--'--:--~-,-

';fA B b(1 - XA - z) + C(XA + z) 
J , c(1 - XA)XA 

CXA + a(1 - XA) 
>0 

(3.29) 

It is easy to see that for any z > 0, this inequality holds for small 
enough XA. Thus, as established before, a very small firm always 
finds it profitable to patent. Unfortunately, the dimensionality of 
the problem again prevents more general analytical results. Nu
merical examples, however, are easy to compute, and they show 
that under complete information the relationship between firm 
size and propensity to patent is not monotonic. Depending on 
the parameters, either of the two firms may have the greater in
centive to patent. 
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Figure 3.4 Propensity to patent 
in an asymmetric market 

6 JO z = 0.1, x. = 0.8, x
B 
= 0.1 

8 

4 
6 

b/a b/a 

4 
2 

II 

E 

E 

o l...-~_--'-_~_'-~_-' 0 
o 2 4 6 0 2 4 6 8 JO 

cia cia 

Figure 3.4 plots two examples. Besides the two big firms, A 
and B, the market is assumed to consist of an infinite amount of 
infinitesimal firms which together have the aggregate size z = O.l. 
In the first case, the sizes of the large firms are XA = 0.6 and 
XB = 0.3, and in the second, XA = 0.8 and XB = 0.1. In both 
plots, the area denoted by E is the one for which both firms find 
it profitable to patent. In the area 1, the smaller firm B would 
choose the patenting strategy but deviation by the larger firm 
A breaks down patenting equilibrium. In area II, the converse 
is true: the large firm finds patenting profitable while the small 
firm deviates. FinalIy, in the area above both curves, both firms 
choose to deviate. 

The figure reveals a property that applies quite generalIy to 
asymmetric cases under complete information. The cases in which 
the large firm has a greater incentive to patent than the smalI firm 
falI into the region where cia is high relative to bla; that is, when 
the relative importance of the initial technology is large and the 
externalities from patenting are smalI. Similarly, relatively unim
portant initial technology (smalI cia) and high spillovers (large 
b la) make it likely that the smalI firm finds patenting more at
tractive. The reason for this result is not immediately evident. 
The dominant effect producing this result is the strong reaction 
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of VS(x), the expected payoff when the technology is kept secret, 
to changes in cia. As an example, take the latter case in Fig
ure 3.4 (XA = 0.8 and XB = 0.1). When cia falls from 8 to 1 
(Le. the relative importance of the initial technology decreases to 
one eight of its previous value), VS(XA) is reduced from approxi
mately 0.99 to 0.96 - a decrease of a mere 3 per cent. For the 
smaller firm, the corresponding decrease in the expected payoff is 
approximately from 0.52 to 0.19 or about 64 per cent. Thus, if the 
innovation is kept secret, the sensitivity of the expected payoff to 
changes in cia is much smaller for the larger firm. The revenue 
from patenting and licensing also decreases as cia decreases but 
the effect depends much less on the size of the firm. 

3.6 Firm Size and Patenting: 
Incomplete Information 

Suppose the licensees cannot verify at the time of the licensing 
agreement whether the licensor has the final innovation. Then 
each firm has the option to deviate from the patenting strategy Sp 
and keep its technology secret until it has the final innovation and 
then offer licenses if no other firm has patented before. Suppose 
firm i has the initial technology. If it keeps the innovation secret, 
the probability that it completes the final innovation before any 
other firm has the initial technology is 

In this case, firm i gets the payoff from the final innovation, nor
malized to unity, and the revenue 2:k;fi 1f(Xk) from licensing the 
initial technology. With probability 1-p(Xi) , some other firm de
velops an initial technology before firm i has the final innovation, 
in which case firm i has an expected payoff equal to its probability 
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of winning Xi. The total payofI Vd(Xi) (d for 'deviate') if firm i· 
plays this strategy is therefore 

Vd(Xi) = P(Xi) [1 + I: 1f(Xk)] + [1 - P(Xi)]Xi. 
k=j=i 

(3.30) 

When deciding on its strategy, firm i compares Vd(Xi) with VP(Xi) 
in (3.25). Substituting for P(Xi) and rearranging, the condition 
for immediate patenting to be optimal for firm i can be written 
as 

I: 1f(Xk) - cxi/a ~ O. 
k=j=i 

(3.31) 

Unlike in the complete information case, the implications of con
dition (3.31) are straightforward. They are presented in the fol
lowing two propositions, the first of which states the effect of 
merging and splitting up firms, and the second the relationship 
between firm size and patenting for asymmetric market structures 
in general. The propositions are proved in the Appendix. 

Proposition 3.2 Let information be incomplete and let all firms 
other than firm i prefer the patenting strategy Sp. 

(i) If firm i also prefers playing strategy Sp; then if firm i is 
split into any number of smaller firms, an outcome in which each 
of the small firms plays Sp is an equilibrium. 

(ii) If firm i prefers deviating from patenting strategy, then 
a larger firm formed by merging firm i with any number of its 
competitors also prefers deviating. 

Proposition 3.3 Let information be incomplete and firm A 
larger than firm B. Then if firm A prefers patenting, so does 
firm B. Conversely, if firm B finds it profitable to deviate, so 
does firm A. 

Hence, under incomplete information, the effect of concentra
tion and firmsize are both clear. A concentrated market is always 
less likely to patent its intermediate innovations than a diffuse one. 
Splitting up firms can never deerease the propensity to patent and 

94 



merging them never increases it. Furthermore, a small firm always 
has a greater incentive to play patenting strategy than its larger 
competitor. This holds irrespective of the number or size of other 
firms. 

To understand the difference between the results under the 
two informational assumptions, let us compare the expressions 
(3.27) and (3.31), which give the final conditions for patenting 
to be equilibrium under complete and incomplete information re
spectively. The Taylor approximation of condition (3.27) around 
Xi = 0 shows that for Xi close to zero, the condition is approxi
mately 

2:)r(Xk) - cxi/a - O(x;) 2:: O. 
k=l=i 

Thus, for small Xi, the two conditions differ only by a term that is 
of the order x~; that is, small firms are almost unaffected by the 
informational assumptions. For larger firms, incomplete informa
tion makes deviating much more attractive. 

Heuristically, the difference can be seen as follows. If a small 
firm is the first to develop an initial technology, it knows that the 
chance that it would succeed in finishing also the final innovation 
before any of its competitors gets an initial technology is very 
small. The possible gain from this gamble is not very large; even in 
the best case, succesful cheating could at most double the revenue 
(i.e. raise the revenue from 1 to 2). In case the cheating fails 
(another firm gets an initial technology first), the firm's chance 
to win becomes very small. Therefore, the firm prefers the sure 
revenue from selling the licenses immediately to the small chance 
of getting a bigger prize later. That is, if the small firm beats the 
odds by being the first to develop an initial technology, it will not 
gamble its revenue further. For a large firm, the chance to gain 
by cheating is larger. The chance that the cheating strategy will 
succeed is greater, as is the expected payoff when the cheating 
strategy fails. Hence, the larger firm has both less to loose and a 
smaller chance to loose than does the small firm. 
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3.7 Conclusions 

According to Schumpeter, one of the reasons that big firms and 
concentrated market structure are the natural environment for 
technological innovation is that big firms are better able to uti
lize their innovations. As such, this statement is quite plausible. 
The ability to utilize innovations internally has, however, several 
consequences, all of which are not necessarily beneficial. A less 
desirable consequence is that it tends to slow down the diffusion 
of those innovations. When the intermediate innovations are kept 
secret, each firm has togo through all the necessary steps by itself, 
essentially duplicating the work of its competitors. Hence, aggre
gate technological progress is determined by the most successful 
of the individual R&D programs. If intermediate innovations were 
licensed, duplication could be avoided and technological progress 
would be determined by the joint R&D output of the firms. 

The analysis in this chapter used the framework of a two-stage 
patent race to examine how concentration and firm size affect the 
propensity to patent intermediate innovations. The results can 
be summarized as follows: 

96 

1. The degree of concentration is inversely related to the pro
pensity to patent. This holds irrespective of the informa
tional assumptions and negotiating powers. 

