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1 Introduction 

The objectives of this thesis are twofold. First, the aim is to study the 
determination of the overnight market interest rate and of banks' 
demand for reserv"es in Finland. To gain an insight into and an 
understanding of these processes,· the study reviews relevant empirical 
and theoretical literature, considers the institutional arrangements in 
Finland, and finally tries to analyze the working of the overnight 
market and banks' demand for short-term liquidity both analytically 
and empirically. One of the reasons for carrying out this investigation 
is that the Finnish monetary policy system has changed profoundly in 
recent years as a result of financial market liberalization. The study 
attempts to shed light on the relations between some key monetary 
policy varlables under this new regime. 

The second aim is more general and relates to the problem of 
describing the effects of uncertainty empirically. A fundamentai result 
of the liquidity management literature, the theoretical framework 
applied here, is that a bank's demand for reserves depends on the 
variance of reserves, which is understood to measure the degree of 
uncertainty. Although few would dispute this result - indeed, it is the 
way economists have approached the problem of keeping inventories 
since Edgeworth's time - it has not been treated very thoroughly in 
empirica1 research. In traditionai regression analysis the variance is 
treated as a fixed parameter, and therefore it offers very limited scope 
for modelling the effects of uncertainty empirically. In this study an 
empirical demand-for-borrowing mode1 is specified under more 
reasonable assumptions by utilizing recent advances in the 
econometrics of heteroscedastic processes, namely GARCH 
methodology. Allowing for changes in the degree of uncertainty 
provides more scope and more economic content for the empirical 
application of the traditional reserve model. 

From the point of view of this empirical methodology, the aim is 
to develop a GARCH model with sound theoretical foundations. In 
much of the work with this technique, the point of departure in 
analysis has been pure1y empiricist; the models are designed to 
account for the fact that in the time series under investigation, large 
changes tend to c1uster. This study attempts to emphasize the 
implications of the theory for the empirical methodology. Of 
fundamental interest in empirical work is to test the applicability of the 
theory of the bank's liquidity management under uncertainty to 
modelling the overnight market. Because institutional arrangements 
that are relevant to this study change over time, often rendering 
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precise estimates from the past obsolete, concentrating on the 
implications of the theory is, it is to be hoped, a more useful strategy 
than conducting a purely empirically oriented investigation. 

Banks' demand for reserves and the central bank's monetary 
policy operating procedures are well established research topics. Many 
of the basic artic1es on the demand for reserves appeared in the 1960s 
and early 1970s: for example Orr and Mellon (1961), Whalen (1966), 
Poole (1968), Frost (1971) and Modigliani, Rashe and Cooper (1972). 
Comprehensive surveys of tms topic are provided by Baltensperger 
(1980) and Santomero (1984). Changes in the intermediate targets of 
monetary policy in the USA were followed by aseries of artic1es in 
which the focus was more on the operating procedures of the central 
bank, the most notable inc1uding Goodfriend (1983) and Poole (1982). 
One of the more recent contributions is Englund, Hörngren and Viotti 
(1989). Their study is inspired by the money market conditions and 
central bank financing system in Sweden, wmch bear many similarities 
with circumstances in Finland. Since the end of the credit rationing era 
in Finland, the determination of short-term interest rates has been 
studied by Vihriälä (1987). Earlier studies that are related to tms 
subject inc1ude Oksanen (1977) and Tarkka (1980). 

A general background for the analysis in tms study is provided by 
first presenting a standard model of the reserve market. In tms model, 
the demand for reserves by individual banks is aggregated to form the 
demand side of the model, the terms applied at the central bank's 
discount window define the shape of the supply function and monetary 
policy operations are conducted by horizontally smfting the location of 
the reserve supply function with respect to banks' total reserves by, 
for example, buying or selling money market instruments or by 
adjusting mandatory reserve deposit requirements. The amount of 
bOITowing by banks and the short-term market interest rate are 
determined at the intersection of the demand and supply curves. 

Tms simple description of the determination of the short-term 
market interest rate does not seem to fit well with actual observations 
from the overnight market in Finland. Observed overnight market 
interest rates are generally not on the supply function of the central 
bank. Usually, the deviation is several percentage points, wmch is far 
too much to be explained by measurement errors. A more plausible 
explanation is offered in defence of tms approach by illustrating how 
the bOITowing schedule changes when liquidity uncertainty is explicitly 
inc1uded in the model of the reserve market. As will be discussed 
below, under certain conditions that are likely to be met in Finnish 
circumstances, traditionai liquidity management theory is easily 
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.incorporated into the reserve market model without any loss of 
generality in interpretation. 

In order to derive the effects of liquidity uncertainty, a model for a 
single bank's demand for overnight loans is constructed assuming 
profits from trade in the overnight market to be a random variable. 
The demand is solved from an optimization problem based on a 
balance sheet constraint and expected costs and expected retums from 
participating in trade. The bank's demand is deternrlned as a function 
of the market interest rate, the terms for (net) borrowing from the 
central bank's short-term liquidity facility and the degree of 
uncertainty the bank is facing. Animportant feature of the model is 
that as a result of the nonlinearity introduced into the problem by the 
shape of the central bank's supply function, the degree of uncertainty 
changes the optimal behaviour of the bank as compared to the full 
information case. 

In the subsequent analysis of the model, attention is paid to some 
typically Finnish features of the central bank's facility for liquidity 
management of the banking system. (Throughout the text this facility 
is referred to as the 'discount window' or 'call money facility', the 
first term being more commonly used in the literature while the 
second accords with the official terminology.) The terms applied to the 
use of this facility, or the structure of the discount window, have 
varied in Finland with respect to both administrative regulations and 
interest rates. In Finland, banks' borrowing has been discouraged by 
means of a penalizing spread between call money lending and call 
money deposit rates (the central bank accepts excess funds as demand 
deposits), penalty rates based on quantitative quotas and additional 
costs incurred as a result of frequent borrowing. In this study, demand 
schedules are derived in three cases, which illustrate the effects of 
these instruments in a simple manner. In all cases it is assumed that 
there are no restrictions concerning the amount of deposits the bank 
wishes to make and that deposits eam a constant rate of return. 
Especially this assumption is c10sely related to the Finnish system. Of 
course, other arrangements for deposits of excess funds could be 
considered in the model,l 

The first demand schedule is derived assuming that the bank may 
borrow from the call money facility without limit, but at an interest 
rate that is higher than the one that is applied to deposits. The result is 

1 The deposit side of the window could easily be closed in the model by attaching a zero 
retum on deposits. Also, it could be assumed that the bank holds these deposits on its 
own balance sheet as excess reserves, where they may or may not eam a positive retum. 
This would not necessarily complicate the model, depending, of course, on the exact 
specification of returns. 
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an S-shaped schedule, which describes the overnight market interest 
rate as a weighted average of discount window interest rates. Because 
of uncertainty, the weights are probabilities of discount window 
positions. This case is a direct application of a traditional static reserve 
model under uncertainty, following Poole (1968) and Modigliani, 
Rasche and Cooper (1970). It is used as a benchmark model in later 
stages. 

The second application of the model concerns the effects of a 
graduated cost of borrowing function, or a quota system. In this case 
the demand schedule is a combination of adj oining schedules of the 
same type as in the basic case. Actually, this follows quite straight
forwardly from the fact that the benchmark model is also a special 
case of a quota system (a one-step reserve supply function). 

In the third application it is assumed that the costs of borrowing 
are positively related to borrowing in the past. This intertemporal 
dependency leads to a dynamic model, because the declsions made 
conceming today's borrowing affect the optimal solution .of 
tomorrow's borrowing. 

By aggregating the demand schedules from the single banks case, 
a market-c1earing interest rate can be solved. In the study, aggregation 
is considered in the benchmark model. The benchmark model is also 
used to analyze the effects of risk aversion. By assuming that the bank 
values variability of profits negatively, it is' shown that the equilibrium 
interest rate tends to be higher with risk-averse banks than in the 
benchmark model. 

In all these applications of the model, the differences lie in the 
specification of the costs of borrowing or in the form of the objective 
function. A more fundamental extension is made by endogenizing the 
variance. It is assumed that the bank is able to affect the variance of 
liquidity shocks through liquidity control measures, which give rise to 
some cost. This implies that indirectly the variance is also a declsion 
variable to the bank. Combining liquidity control activities with 
liquidity management declsions yields a two-equation model for the 
bank's optimal reserves and optimal expenditure on liquidity control; 
or, effectively, a model with a reserve equation and a variance 
equation. 