2. If the licensees can monitor the state of the licensor's R&D 
project, then the propensity to patent is lowest when a small 
number of large firms dominate the market. The propen
sity to patent is high if there is a single dominant firm or 
if the market is divided between a large number of small 
firms. Small firms have a higher propensity to patent when 
spillovers are large and the relative importance of the inno
vation is small. Large firms find patenting more attractive 
if the spillovers are small and the innovation is important. 

3. If the licensees cannot monitor the state of the licensor's 
R&D project, then the firm size is always inversely related 



to the propensity to patent. Merging decreases and splitting 
up firms increases the propensity to patent. 

4. Patenting (nonpatenting) is more (less) often an equilibrium 
under complete information; that is, the incentive to license 
an innovation is greater when the potential licensees can 
monitor the true status of the licensor's R&D programs. 

Although the results depend on informational assumptions, 
generally large firms tend to have weaker incentive to p?-tent their 
innovations than small firms. Hence, the number of patented 
innovations is a biased proxy for R&D output and may lead to 
incorrect conclusions when used in the analysis of the relationship 
between R&D performance and firms size. Another (and more 
robust) result is that concentrated oligopolistic market structures 
are undesirable because they discourage patenting and increase 
unnecessary duplication; both more diffuse market structures and 
a markets with a single dominant firm do better in this respect. 
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Appendix to Chapter 3 

Proof of Lemma 3.1: Suppose firm i offers k < n - 1 licenses to 
auction. After the k licenses are sold, there are n - k - 1 firms 
that do not have the technology. The probability of winning the 
final innovation and the expected payoff for each of these firms, 
if they keep any possible future innovations secret, is 

(A3.1) 

for k = 1, ... ,n - 2. If the number of licenses offered is equal to 
the number of potential buyers, then if one firm does not buy the 
license, it has the probability of winning 

(A3.2) 

Thus, p(n - 1) = p(n - 2). Since by identity the probabilities 
sum to unity, the probability of winning for each firm that has a 
license is' 

1 - (n - k - l)p(k) 
k+l 

(A3.3) 

again conditional on the firms keeping their future innovations 
secret. The maximum price a licensee is willing to pay for a 
license is the difference of the two, namely 

7t(k) = 1 - (n - k - l)p(k) _ p(k). 
k+l 

(A3.4) 

The expected payoff v( k) of the licensor is k times the price 7t( k) 
plus its own probability of winning, also given by (A3.3). Using 
(A3.3) and (A3.4), v(k) can be solved as 

v(k) = 1 - (n - l)p(k). (A3.5) 

It is easy to see that p(k) decreases with k up to k = n - 2, 
Le. the probability of winning for firms which do not have a license 
decreases with the number of firms that have alicense. Thus, 
v(k) is maximized by k = n - 2 and k = n - 1. Calculating the 
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integral in (A3.2) and substituting into (A3.4) yields the desired 
expression (3.7) for the price 7t(n - 1). 

Allowing the firms without a license to patent and selllicenses 
ta their possible future innovations does not change the situation. 
Far k = n - 2 and k = n - 1, there is never more than one firm 
without alicense. For k ::; k - 3, allowing this would increase the 
fallback probability, p(k), which would make these alternatives 
even le ss ·attractive to the licensor. 

Proof of Lemma 3.2: Let all other firms except firm i play the 
nonpatenting strategy Sn. At the moment firm ifinishes its ini
tial technology, there are n possible states of the game. We index 
these states by the variable k = 0, ... n - 1, where k indicates 
the nurriber of firms, other than firm i, that have a (secret) initial 
technology at that moment. Thus, the contingency k = 0 corre
sponds to the case where no other firm has an initial technology 
and the contingency k = n - 1 indicates that all other firms have 
one. When calculating the payoffs, firm i considers each of these 
contingencies. If k = n - 1, it makes no difference whether firm 
i patents its innovation or not - every firm has an initial tech
nology and the expected payoff is 1/n regardless of what firm i 
does. If 1 ::; k ::; n - 2, Le. at least one but not all of the firms 
have a technology, then firm i's expected payoff when patenting 
is still1/n - no revenue could be extracted by patenting because 
the price of the license were driven to zero in Bertrand compe
tition. On the other hand, if firm i keeps its technology secret, 
it is in a better position than the n - 1 - k firms that do not 
have an initial technology and therefore has an expected payoff 
greater than 1/n. The only case where patenting may produce 
a higher expected payoff is when no other firm has a technology, 
Le. when k = o. If firm i innovates at time t = 0, the probability 
of this contingency is one. If keeping the technology secret is the 
preferred strategy at time t = 0, then the payoff of not patent
ing is greater than that of patenting also under the contingency 
k = o. If this is the case, then nonpatenting dominates patenting 
and must be the equilibrium irrespective of the probabilities of 
the contingecies, Le. for all t ~ o. 
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Proof of Proposition 3.2: Part (i): If a firm of size Xi prefers 
strategy Sp, then by (3.31) its revenue from patenting exceeds 
cxi/ a. If the firm is split into two firms of sizes Xl and X2 = X - Xl, 

then the revenue from patenting for firm 1 exceeds that of the 
original firm by the price firm 2 is willing to pay for the license. 
Since Xl < X impiies cxI/a < cx/a, it follows that (3.31) also holds 
for firm 1. The same reasoning appiies to firm 2. Hence, splitting 
a firm into two smaller firms cannot deerease the propensity to 
patent. Generalization to an arbitrarily fine split follows trivially. 

Part (ii): Suppose firm i finds it profitable to deviate. This 
implies that its revenue from patenting is smaller than cxi/ aj 
i.e. condition (3.31) fails for firm 1. If firm i is merged with an 
arbitrary competitor k, then the licensing revenue for the new 
firm is smaller by 1f"(Xk) than what firm i alone would get. Since 
cxI/a < C(XI +x2)/a, condition (3.31) must fail also for the new 
firm. Again, generalization to merging with an arbitrary number 
of firms is trivial. 

Proof of Proposition 3.3: If firm A prefers patenting and the 
smaller firm B does not, then by condition (3.31) the following 
inequalities must hold: 

'" c(l - XA)XA 
L..J 1f"(Xk) + b ( ) - cXB/a < 0 

k:f.A,B XA + c 1 - XA 

This implies that 

(1 - XA)XA / (1 - XB)XB / 
-'----------;-----=-------:-+XA a< +XB a. 

- bXA + c(l - XA) bXB + c(l - XB) 
(A3.6) 

Define the function h( x) as 

(1 -x)x 
h(x) = b (1 ) +x/a. x+c -x 

100 



For inequality (A3.6) to hold, this function has to deerease in x 
at least over some range of values. Differentiating h( x) gives 

1 - 2x b(l - x)x c(l - x)x 
h'(x) = bx + c(l - x) - [bx + c(l - x))2 + [bx + c(1- x))2 + l/a 

1-2x b(l-x)x 
> - + l/a 

bx + c(l - x) [bx + c(l - x))2 
x c(l- x? - + + l/a 

bx + c~l - x) [bx + c(l - x))2 
> - + l/a 

bx + c(l- x) 
> -l/b + l/a 
> o. 

Thus, h(x) increases in x. But then h(XA) > h(XB) and (A3.6) 
cannot hold and the proposition follows. 
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4 Research Joint Ventures VS. 

R&D Competition 

4.1 Introduction 

In standard economic theory, cartels and colIaboration between 
producers are (mostly) bad ; they result in higher prices and lower 
output than does perfect competition. Since the times of Schum
peter, economists have known that things are less simple in the 
production of technology. There are a number of reasons why 
cooperation in R&D may be desirable. If the private returns to 
R&D falI short of the social returns due to technology spillovers, 
cooperation will be socialIy beneficial if it helps to increase appro
priability. Cooperation may also improve coordination in R&D 
work. Since technology is a shareable good, producing the same 
piece of technology more than once is waste of resources from 
the social point of view. Such duplication may be avoided with 
cooperation. FinalIy, cooperation may increase the diffusion of 
innovations. 

These arguments have worked their way into the legislation in 
many countries. In the United States, where the attitude toward 
cartels has generalIy been strict, antitrust laws were rewritten as 
a result of lobbying by computer firms, and in 1984 the National 
Cooperative Research Act practicalIy removed constraints on col
laboration in research (see Brodley, 1990). In the same year, the 
European Commission adopted Regulation No. 418/85, which 
further extended the favorable antitrust treatment of R&D from 
what had been expressed already in 1968 "N otice of Cooperation 
between Enterprises". Similar practices have emerged in J apan as 
well.1 Consequently, it has come commonplace for companies that 
compete in a product market to undertake joint R&D projects. 

1 For a discussion of the practice followed by the Fair Trade Commission 
of Japan, which is responsible for executing and enforcing the Antimonopoly 
Act of 1947, see Jorde and Teece (1990). 
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One of the most prominent examples of such projects is Sematech, 
the successful Research Joint Venture (RJV) of the big American 
microelectronics manufacturers, was establishe& in 1987 and is 
heavily subsidized by the federal government. Other frequently 
cited examples are the German machine tool industry and the 
R&D collaboration between American and Japanese automobile 
companies. 

However, whether RJV s are desirable from the social point 
of view is not a straightforward issue. While cooperation in re
search may provide the advantages outlined ab ove , the familiar 
risks of reduced competition remain. Eliminating competition in 
R&D may lead to excessive cuts in R&D spending, particularly 
if innovation redistributes rather than increases industry profits. 
Collusion in R&D may also facilitate collusion in production, for 
example, through license payments. 

The work by Grossman and Shapiro (1986) and Ordover and 
Willing (1985) isolated some of the fundamental forces that de
termine the effect of an RJV. 2 A later line of papers, starting 
with the work of d'Aspremont and Jacquemin (1988) and fur
ther represented in the works of Henriques (1990), Kamien et 
al. (1992), Suzumura (1992), and, in a continuous time frame
work, Stenbacka and Tombak (1993), approaches the question 
using a rigorous two-stage model of oligopolistic competition. In 
the first stage, a number of firms first choose their R&D invest
ments and then engage in a Cournot competition, taking R&D 
investments as given. A number of different scenarios have been 
employed regarding how the R&D stage is arranged. Firms may 
share their R&D output or try to keep it secret, and the decision 
of R&D investment may be made either in a centralized fashion 
or in the individual firms. Particularly interesting is the com
parison between a cartelized RJV, in which firms cooperatively 
choose R&D investment to maximize their joint profits and share 
their R&D output, and non-cooperative competition, where firms 
compete in both stages and R&D output is not shared. The pa-

2For profound nontheoretical discussion of the merits and weaknesses of 
research as well as production joint ventures, see Jorde and Teece (1990), 
Brodley (1990) and Shapiro and Willig (1990). 
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pers by d'Aspremont andJacquemin (1988) and Kamien et al. 
(1992) agree that an RJV cartelleads to a higher level of effective 
R&D and guarantees a higher level of welfare than does the non
cooperative equilibrium. Thus, these papers conclude that firms 
should be encouraged to form R&D joint ventures, provided they 
coordinate their R&D inputs. 

The superior performance of the RJV cartel in those models 
relies on the assumed elastic demand structure; innovation in
creases industry profits instead of just redistributing them. It 
would be trivial to show that with inelastic demand the conclu
sion would not hold. Even with elastic demand, the result may 
not be robust to the inclusion on some features of the real innova
tion processes. For example, in those models, it is assumed that 
forming an RJV is the only way that firms can share their R&D 
output. This chapter augments the stylized framework used in 
the papers by d'Aspremont and Jacquemin (1988) and Kamien et 
al. (1992) by allowing firms to share their technologies by selling 
licenses to each other and analyzes whether the superiority of the 
RJV cartel still holds. It is shown that this type of modification 
changes the results significantly. Whether the RJV cartel or com
petition with licensing leads to higher R&D investment depends 
on several model parameters, such as the extent of spillovers and 
duplication in R&D, substitutability of products, and the out
come of the bargaining between seller and buyer in the market 
for technology. It is also found that while an RJV cartel can
not, from the social point of view, overinvest in R&D, there is no 
mechanism preventing firms in competition with licensing from 
doing SO.3 

To understand the way the market for technology changes the 
situation, one needs to separate two types of externalities that 
firms exert on each other. First, there is the direct technological 
externality, by which one firm's R&D investment improves the 
production technology of others. An RJV cartel internalizes this 

3That an RJV cartel never overinvests in R&D holds in this particular 
framework. The same is not generally true, as a counterexample by Suzumura 
(1992) shows. 
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positive spillover and thereby increases R&D investment. Allow
ing firms to trade their R&D does not correct this externality, 
but instead introduces an additional spillover - or strategic in
teraction - that works in the opposite direction.This spillover 
is created when a firm licenses its existing .technology to another 
firm; due to demand interdependencies, the transaction causes a 
deterioration in the relative position of all third party firms. The 
licensor does not take this effect into account when deciding on 
its R&D investment. As shown below, this externality may or 
may not outweigh the technological externality, depending on the 
parameters. 

In order for the market for technology to play any role, two 
conditions must be met. First, the R&D undertaken in the indi
vidual firms must not be completely overlapping. This is not likely 
to be a problem in reallife. As Kamien et al. (1992) state, R&D 
" .. .is a multidimensional heuristic rather than a one-dimensional 
algorithmic process." There is good reason to believe that two 
firms, each undertaking R&D independently, could not co me up 
with identical R&D outcomes even if they tried - first, because 
the probability of this happening by pure chance is negligible, and 
secondly, because the firms have an economie ineentive not to try; 
if there is a market for R&D output, then the firms want to differ
entiate their produets, and the multidimensionality of the R&D 
proeess makes this possible. Even if the firms do not direetly eo
operate in R&D, they ean keep each other informed about the 
general area of their R&D work - and eaeh has an ineentive to 
tell the truth. Alternatively, eaeh firm can sell its R&D output 
to others in small pieees over the eourse of the R&D process and 
thereby avoid duplieation. In what follows, it is assumed that 
even when firms do not eooperate they are able to coordinate 
their R&D efforts so as to eompletely avoid duplieation. It would 
be straightforward to introduee an additional parameter, "degree 
of duplieation", in the model, but this would add little insight 
and would not ehange the qualitative implieations. 

The seeond eonsideration is related to appropriability in the 
market for teehnology; that is, how a teehnology is priced. Onee a 
firm has produeed a teehnology, the marginal eost of reproducing 
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it and lieensing it to another firm is essentially zero. An indireet 
eost arises from the lost market share in the produet market that 
results from the inereased eompetitiveness of the lieensee, if the 
produets of the two firms are substitutes. If the benefit to the 
licensee from eompetitiveness gained exeeeds the eorresponding 
loss to the lieensor, then lieensing ereates a surplus to the partners 
and there is room for negotiation. 

The standard approaeh to model this negotiation would be 
to find the threat points and postulate a bargaining proeess. In 
this particular ease, the threat point for the lieensee is straight
forward to find (it is simply the profit it would get without the 
teehnology), but the threat point of the lieensor is harder to find. 
It is not simply the profit it would get by not selling the teehnol
ogy, beeause in this ease the lieensor might do better by ehoosing 
a eompletely different strategy for selling lieenses. It eould, for 
example, avoid the negotiation proeess entirely by arranging an 
auetion for a prespeeified number of lieenses, say n - 2, Le.one 
less than the number of its eompetitors, but any number smaller 
than the number of its eompetitors would do. The price of a li
eense would then be driven up to the point where a eompetitor is 
indifferent between getting a lieense and not getting it, and the 
lieensor would extraet the total surplus from n - 2 firms. If the 
number of firms is large enough, the profit the lieensor ean extraet 
using this strategy is close to what it would get if it were able to 
set the price of a lieense and sell them to all n - 1 competitors. 

Here, the eomplieations related to this multidimensional bar
gaining problem are sidestepped by assuming the following strue
ture for the trade of lieenses: the owner of a teehnology ehooses 
the number of lieenses k it is going to offer for sale. It then sends 
a lieensing proposal to k eompetitors, offering the right to the use 
of its teehnology for a fixed fee. The reeeivers of the proposal 
must approve or reject. it; no eounteroffers ean be made. The li
eensor does not have any other ehanee to sell its teehnology. If one 
or more of the firms rejeet the proposal, the number of lieenses 
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sold is redueed aeeordingly.4 This seheme effeetively alloeates all 
bargaining power to the lieensor and maximizes the ineome he 
gets for the teehnology. Consequently, the ineentive to undertake 
R&D is also maximized. A less extreme assumption regarding 
the sharing of the· surplus would produee less pronouneed but 
qualitatively similar results, at the expense of more eomplieated 
ealculations. AIso, for the reasons mentioned above, priee setting 
by the lieensee should be a fair approximation of the outeome 
of a negotiation proeess if the number of firms is large enough. 
The assumption that eaeh firm ehooses to lieense its teehnology 
to all other firms is usually not restrietive, as is shown later in the 
paper. 