In the empirical part of the study, the model is fitted to Finnish 
daily data from 1987 to 1989. In the estimations, special attention is 
paid to assumptions concerning the variance of the borrowing function. 
In this respect, the study is related to a larger body of research. 

Empirical literature on discount window borrowing is largely 
confined to data from the United States. A seminal paper on this 
subject is Goldfeld and Kane (1966), where borrowing is explained by 
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the spread between the Federal funds rate and the discount rate using a 
linear specification. Much of the practical work related to monetary 
poliey 'operations in the United States has been based on this 
specification. 

In subsequent researeh, the instability of a simple type of 
borrowing funetion has been addressed. A number of studies have 
employed nonlinear specifieations; for example Judd and Seadding 
(1982)and Peristiani (1991) use polynomials of the spread, and 
Dutkowsky and Foote (1988) estimate a switehing regression model. 
Instability of the linear model was also noted by Johnson and Spitzer 
(1981) in the appendix to a report on monetary poliey to Congress by 
the Federal Reserve Board. In addition to nonlinearity, Peristiani 
(1991) pays attention to heteroseedasticity. He finds that eonstaney of 
the varianee of the residuals of the borrowing equation is rej eeted in 
tests despite nonlinear specifieation. A theoretical argument explaining 
this is derived from aggregation eonsiderations assuming that the 
quantity of borrowing is subject to eertain limiting restrictions. 

These findings from US data are interesting, as it is argued in this 
study thatobservations from Finnish data have similar properties, 
whieh, in the Finnish case, ean be explained by a simple type of 
liquidity management model. Thus the theoretical argument that is 
offered can be derived from maximization of expeeted profits. The 
estimations carried out in this study allow for both heteroscedasticity 
(non-constant conditional variance) and nonlinearity. 

To begin with, the model is estimated assuming constant varianee. 
In this specification, the possible presence of liquidity uneertainty is 
taken into aceount in the nonlinear funetional form, but the degree of 
uncertainty does not change over time. A theoretically more consistent 
formulation of the empirical model is obtained when the perceptions 
of varianee by market participants are allowed to ehange over time. 
This is aehieved by making the variance of liquidity conditional on 
available information, thereby making it a time-dependent variable. As 
a result, the empirical model becomes more flexible because the 
relationshlp between the ,market interest rate and liquidity shocks may 
change over time, depending on volatility. The response of interest 
rates to reserve shocks may be weaker in the model when the 
volatility is high than during times when reserves are less volatile. 
This aspect is certainly embedded in the theoretieal analysis, but its 
implementation in an empirical model is not possible if standard 
regression analysis teehniques are used. 

The literature on non-eonstant conditional variance models, ARCH 
and GARCH models, has expanded rapidly over the last few years. 
Seminal papers on the subjeet were Engle (1982) and Bollerslev 
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(1986). Hundreds of studies have so far been published (more than 
two hundred according to Engle and Ng (1991), and the infiux of 
papers has probably been getting stronger since then, if anything). The 
data used in these applications have usually been on interest rates, 
stock market prices or exchange rates. However, the liquidity 
management model offers an appealing framework for applying this 
method, since a key prediction of the model is that the bank's demand 
for reserves depends on the variance of reserves. The theory also 
predicts that the variance enters the demand schedule multiplicatively. 
This means that it affects the steepness of the schedule only, and not 
its location. Therefore, the mean equation in the GARCH-M model 
that is formed is also multiplicative with respect to conditional 
variance, which constitutes a slight modification to the standard 
framework. Usually, this "mean" effect is an additive risk premium. 

ARCH and GARCH models deal directly with the empirical 
notion of heteroscedasticity in many financial market time series. In 
the literature this notion is commonly attributed to Mandelbrot (1963), 
according to whom in such data "large changes tend to be followed by 
large changes - of either sign - and small changes tend to be 
followed by small changes". Mandelbrot (1963) also proposed two 
other 'stylized facts' associated with such data, namely that the 
empirical distributions are usually more peaked and that their tails are 
too long as compared to samples from normally distributed 
populations. In this study, similar distributional issues are encountered, 
and to cope with them we apply a less restrictive distribution than the 
normal distribution (Student's t). As often seems to be the case with 
financial market data, allowing for heavier tails for the distribution of 
shocks does improve the model. 

Another important feature of the empirical model is the 
specification of the conditional variance equation. Following normal 
procedures, standard autoregressive specifications are applied in the 
first stage. But, this study differs in that it also offers a theoretical 
explanation for the presence of heteroscedasticity. An expression for 
optimal variance is derived by endogenizing variance. Utilizing this in 
specifying the empirical equation for conditional variance proves to be 
justified. Theoretical considerations lead to a specification of 
conditional variance that implies asymmetric responses to shocks, 
which has been one of the empirical issues dealt with in recent work 
with GARCH and ARCH models. 

In the following, a short introduction to the literature on discount 
window borrowing is provided in Chapter 2. Chapter 3 contains a 
description of the overnight market and the institutional arrangements 
for discount window borrowing in Finland. In Chapter 4, a model for 
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the bank's demand for reserves is formulated, based on optimizing 
behaviour by the bank in the presence of liquidity uncertainty and 
taking into account the specific circumstances in Finland. In Chapter 
5, the implications of liquidity control activities are considered and the 
model is extended to a two-equation framework with equations both 
for the level of reserves and for their variance. Empirical constant 
variance applications of the model are discussed in Chapter 6 and this 
is followed by GARCH estimations in Chapter 7. A brief summary 
and conc1usions are presented in the final chapter. 
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2 An Overviev-;T of the ·Theory of 
Banks' Demand for Reserves 

The first section of this chapter reviews the aggregate level reserve 
market model. The aim is to illustrate the relevance for monetary 
policy of studying the determination of the overnight market interest 
rate and the discount window borrowing function. Next, some key 
studies on the borrowing function are reviewed. The third sub-section 
looks beneath the market level model and presents liquidity 
management theory as a theoretical justification for the bank's demand 
for reserves, based on the optimization behaviour of individual banks. 
The final section discusses the choices made in defining the theoretical . 
framework for the present study. 

2.1 The market for reserves 

2.1.1 Detenmnation of the short-term interest rate 

The reserve market model has been used extensively in analyzing the 
determination of the short-term interest rate and the effects of different 
monetary policy procedures and discount window policies. Por 
applications utilizing this framework, see for example Poole (1982), 
Tabellini (1987), Hardouvelis (1987), Dotsey (1989, 1985), Goodfriend 
et al. (1986), Cosimano (1987), Roley and Walsh (1985) and Thornton 
(1988). In the standard form, the model can be summarized in terms 
of the-following se!" of equations: . 

El. TRD = cD(i) + ex(i) 

E2. TRs = N + B 

E3. B = B(i, icb
) 

E4. TRD = TRs. 

In this model, the demand for reserves by the banking system, TRD
, 

consists of required reserves, which are a product of the reserve 
requirement c and deposits D, and excess reserves, ex. Both of these 
demand components can be thought to be negatively dependent on the 
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short-term interest rate i, so that the demand curve is downward 
sloping. 

Equation E2 states that the supply of reserves to the banking 
system is a sum of nonborrowed reserves N and borrowed reserves B. 
Nonborrowed reserves are exogenous in this simplistic form of the 
model and the amount of borrowed reserves is determined by the 
borrowing function in E3. The borrowing function is essentially a 
supply function in this framework, refiecting supply side factors such 
as the terms for discount window 10ans.1 The last equation is the 
equilibrium condition. 

Combining equations E1-E4 yields 

E5. N - cD(i) = ex(i) - B(i,iCb
), 

which is the equation for free reserves. As explained in Poole (1982), 
this concept is relevant at the level of the banking system and in 
policy considerations, as it indicates whether the whole banking 
system has net debt or net holdings with respect to the central bank. A 
tightening of the banks' position with respect to the central bank is 
shown as a contraction in free reserves, and vice versa. It should be 
noted that in this general formulation of the model, the allocation of 
free reserves between excess reserves (ex) and borrowing from the 
discount window (B) is not addressed. As regards the liquidity 
management decision by the banks, this model is ambiguous (poole, 
1982, pp. 581-582). 