Finally, it is assumed that a fixed fee is paid for the lieense. 
Aside from the relative simplieityit provides, this assumption 
ean be justified by several studies showing that eharging a fixed 
fee is more profitable to the lieensor than royalties (see Kamien 
an Tauman 1986). Finally, the restrietion to fixed fees is also 
natural when the lieensor eannot monitor lieensees' output levels. 
In this ease a seheme involving royalties eould not be enforeed. 
Sinee this particular model is eoneerned with the trading of a 
teehnology that lowers the produetion eost, a lump sum payment 
seems more appropriate than would be the ease if the objeet of 
trade were a lieense to manufaeture a produet.5 

4This pricing sceme is differs slightIy from the optimal one used by Katz 
and Shapiro (1986) and applied in the previous chapter. In the optimal 
pricing sceme, an auction is run for a prespecified number of licenses. Here, 
it is the number of offers, not licenses, that is prespecified. The price of a 
license coincides in the two scemes if the licenses are sold to every competitor. 
If the number of licenses sold is smaller than the number of competitors, the 
two scemes differ. The reason for this choice is that it allows for dear limits 
for complete cross-licensing to be an equilibrium (see Proposition 4.1). 

5In general, a licensing contract can be designed so that the outcome is 
identical to a fully collusive outcome [see Shapiro (1985)]. Most likeIy, a 
scheme consisting of a combination of royalties and a Iump sum payment 
would also result in collusion in the product market. How much incentive 
to innovate such a situation would create could be an interesting topic for 
future research. 
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4.2 The Model 

The model used here follows, in many respects, the framework 
used in Kamien et al. (1992), which is based on the model pre
sented in d'Aspremont and Jacquemin (1988). Where possible, 
the notation also follows that of Kamien et al. (1992). The mar
ket consists of n identical fi!ms, each producing a single product. 
The products of different firms are symmetric; that is, substi
tutability is constant over the products. The quantity produced 
by firm i is denoted by Qi and the price it realizes is given by 
the inverse demand function identical to the one in Kamien et 
al. (1992), Le. 

~=a-Qi-'YLQj. (4.1) 
#i 

Here 'Y < 1 is the substitutability parameter. The values 'Y = 0 
and 'Y = 1 correspond to no substitutability and perfect substi
tutability, respectively. 

The unit cost of firm i's production is C"- f(X i ), where Xi is 
firm i's effective stack af technalagy. Firm i's effeetive stoek of 
technology is the sum of the teehnology produced by the firm in
house Xi, and the teehnology it reeeives from the eompeting firms 
through involuntary teehnology spillovers, voluntary disclosures 
of teehnology, or by buying licenses to the use of technologies. 
The eost of producing in-house teehnology is assumed to be an 
increasing function g(Xi) of the teehnology output Xi. To guaran-
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tee the existence of solutions later in this chapter, function 9 is 
assumed to be sufficiently convex.6 

Three scenarios will be examined, each with a different as
sumption as to the arrangement of the R&D stage and the diffu
sion of technology: 

Scenario RJV (R&D Joint Venture): Firms form an industry
wide cartellized R&D joint venture. Individual investments 
in R&D are chosen jointly to maximize the joint profit of 
the firms. All R&D output is voluntarily disclosed to other 
firms, so that the representative firm i's stock of technology 
is the sum of all technology outputs: 

i E N = {1, ... ,n}. (4.2) 

Scenario eN (R&D competition without licensing): Firms com
pete in the R&D stage and technology is not tradable. Each 
firm chooses its R&D investment to maximize its individual 
profit. The only technology that a firm receives from its 
competitors comes through involuntary spillovers. Hence, 
firm i's stock of technology is given by 

Xi = Xi + (3LXj, 
j#i 

i E N 

where (3 E [0,1] is the spillover parameter. 

(4.3) 

6This formulation eombines features from the models of d'Aspremont and 
Jaequemin (1988), who use a quadratic eost funetion and assume the fune
tion f linear, and Kamien et al. (1992), who assume a linear eost funetion. 
Both the eoneavity of r (see Assumption 4.1) and the eonvexity of g serve to 
eonvexify the model. However, the intepretation of these two approaehes is 
somewhat different. A eoneave f means decreasing returns ta scale in R&D 
- additional units of teehnological knowledge produee ever smaller deereases 
in produetion eost - while a eonvex g ean be intepreted as decreasing re
turns ta cancentratian - a given amount of R&D input produees the higher 
R&D output the larger the number of firms among which the R&D effort is 
distributed. Here, both are assumed to be present to a sufficient degree to 
ensure that a unique equilibrium exists. 
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Scenario OL (R&D eompetition with Iieensing): Firms eom
pete in the R&D stage and teehnology is tradabIe. Eaeh 
firm ehooses its R&D investment to maximize its individ
ual profit and ean selllieenses to that part ofits teehnology 
whieh does not Ieak out through involuntary spillovers. The 
effeetive stoeks of teehnology are somewhere between (4.3), 
if no Iieenses are sold, and (4.2), if eross-lieensing is eom
pIete - i.e. eaeh firm lieenses its teehnology to every other 
firm. 

Henee, if the individual investments are the same in all three 
seenarios, RJV and CL are equivaIent and effieient in the sense 
that every firm ean make use of all teehnology ereated by the 
firms (provided eross-lieensing is eomplete in the Iatter), whereas 
seenario CN is inefficient in that eaeh firm ean aeeess only a part 
of the teehnology ereated in the market. The main question is 
whieh of the first two seenarios Ieads to a higher level of R&D 
investment. 

Assumption 4.1 The function j is increasing, concave and 
twice continuously differentiable. It is bounded from above by c 
and f(O) = o. 

Assumption 4.2 Iimx->oo f(X) < (a - c)/(n - 1). 

Assumption 4.3 f'(X? + j(X)f"(X) < 0 for all X ;::: o. 

These assumptions follow closely those of Kamien et al. (1992). 
Assumption 4.1 eontains some standard assumptions about R&D 
produetion technology and guarantees that the eost of produetion 
is aIways positive. Assumption 4.2 is needed to guarantee that 
every firm finds it profitabIe to partieipate aetiveIy in produetion. 
Notiee that for any given nontrivial funetion j(X) and parameters 
a and c there exists an n Iarge enough so that Assumption 4.2 fails 
to hold. Assumption 4.3 sets a Iower bound for the eoneavity 
of funetion f. An important implieation of this assumption is 
that an individual firm's profit is a strietIy eoneave funetion of 
its own stoek of teehnology. This is stronger requirement than 
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that made by Kamien et al. (1992) who only assumed monopoly 
profit to be strictly concave in technology.7 The stronger form is 
needed to guarantee the existence of an equilibrium in the market 
for technology under competition with licensing. It also provides 
a sufficient condition for equilibrium in an RJV cartel. It does 
not necessarily guarantee the existence of an equilibrium in R&D 
competition without licensing. This is not a major consideration 
since the focus of interest here is on the comparison between the 
RJV cartel and competition with licensing. 

It is established in earlier papers that given the stocks of tech
nology firm i's profit from production (i.e. not counting R&D costs 
or payments related to the trade of technology) is 7ri = Q~, where 

Q. _ a - c + f(Xi ) - ~ 2:#i[f(Xj ) - f(Xi )] 

~ - 2 + ')'(n - 1) 
(4.4) 

and Xi is given by either (4.3) or (4.2), depending on whether 
or not firms share or trade their technologies. It is shown in the 
Appendix that given Assumption 4.2, Qi is positive. Hence, all 
firms participate in production. 

4.3 The Analysis 

Following the earlier papers, the focus here is on symmetric N ash 
equilibria. Asymmetric equilibria are not considered. Before pro
ceeding to the analysis, it is convenient to define an additional 
function 7r (Xi , X j ) to denote the profit a firm gets in the second 

7The weaker form of Assumption 4.3 used by Kamien et al. does not 
guarantee the existence of an equilibrium under R&D competition. It is only 
sufficient to establish the uniqueness of an equilibrium, provided one exists. 
It is unclear whether Kamien et al. intended to assume or prove the existence 
af the equilibrium. In footnote 1 (p. 1298) they state that they assume 
existence, but in the Appendix (p. 1306) they (incarrectly) claim ta have 
proven it. 
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period if its stock of technology is Xi and X k = X j for all k =1= i; 
Le. all other firms have identical stocks X j . Thus, 

1f(Xi , Xj) 

= [2 - "((n - 1)r2 
(4.5) 

x [a - c+ !(Xi ) - ~(n -l)(f(Xj ) - !(Xi))f. 

The following properties of the function 1f are established in the 
Appendix. 

Lemma 4.1 

(i) a~.1f(Xi' Xj) > 0 
(ii) a' 0 ax.1f(Xi, Xj) < 
(iii) a aJ 

0, for Xi < X j aXi 1f (Xi , Xj) + aXj 1f (Xi , Xj) > 
(iv) (aa;)21f(Xi, Xj) < 0 

(v) ax~;x~ 1f(Xi , Xj) < 0 

(vi) (d~)21f(X, X) < o. 
Thus, given the demand function and Assumptions 4.1-4.3, 

profit function 1f: (i) increases in own stock of technology; (ii) 
decreases in the competitors' stock of technology; (iii) increases 
if everybody's stock of technology is increased; (iv) is concave in 
own stock of technology; (v) has negative cross derivative; and 
(vi) is concave in X in a symmetric solution. 

Case RJV: R&D joint venture cartel. 

The RJV's problem can be written as one of maximizing 

n1f(X, X) - ng(X/n) 

with respect to X. Denoting the symmetric solution by X R , the 
first-order condition for a maximum becomes 

d1f(X
R

, X
R

) _ '(XR / ) = 0 
n dXR 9 n . (4.6) 

By convexity of 9 and property (vi) of Lemma 4.1, the objective 
function for an RJV cartel is globally concave. Thus, the equilib
rium is unique. Existence requires low enough g'(O), which will 
be assumed. 
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Case CN: R&D competition without licensing. 

The maximization problem for the individual firm i, given that 
all other firms invest Xj, is 

Differentiating the objeetive funetion yields the first order eondi
tion 

7rl [Xi + {3(n - l)xj, (1 + {3(n - 2))xj + {3Xi] 
+{37r2 [Xi + {3(n - l)xj, (1 + {3(n - 2))xj + (3Xi] 

-g'(Xi) = 0, (4.8) 

where 7rl and 7r2 are the partial derivatives. Inereasing R&D in
vestment has two opposite effeets on firm i's profits. The first term 
represents the direet effeet a reduetion in firm i's produetion eost 
has on its profits. The seeond term is the negative externality 
firm i's R&D investment has on its own profits through the de
erease in its eompetitors' produetion eost, eaused by the spillover 
effeet. Substituting the symmetric solution Xi = Xj and denoting 
XCN = (1 + {3(n - 1))Xi gives 

7rl [XCN , X CN] + {37r2 [XCN , X CN] 
-g' [XCN /(1 + (3(n - 1)) = O. (4.9) 

By the definition of 7r, the following ean be seen to hold 

d7r(X, X) [1 + --L(n _ 1)] 
dX 2-, 

d7r(X, X) --L( _ 1) 
dX 2-, n . 

(4.10) 

Substituting these into equation (4.9) yields the final form for the 
first-order eondition 

d7r(XCN, XCN) 
dXCN x [1 + (1- (3)~(n -1)] 

_g'[XCN /(1 + (3(n - 1))] = O. (4.11) 

The objeetive funetion (4.7) ean be shown to be eoneave in Xi in 
the neighborhood of the symmetrie solution, so (4.11) provides 
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at Ieast a local maximum. Assuming that the function 9 is suffi
cientIy convex guarantees that the solution is global. Uniqueness 
of the symmetric solution to (4.11) follows from the convexity of 
9 and property (vi) of Lemma 4.1. 

Case CL: R&D competition with licensing 

This case is slightly more complicated than the previous two. Here 
each firm first decides on its own R&D effort independentIy, af
ter which it has an opportunity to sell to other firms licenses to 
that part of its R&D in-house technology that has not aIready 
become common knowledge through involuntary spillovers. Be
fore anaIyzing the choice of R&D output, one has to know what 
happens at the licensing stage of the game. The assumption is 
that the price of the Iicense is set by the Iicensor at the highest 
price the Iicensee will accept. The fact that any two firms both 
buy each other's technology is assumed not to affect the outcomej 
that is, the price firm i charges firm j for its technology does not 
depend on the price firm j charges for its own technology. Hence, 
the strategic variabIes are the prices themseIves, not the pricing 
ruIes. 

The equilibrium solved for is one in which every firm licenses 
its technology to every other firm. To establish this as the equiIib
rium of the licensing subgame, consider the maximization prob
Iem of a representative licensor firmi. Firm i knows that the 
other firms Iicense their technologies to everyb0 dy. If firm i's in
dividual R&D output is Xi and the aggregate stock of technology 
X = L.jEN Xj, then the stock of technology firm i's competitors 
have access to without firm i's technology is X - (1- (3)Xi; that is, 
the aggregate stock of technology less that part of firm i's technol
ogy that can be kept secret. Suppose firm i also decides to offer 
its technology to every competitor. If all firms license the tech
nology, then their profit in the production stage is 7r(X, X). If a 
single firm rejects the offer, it gets the profit ~(X - (1- (3)Xi, X). 
The maximum fee firm i can get for each license, denoted here 
P(Xi, X) is the difference of these two, Le. 

p(Xi, X) = 7r(X, X) - 7r(X - (1 - (3)Xi, X). (4.12) 
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By Lemma 4.1, P(Xi, X) is positive. The value of the license 
P(Xi, X) is here derived under the assumption that all other firms 
purchase licenses to all available technologies. A natural question 
is whether firm i is still willing to pay that fee if cross licensing 
among competitors is le ss than complete. Using property (v) of 
Lemma 4.1 it is straightforward to show that this is indeed the 
case. Decreasing the level of the effective stock of technology of a 
firm's competitors makes each new technology more valuable to 
the firm itself. Hence, P(Xi, X) gives the minimum value of the 
license for the licensee over all feasible prospects. 

The following proposition states the condition under which it 
is optimal for a firm to sell the license to every competitor and 
charge the fee given by equation (4.12). The proposition is proved 
in the A ppendix. 

Proposition 4.1 (i) Given the fee P in (4.12), each firm max
imizes its profits by buying a license from every competitor. (ii) 
Each firm maximizes its profits by selling its technology to all 
other firms if 

f(X - (1 - (3)Xi) > n - 1 
f(X) 3n -1' 

(4.13) 

H ence, under this condition, mutual licensing at price P is an 
equilibrium in this subgame. 

Part (i) of the proposition is based on Assumption 4.3, which 
gives a lower bound for the concavity of f. Tt ensures that profit is 
°a concave function of technology. As a result, the fee for alicense, 
which is based on its marginal contribution on the buyer's profit, 
is 0 smaller than the average contribution of several licenses, and 
thus the buyer gains by buying from all sellers. 

Part (ii) of the proposition states that it is optimal for a firm 
to sell to all of its competitors, provided its contribution to the 
cost reduction is not too large. More precisely, if the cost reduc
tion with firm i's technology is no more than (3n - 1)/(n - 1) = 
3 + 2/ (n -1) times the cost reduction without it, then firm i finds 
it optimal to sell to all its competitors. This condition holds if 
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the Xi 's are sufficiently symmetric; it also holds if the spillover 
parameter f3 is high enough, as established in the following corol
lary: 

Corollary 4.1 Let 

(
nl )2 

f3 > 3n -1 

Then compleie cross-licensing is an equilibrium. 