Solving E5 for the interest rate gives the market-c1earing interest 
rate as a function of the exogenous variables in the model, which in 
this example are nonborrowed reserves, the reserve requirement, and 
the central bank's discount window interest rate: 

E6 . .(N .cb) • 1 = 1 ,C,l . 

If the level of deposits is also taken as exogenous, the market interest 
rate can be express ed as a nmction of free reserves and the central 
bank's interest rate: 

E6'. i = i(N-cD,icb
). 

1 Thornton (1988) discusses the relative merits of 11 supply 11 and "demand" views 
concerning the borrowing function. Forrnal analysis is not, of course, affected by any 
labels attached to functions. 
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Figure 2.1 illustrates the working of the model graphically, assuming a 
type of discount window that is also relevant to the Finnish system 
(Kneeshaw and Van den Berg, 1989, pp. 12-14; see also Englund, 
Hömgren and Viotti, 1989). It is assumed in the figure that the central 
bank offers reserves to banks through the discount window at an 
interest rate that gradually rises with the level of borrowing and that 
the central bank takes excess reserves as deposits, for which it pays a 
rate of interest equal to rd. The supply curve S is then the sum of the 
supply of (net) borrowed reserves defined by the above conditions and 
the amount of nonborrowed reserves N (which is assumed to be 
controlled by the central bank). Given the demand for reserves, the 
figure shows the determination of the short-term interest rate as a 
function of total reserves. It is implicitly assumed that the interbank 
overnight interest rate must, because of arbitrage, equal the marginal 
cost of borrowing from the central bank. 

Figure 2.1 The market for reserves 

D3 

" " " r2 ••••••••• :':>...: •..•.••••••• __ 
" I 

" I r1 ............ ·r-"'--_I 

" " RD t-------7---"--~ 

o 

" " " 

TR 

Consider first the effect of an exogenous increase in the demand for 
reserves by the banking system. A shift of the demand curve from Dl 
to D2 moves banks to the right along the supply curve of the central 
bank, leading to an increase in the equilibrium interest rate from rl to 
r2• If the central bank's supply of reserves is totally elastic at the 
interest rate level r2, as is assumed in the figure, the equilibrium 
interest rate is restricted to that level. The market interest rate cannot 
exceed r2 because that would imply unlimited profit opportunities for 
arbitrage between the interbank market and the discount window. 
Similarly, a downward shift in demand to D3 lowers the equilibrium 
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rate to rd. That level constitutes a floor to the market interest rate if 
the central bank accepts excess reserves. as deposits at the interest rate 
rd. If it were not willing to accept excess reserves at this rate, the 
market interest rate would fall further. 

The effect of an open market operation, a change in N, can be 
described as a shift in the supply curve. For example, assuming that 
the amount of liquidity is cut from OG1 to OG2 by reducing N, the 
supply of reserves curve shifts from Sl to S2' Given the demand for 
reserves, the equilibrium level of the interest rate rises from r1 to r2. 

This framework can be used to illustrate how different discount 
window arrangements affect the relationship between market 
operations and the market interest rate. For example, if the central 
bank supplies reserves without limit and at a fixed interest rate and 
pays an equivalent interest rate on deposits, the supply function would 
be horizontal. In that case open market operations, or changes in 
nonborrowed reserves in general, would not affect market interest 
rates. If the level of liquidity in the banking system were changed, the 
banks would borrow an equal amount from the discount window at the 
prevailing interest rate and the only change would be in the 
composition of reserves in favour of borrowing. Market interest rates 
could be influenced only by changing the discount interest rate. 

Continuing the same reasoning, changing the level of nonborrowed 
reserves will have more impact on interest rates the eloser the central 
bank's supply of reserves is to being a vertical supply function. If the 
discount window is completely elosed, changes in the interest rate are 
determined solely by the elasticity of the demand for reserves. This 
elasticity may be considered to be small in the short term, at least as 
far as required reserves are concemed. Even if excess reserves were 
assumed to be slightly more elastic, a likely prediction of the model is 
that interest rates would become considerably more unstable if the 
supply function were vertical. While this prediction might be 
reasonable as such, the analysis is obviously incomplete. What one 
would really expect to happen if the window were elosed completely 
is that the bank would demand more excess reserves in order to 
compensate for the loss· of the central bank's liquidity services. From 
that point of view it could be argued that it is an unsatisfactory feature 
of the model that demand for borrowing and demand for excess 
reserves are considered to be independent of each other. 