Based on Corollary 4.1, it can be verified that condition (4.13) 
holds for any n if f3 > 1/9. For a duopoly, the requirement is even 
weaker; if f3 > 1/25, then mutuallicensing is an equilibrium. Only 
if a firm's innovation is sufficiently drastic and f3 is small, can it 
be optimal for the firm to sell only to a subset of competitors. 
Higher oligopoly profits for those firms would, in turn, drive the 
price of a license sufficiently higher to compensate for the smaller 
number of licenses. In the rest of the paper, condition (4.13) is 
assumed to hold so that all technologies are traded. 

Firm i has two sources of income: its own profits in the pro
duction stage and the licensing income which is equal to n - 1 
times the fee given by (4.12). On the negative side, it has to 
buy technology from n - 1 competitors. Since the competitors 
are symmetric, the R&D investment of each firm j # i can be 
denoted by Xj' Then the price firm i has to pay for each license 
is p(Xj, X). Finally, firm i has to pay for its R&D investment. 
Thus, firm i chooses Xi to maximize 

1f(X, X) + (n - l)p(xi, X) - (n - l)p(xj, X) - g(Xi) 
subject to X = Xi + (n - l)xj. 

(4.14) 

Substituting from (4.12) to (4.14) and differentiating gives the 
first order condition 

n d~1f(X,X) - g'(Xi) (4.15) 
d 

-(n - 1) dXi 1f(X - (1 - (3)Xi, X) 

-(n - 1) [d!i 1f(X, X) - d:i 1f(X - (1 - (3)Xj, X) 1 
=0. 
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The first line gives the marginal change in the joint net profits 
from an additional unit of R&D investment. In the RJV cartel, 
this is set equal to zero. The second line gives the change in the 
competitors' threat point resulting from a change in firm i's R&D 
investment, Le. the change in a competitor's profit in case the 
competitor does not buy firm i's technology, . This effect may be 
positive or negative, depending on the size of the spillover effect. 
The third line represents the change in the price firm i pays for its 
competitors' technology. Properties (iii) and (v) of Lemma 4.1 
imply that the net effect of this term on firm i'sprofit is positive: 
by investing more in R&D, firm i decreases the price it has to pay 
for other firms' technology. 

Putting in the fixed point condition Xi = Xj = X CL /n and 
using the definition of function 7r gives, after some manipulation, 
the final condition for a symmetric equilibrium under competition 
with licensing: 

d7r(XCL ,XCL ) 
dXCL 

+(n - 1)(1- (3)7rl(XCL - (1- (3)XCL /n,XCL) (4.16) 

_g'(XCL /n) = O. 

The existence and uniqueness of the solution again relies on small 
g'(O) and sufficiently convex g, which will be assumed. 

4.4 Comparison of the Scenarios 

Using the definition of the function 7r yields the following forms 
for the first order conditions for the first two scenarios: 

(4.17) 

in the RJV cartel and 

2 (1 + ~(1 - (3)(n - 1)) [a - c + !(X
CN

)] f'(XCN ) 
2 "1 2+'T'(n-1) 

_g'(XCN ) = 0 
(4.18) 
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under competition without licensing. It follows from Assumption 
4.3 that the expression 

[
a - c + !(X)] j'(X) 
2+1'(n-l) 

decreases in X. Since the term multiplying this expression is 
smaller in (4.18) than in (4.17), the following holds: 

Proposition 4.2 (Kamien et al., 1992). X R > X CN except 
when f3 = 0 and l' = 1, in which case X R = X CN . 

Equally straightforward is the comparison between competi
tion with and without licensing (see the Appendix): 

Proposition 4.3 X CL > X CN except when f3 = 1, in which case 
X CL =XCN . 

The comparison between the RJV cartel and competition with 
licensing is more complicated. N ecessary and sufficient conditions 
for this comparison would require specification of the function 
! and practically all parameters. However, a simple sufficient 
condition is easy to establish (see Appendix). 

Proposition 4.4 Let 

f3 (n -1)')' 
< (n-2)')'+2' 

(4.19) 

Then X CL > X R . 

Inequality (4.19) provides a sufficient condition under which 
the change in firm i's total profit (firm i's profit from production 
plus the revenue from selling its technology minus the expenditure 
on other firm's technology) resulting from an additional unit of 
investment is greater than the change in the joint profit of all 
firm~ (the objective function in the RJV cartel). If this is the 
case, then the marginal effect of one firm's-R&D investment on its 
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competitors' net profits is negative. As a consequence, investment 
is higher in competition with licensing. 

It can be immediate1y seen that competition with licensing 
1eads to a higher 1eve1 of R&D investment if the spillover param
eter f3 is not too 1arge and if the substitutabi1ity parameter 'Y is 
high enough. The intuition behind the effect of f3 is straightfor
ward: the 1arger the spillover effect the smaller the portion of a 
firm's techno1ogy that remains to be licensed and hence the 10wer 
the price of alicense. 

The role of the substitutability parameter 'Y is less evident. It 
is related to the strength of the strategic interaction between the 
firms, which is reflected in the responsiveness of competitors to 
changes in a firm's production cost. If substitutability between 
the products is zero, the demands are independent and the loss to 
firm i from a small increase dCi in its unit cost is simply dCi . Qi. 
On the other hand, if the products are close substitutes, then 
an increase in Ci (that is, a decrease in Xi) has an additional 
effect: other firms react to their improved competitiveness by 
increasing their production, which, in turn, decreases the price 
of firm i's good. The cost disadvantage hurts firmi's profits 
more the greater the substitutability of the goods. Hence, a high 
value of 'Y contributes to a high price of the license and thereby 
increases the incentive to invest in R&D. Note also that for any 
fixed parameters f3 < 1 and'Y > 0, condition (4.19) holds for large 
enough n. 

Figure 4.1 illustrates the comparison between competition 
with licensing and the RJV cartel. It plots the threshold pa
rameter combinations for which (4.19) holds with equality for the 
cases n = 2,3,5,10 and 20. Below the threshold line, competi
tion with licensing leads to higher R&D investment. Above the 
threshold line the ranking is unclear, but the further above the 
line one moves the larger the set of functions f for which an RJV 
cartel invests more. 

A higher level of R&D investment does not necessarily corre
spond to a higher level of welfare. Rigorous welfare comparison 
is not possible at the present level of generality. However, some 
specific results can be extracted. Since a higher stock of technol-
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Figure 4.1 Threshold combinations of 'Y and f3 

1 ,----------------------------------------, 

n=20 

ogy, in this particular model, leads to higher production and lower 
price in the second stage (see Kamien et al.1992), consumer wel
fare increases with R&D investment. On the other hand, producer 
surplus is always maximized in the RJV cartel. It is easy to see 
that since the RJV cartel leads to higher investment than R&D 
competition without licensing it must also provide higher welfare 
(producer and consumer surplus combined). Comparison of the 
welfare properties of the RJV cartel and competition with licens
ing is less clear cut. For parameter values such that X R > X CL , 

both producer and consumer surplus (and hence also welfare) are 
higher under the RJV cartel. On the other hand, since in the RJV 
cartel solution X R , producer surplus is at the maximum and con
sumer surplus is increasing in R&D investment, the total surplus 
increases in X at values close to X R. Thus, for X CL greater than, 
but close to X R , competition with licensing leads to higher wel
fare. It is possible that in some cases, competition with licensing 
leads to overinvestment in R&D. Exactly when this happens and 
under what conditions the socialloss from this overinvestment is 
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greater than the 10ss from underinvestment under a RJV cartel 
are questions that can only be answered for spe'cific forms of the 
functions f and g. 

4.5 Conclusions 

Several recent papers conelude that a research joint venture cartel 
that maximizes the joint profits of the participating firms is likely 
to produce higher R&D investment and welfare than does R&D 
competition. This result has been used to recommend policies in 
which firms are encouraged to form RJV cartels. The analysis of 
this paper shows that this result, and therefore the policy recom
mendations implied by it, do not necessarily hold if technology 
is tradeable; that is, if firms are allowed to license their R&D 
outputs to each other. 

To understand the results of this chapter one has to examine 
the spillovers involved. The most evident one is the technology 
spillover that is built in the basic structure of the model. Firms 
do not take into account the positive effect of their R&D input on 
other firms' technology and therefore undertake a socially inade
quate amount of R&D investment. Making technology tradeable 
introduces another spillover into the game. When two firms trade 
their technologies, the competitive position of all third party firms 
deteriorates. Hence, by investing in R&D, a firm exerts also an in
direct negative externality on its competitors. Whether the direct 
technological spillover or the indirect spillover from the trading 
of technology is dominant determines which one - the RJV car
tel or competition with licensing - yields the highest level of 
R&D. It is shown in this chapter that the eloser competitors the 
firms are - i.e. the eloser substitutes they produce - the more 
likely it is that competition with licensing provides a faster pace 
of technological progress. 

The model of this chapter builds on several assumptions. Most 
importantly, it is assumed that the seller of a license can extract 
all the surplus created by the trade. While this is probably a 
reasonable approximation when the number of firms in the market 
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is large, it may be less so in a typical real-world oligopolistic 
R&D setting. Further, the analysis excluded the possibility that 
information asymmetries may lead to duplication in R&D, which 
the RJV cartel may be able to correct. Still, this chapter serves 

to show that even under elastic demand it is not inherent 
of an RJV cartel to lead to higher R&D investment than does 
competition. 
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Appendix to Chapter 4 

Derivation of (4.4): Firm i maximizes 

The first order eondition is 

a - 2Qi - ry L Qj - (c - f(Xi )) = 0 
j=fi 

or 

a - (2 - ry)Qi - ry LQj - (c - f(Xi)) = O. 
j 

Summing over i = 1, ... , n and rearranging gives 

(A4.1) 

(A4.2) 

(A4.3) 

Substituting from (A4.3) to (A4.2) and solving (A4.2) for Qi gives 
the desired result. 

Proof that Qi > O. Qi takes its minimum value when firm i's 
produetion eost is c (Xi = 0) and other firms' produetion eost is 
c -limx->oo f(X). In this ease, 

Q. _ a - c - ~(n -1) limx->oo f(X) 
2- 2+ry(n-1) (A4.4) 

The numerator is greater or equal to a- c -(n-1) limx->oo f(X), 
whieh, by Assumption 2, is positive. 

Proof of Lemma 4.1: DifIerentiating 1ri w.r.t. Xi 

where 

Qi = [a -c+ (1 + ~(n -1)) f(Xi) - ~(n -l)f(Xj )] 

2+ry(n-1) 
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was proved above to be positive. Since f is an increasing function, 
the right hand side of (A4.5) is also positive. Thus, property (i) 
is established. 

Differentiating 7rj W.r.t. Xj: 

(A4.6) 

which is negative by the same argument as above. Property (ii) 
follows. 

Summing the previous two results yields 

d7ri(Xi, Xj) d7ri(Xi, Xj) 
--'--~+---'---~ 

dXi dXj (A4.7) 
= 2Qi {[1 + ~(n -1)] f'(Xi) - ~(n -1)f'(Xj )}. 

If Xi S; Xj, then f'(Xi) ~ f'(Xj ) and the term inside the curly 
brackets is positive. Property (iii) follows. 

Differentiating (A4.5) W.r.t. Xi renders 

d27ri (Xi , X j ) 
(dXi )2 

= 2 {a-c+( l+G(n-l) )f(Xi)-G(n-l)f(Xj) } 
[2+y(n-l)]2 

x [1 + ~(n -1)] f"(Xi ) 

+ [1 + ~(n - 1)]2 f'(X
i
? 

2+1'(n-1) 

< [1 + ~(n - 1)]2 [J(Xi)f"(X) + f'(X)2] 
2+1'(n-1) 

< 0, 

(A4.8) 

where the last inequality holds by Assumption 4.3. Thus, prop
erty (iv) holds. 

Finally, differentiating (A4.5) w.r.t. X j yields 

d27ri (Xi , Xj) 
dXidXj 

. {1 + -.:L(n - 1)} (A4.9) 
= -2Qi x [2 + 2;(n _ 1)]2 f'(Xi)~(n ~.1)f'(Xj), 
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which is easily seen to be negative. This establishes property (v). 
Substituting Xi = Xj = X into the definition of 1f(Xi ,Xj ) 

gives 

1f(X, X) = [2 - ry(n - 1)r2 [a - c + f(X)]2 . 

Differentiating this twice yields 

[2 - ry(n - 1)r2 

x [(a - c)f"(X) +2(f'(X)2 + f(X)f"(X))]. 

which is negative by Assumption 4.3 and the concavity of f 
Thus property (vi) holds. 

Proof of Proposition 4.1: Part (i) of the proposition follows di
rectly from Assumption 3, which makes profit concave in the 
firm's own stock of technology. Since technology is priced ac
cording to the marginal contribution to the profit of the licensee 
provided by the last license, the average contribution of alllicenses 
must exceed the total fees. Hence, part (i) of the proposition 
holds. 

(ii)Denote the stock of technology of a firm other than i which 
does not buy firm i's technology by X-i = X - (1- fJ)Xi. Suppose 
firm i decides to license its technology to k E {1, ... n - 1} firms. 
The profit it receives is its own profit in the production stage plus 
k times the fee for alicense. With a slight abuse of notation, let 
us writethe fee as a function of k: 

(k) = [a-c+f(X)-i!ry(n-l-k)(J(X_i)-f(X))j2 
p 2+,y(n-l) 

_ [a-c+ f(X-i)- i!ryk(J(X)-f(X-i))] 
2+,(n-l) 

(A4.10) 

The first term on the r.h.s is the profit a licensee gets if it, together 
with k - 1 other firms, buys the license. The second term is its 
if it does not buy the license and consequently the license is sold 
only to k - 1 firms. Firm i's total profit consists of k times the 
fee plus its own profit in the production period, which is equal to 
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the first term on the r.h.s of (A4.10). Thus firm i chooses k to 
maximize 

m-(k) __ [a-c+f(X)-0(n-l-k)(J(X-i)-f(X))] 2 
II (k+1) 2+1'(n-l) 

-k [a-c+ f(X-i)-0 k(J(X)-f(X-i))] 2 
2+1'(n-l) 

(A4.11) 

It can be checked that 7r(k) is a downward opening parabola in k. 
T!I-erefore, it suffices to find the conditions under which 7r(n - 1) 
is greater than 7r( n - 2); if this is the case, then 7r(k) increases in 
k over the whole feasible range from 2 to n - 1. Thus, 

where 

Z = [-2(a - c)(n - 3) - (3n2 - 10n + 7)f(X) 
+(3n2 - 12n + 13)f(X_i )h2 

+4 [(a - c)(n - 4) - nf(X) + 2(n - 2)f(X-i )] "( 

+4 [2(a - c) + f(X) + f(X- i )]. 

(A4.12) 

It needs to be shown that Z is positive under the given condition. 
First, suppose n ~ 3. Since f(X) > f(X-i) it follows that the 
term multiplying "(2 is negative and Z is a downward opening 
parabola in "(. Thus, to establish the positivity of Z, it suffices to 
check the end points "( = 0 and "( = 1. At "( = 0, Z assumes the 
value 

Z1'=O = 4 [2(a - c) + f(X) + f(X- i )] 

which is clearly positive. At "( = 1, Z becomes 

Z1'=l = 2(a - c)(n - 1) - f(X)(3n 2 
- 6n + 3) . 

+ f(X-i) (3n2 
- 4n + 1) 

(A4.13) 

(A4.14) 

Substituting (n - l)f(X) for a - c makes the r.h.s. smaller (by 
Assumption 2). Rearranging terms yields 

Z1'=l > - f(X)(n - 1)2 + f(X-i)(n - 1)(3n - 1), 
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where the r.h.s. is positive i! and only if the condition in Proposi
tion 4.1 holds. Thus, part (ii) of the proposition holds if n > 3. 

Similarly, for the case n = 2, substituting n = 2, f(X) < a-c 
and f(X)/5 < f(X-i) (by the condition in Proposition 4.1) into 
the expression for Z yields 

16 
Z> 5(12 

- 51 + 4)f(X). 

The r.h.s. of this expression is greater or equal to zero for any 
feasible 1. Hence, part (ii) of Proposition 4.1 holds also for n = 2. 

Proof of Corollary 4.1: Define the function h as 

f(X) 
h(X) = f'(X) - 2X. 