Ineluding the excess reserves component separately in the demand
for-reserves equation and in the equation for free reserves is probably 
more appropriate as regards circumstances in the United States than in 
the case of the Finnish system. In fact, it can be argued that in the 
Finnish case the right-hand side in E5 should inelude only one 
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variable; or, at least, that the distinction between excess reserves and 
borrowing is not very informative, because excess reserves can be 
considered to be negative borrowing. In Finland, any surplus funds are 
deposited in the central bank through the call money facility. Like 
borrowing, these 'excess reserves' can also be viewed as being 
determined as a function of the central bank's interest rates and the 
market interest rate. In the economic sense, it is hard to discem any 
dissimilarity between these variables, except for their sign. Moreover, 
in Finland, excess reserves .automatically reduce the amount of a 
bank's discount window borrowing because these variables are also 
technically one and the same instrument (same cheque account). In 
practice, both borrowing and excess reserves are sometimes observed 
on the same day at the aggregate level, because some banks may have 
deposits while others have debts. However, that does not make the 
distinction between excess reserves and borrowing particularly 
important. One relevant reason for separating these variables could 
arise from the banks' need to hold cash as excess reserves 
independently of their borrowing position. But, in Finland, changes in 
a bank's cash reserves are also automatica1ly reflected in its net 
borrowing position at the central bank, with cost consequences 
identical to those that result from direct borrowing.2 Therefore, not 
even the cash component need be considered independently. 

2.1.2 The overnight market interest rate, 
the ca11 money facility and monetary policy 

From the point of view of monetary poliey, the importance of the cal1 
money facility derives from the fact that it affects the way changes in 
liquidity (inc1uding open market operations) are related to changes in 
the overnight market interest rate. Because of this relationship, 
discount window policies play a key role in monetary policy operating 
procedures. At the same time it should be emphasized, however, that 
this study investigates only a strictly limited part of the proct:ss of 
interest rate determination. 

The economic relevance of the ovemight market interest rate is 
largely indirect. According to conventional thinking, the overnight 
interest rate is an important link in the chain from the liquidity of the 
banking system to longer-term interest rates, although it is not 

2 This results from a special cash credit arrangement (tilI-money credit) under which cash 
reservesare regarded as interest-free loans from the central bank, except for a certain 
basic amount. 
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necessarily - at least in Finland - a major target of monetary poliey. 
Of course, the connection between the overnight interest rate and the 
rest of the yield curve is a research area in itself, and far from being a 
resolved issue (see for example Shiller, 1990, for a survey of this 
field). One of the most commonly cited theories on the term structure 
of interest rates is the rational expectations hypothesis, which states 
that a1l interest rates in the yield curve are weighted averages of 
today's overnight interest rate and expected ovemight interest rates 
in the future plus some premium. This hypothesis implies that a 
change in today's overnight interest rate feeds into the whole yield 
curve, ceteris paribus, with a declining impact. The condition 'ceteris 
paribus' is needed because the effect may be reinforced or restrained 
by changes in expectations of future overnight rates. However, the 
empirica1 evidence concerning the rational expectations hypothesis 
is mixed. In particular, studies indicate that the premium may not 
be constant, as the rationa1 expectations hypothesis implies. But that 
does not imply that overnight market interest rates do not influence 
the yield curve; in fact, despite the unsettled issues in the theory of 
the term structure of interest rates, the convention is to view the rest 
of the yield curve as being influenced by changes in the overnight 
interest rate. 