By Assumption 4.1, h(O) = O. Differentiating h gives 

h'(X) = - f"(X)f(X) - 1 > 0 
; f'(X)2 ' 

where the inequality follows from Assumption 4.3. Thus, h(X) > 
o for all X ~ 0, or equivalently, 

f'(X) 1 
f(X) - 2X < O. 

Integrating this shows that the function 

log(f(X)) _ log~X) , 

or equivalently 

[
f(X)] 

log X1/2 

decreases in X. This implies that f((3X)/ f(X) ~ (31/2, for (3 E 

[0,1]. Since X - (1 - (3)Xi > (3X, it holds that 

f(X - (1 - (3)Xi) > f((3X) > (31/2 
f(X) - f(X) - . 
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Thus, for condition (4.13) to hold it sufIices that 

( 
n _1)2 

j3 > 3n -1 . 

Proof of Proposition 4.3: The first-order condition for R&D com
petition without licensing was 

d7r(X
CN

,X
CN

) [1 (1-j3)...::L( -1)] 
dXCN x + 2-/ n 

_g'[XCN /(1 + j3(n - 1))] = O. (A4.15) 

The first-order condition under competition with licensing can be 
written 

(A4.16) 

where X = X CL - (1 - (3)XCL /n :s; X CL . If j3 = 1, conditions 
(A4.15) and (A4.16) are identical, so that in this case X CL = 
XCN. 

Suppose next that j3 < 1. Using property (iv) of Lemma 4.1 
and equation (4.10), 

7rl(X,XCL) > 7rl(XCL,XCL) 
_ d7r(XCL , X CL ) ...::L_ 
- dXCL [1 + 2_/(n 1)]. 

Substituting this into (A4.16) yields 

d7r(XCL, X CL ) 

xd{i~ (n -1)(1- (3) [1 + ~(n - 1)]} 
_g'(XCL /n) < O. 

By the convexity of g, condition (A4.15) implies 

d7r(XCN , X CN ) 
. dXCN x [1+(1-j3)~(n--"1)] 

_g'[XCN /n] > o. 
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The expression on the 1.h.s. ofthis condition differs from the one 
in (A 4.17) only by the term multiplying &7r / dX. It can be yerified 
that for (3 < 1, this multiplier is greater in (A4.17). Since d7r / dX 
is positive and decreasing and g' is increasing in X, it follows that 
XGL > XGN. 

Proof of Proposition 4.4: Comparing (A4.17) to the first-order 
condition for an RJV cartel in (4.6) shows by the argument used 
in the previous proof that XGL > X R if 

Solving this for (3 gives Proposition 4.4. 
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5 Concluding Remarks 

Chapters 2-4 of this work have shed light on some specific issues 
in the relationship between market structure and innovation. They 
do not attempt to give a complete picture of the subject, nor 
would that be possible. Various aspects of technology make it very 
different from a normal economic good and, one is inclined to say, 
more difficult to model. The shareable and partially excludable 
nature of technology introduces elements which, although familiar 
from the economic analysis of ordinary goods, are much more 
common in the production of technology. Phenomena such as 
externalities and duplication are an integral part of the economics 
of innovation. The heterogeneous nature of technology makes the 
process of innovation even harder to model. Even the basic task 
of specifying a production function for technology is anything but 
simple. The list of stylized facts concerning the production of 
technology is remarkably short. 

A complete formal theory of the economics of technological in
novation, if created, would not be compact. It would necessarily 
consist of a large number of cases, each of which describe to a par
ticular type of innovation. As it is, the economics of technological 
innovation still has a long way to go. The main body of related 
research has concentrated mainly on a few very specific and styl
ized cases, such as patent races, which apply to a minuscule subset 
of actual innovative work. The purpose of this work has been to 
expand these stylized frameworks in various directions. The fact 
that each of the three studies incloded here adopts a very different 
framework describes the polymorphous nature of innovation; no 
single framework is adequate in all situations. 

The first study (Chapter 2) concentrates on how rivalry af
fects the riskiness of a firm's research strategy. The framework is 
a traditionaI patent race model, extended to allow firms to choose 
from a set of research strategies, each of which yields a different 
probability distribution for the discovery date. The conventional 
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wisdom seems to be that in such a case, under noncooperative 
competition, firms tend to choose wider distributions than is so
ciaIly optimal and thus, the market is biased towards riskiness. 
It is shown in Chapter 2 that this conclusion is misleading and 
is based on a confusion of the tendency of firms to overinvest 
in patent races with the attitude toward risk. When analyzed 
separately, the bias is against, not towards, riskiness. 

Chapter 3 maintains the patent race framework in a modified 
form. The race now consists of a sequence of two innovations, 
the first of which can be licensed to competitors. In order to 
seIl licenses to its innovation, a firm must first patent it, which 
creates externalities. When deciding on whether to patent an in
novation or not, a firm weighs the revenue from licensing against 
the consequent loss of competitive advantage. This framework is 
used to analyze the incentives of firms to patent their innovations 
under different market structures. It is shown that the degree 
of concentration is inversely related to the propensity to patent. 
The relationship between firm size and patenting depends on the 
informational assumptions, but in general big firms seem more 
often to find it profitable to keep their innovations secret and em
ploy them internaIly whereas small firms have a greater incentive 
to seIllicenses to their innovations and hence more often seek to 
protect them by patenting. These differences create a wedge be
tween patenting and the actual pace of technological innovation. 
This has immediate implications on the interpretation of studies 
that measure R&D output by the number of patents. Such studies 
have found out that in many industries patenting increases less 
than proportionally with firm size and interpret this as evidence 
for decreasing returns to scale in R&D. The analysis of Chapter 3 
suggests that this may instead be a consequence of a systematic 
bias in the data. 

Finally, Chapter 4 challenges the view of several recent pa
pers that firms should be allowed to form R&D cartels in order to 
internalize technological spillovers related to technological innova
tion. These papershave shown that an R&D cartelleads to both 
higher R&D as well as higher consumer welfare than noncooper
ative R&D competition. It is shown in this work that this result 
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depends partly on the assumption that firms are not able to licEmse 
their innovations to each other. Removing this restriction intro
duces another spillover which, unlike technological spillover, tends 
to increase the R&D investment and consumer surplus. Which of 
the two spillovers is larger and hence whether the R&D cartel or 
noncooperative competition with licensing leads to higher R&D 
investment depends on model parameters. Specifically, it is shown 
that if the firms produce goods that are close enough substitutes, 
then the latter leads to faster technological progress. 

Each of the studies points to possible directions for future 
research. The obvious way to go in order to expand the analysis 
of Chapter 2 is to include both the risk choice and the scale choice 
in the model and examine the interaction of the two. AIso, the 
way the prize is determined is perhaps overly simple. Imagine, for 
example, a situation in which the R&D outcome determines the 
cost of production of a good that is later produced in the Bertrand 
fashion. In such a setting, the profit of the winner would depend 
not only on the outcome of its own R&D project, but also on 
the outcome of the second best firm, which determines the profit 
margin the winner is able to extract in the product market. 

In the second study (Chapter 3), it is assumed that once a 
firm develops the final innovation, all initial technologies become 
worthless. This winner-take-all assumption is somewhat unsatis
factory. More realistically, one would expect that by selling the 
license to a competitor the licensor not only increases that firm's 
probability of being the first to reach the final innovation but also 
enhances its ability to develop a substitute for the final innova
tion. A possible framework for analyzing this situation might be 
one in which there is a (possibly infinite) sequence of innovations 
each of which enables a firm to produce a better quality (or lower 
cost) product. The question is then under what circumstances 
will a firm that has gotten one step ahead of its competitors use 
that advantage to try to stay permanently ahead and when will 
it license the technology to its competitors. The same dynamic 
model could be used to analyze the question posed in Chapter 4 
as well; that is, what is the optimal eompetitive arrangement in 
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such a market. In general, the idea of tradable technology might 
provide interesting insights within a wide variety of frameworks. 

Each of the studies in this work should be seen more as a 
beginning than as an end. The end is so distant that it would be 
an overstatement to say that this work brings us any eloser to it; 
an infinity can be approached, but it will always stay equally far 
away. Still, this work may take us a few steps further from the 
beginning. 
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