The determination of the overnight market interest rate in Finland 
is comprehensibly described in terms of the above reserve market 
framework, though the openness of the Finnish money market implies 
that it is reasonable to confine this simple ana1ysis solely to short-term 
developments. In accordance with the model description, in Finland 
the central bank influences market interest rates primarily by 
regulating the total amount of reserves available to banks. The main 
instruments used for this purpose are the reserve requirement, which is 
fixed in advance for a month, and money market operations, which 
can be used more flexibly. In an open economy a1l fluctuations in 
liquidity are absorbed via three channels: the public's demand for 
money, capita1 movements and banks' reserves. The most immediate 
is a change in reserves, which under the Finnish system is reflected 
directly in banks' use of the ca1l money facility. Changes in banks' 
reserves and in banks' use of the call money facility are, in tum, 
reflected in short-term interest rates, because for every single bank, the 
alternative to dealing with the central bank is to buy or sell funds in 
the interbank market. If this market functions competitively, the 
interest rate on overnight loans will be such that the demand for and 
supply of reserves are equal, given the terms for the use of the 
discount window. 
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In an open economy changes in interest rates will eventually have 
an impact on capital flows, which will tend to counteract the changes 
in liquidity or lead to changes in the exchange rate. Because of the 
fixed exchange rate regime,3 absorbing changes in the exchange rate 
is a limited option. Thus, ultimately, the amount of reserves in the 
banking system and the corresponding overnight market interest rate 
are not under the central bank's control in Finland. In terms of the 
reserve market model, the fixed exchange rate target creates an 
intervention obligation that effectively endogenizes nonborrowed 
reserves over a longer horizon.4 

Consequently, the levels of the overnight market interest rate and 
banks' reserves are affected by discount window policies only in the 
short term. By affecting developments in the short term, the form of 
the call money facility affects the volatility. The above analysis of the 
reserve model in Figure 2.1 implies that the overnight market interest 
rate becomes more responsive to all liquidity shocks when the supply 
function becomes steeper. This suggests that overnight interest rates 
would, in principle, tend to be more volatile the steeper is the supply
of-reserves function. (This reasoning cannot be generalized to other 
interest rates if the rational expectations hypothesis is accepted because 
longer rates are also affected by expectations of future overnight 
market interest rates.) But, of course, the outcome also depends on the 
actual policies adopted by the central bank in supplying nonborrowed 
reserves. 

The focus of this study is on the short-term behaviour of reserves 
and the overnight interest rate and particularly on investigating the 
properties of the borrowing function. Nonborrowed reserves are taken 
as exogenous and the central bank's objective function is not inc1uded 
in the analysis. This implies that the positive question of what kind of 
institutions and other arrangements we should have for conducting 

3 The exchange rate of the Finnish markka vis-a-vis a specified basket of foreign 
currencies (since June 1991 vis-a-vis the Ecu) must be kept within a prescribed band, 
which has been 4.5---6 per cent in recent years. 

4 Effects of procedures used by the central bank in choosing the amount of nonborrowed 
reserves N have been studied on several occasions. If N is specified as a function of some 
target variables, the equilibrium interest rate in equation E6 can also be expressed as a 
function of these targets. The focus in much of the literature has been on the effects of 
operating procedures and discount window policies on monetary control (money supply), 
which is not a reasonable point of departure in Finnish circumstances. For example, 
Dotsey (1989) presents a straightforward modification of this mode!. Feinman (1988) 
provides a detailed analysis of the effects of actual practices used in the United States 
during the period of nonborrowed reserves targeting (see also Goodfriend, 1985). 
Questions arising from secrecy conceming the target level of N are analyzed in Tabellini 
(1987). 
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monetary policy is not addressed. But the analysis of the borrowing 
function sheds light on the issue of choosing the intermediate target of 
monetary poliey. The analysis that follows focuses on the instability of 
the borrowing-interest rate relationship: the point of departure is that 
the observations are not as well behaved as would be expected on the 
basis of the model of the reserve market. In the theoretical section we 
will derive explanations for instability, and the empirical description 
also empl}asizes this matter. The existence of instability implies, of 
course, that it would be difficult to set the targets of monetary policy 
in terms of bOITowing. 

2.2 Studies on the borrowing function 

At the core of the analysis of the reserve market is a bOITowing 
function, which expresses the amount of banks' discount window 
bOITowing as a function of variables defining the relative attractiveness . 
of obtaining funds from the central bank as compared to other 
funding. Except for the elasticity of the demand for reserves, other 
equations in the basic framework are merely identities. If the demand 
for reserves is also taken as exogenous and assumed to be dictated by 
the balance sheet constraint, the model collapses to a borrowing 
function. 

In the literature the borrowing function is usually derived from or 
justified by profit-maximizing behaviour by banks. When faced with 
reserve needs, the bank is thought to choose between different sources 
of funding on the basis of relative costs. Therefore, sources can be 
logically divided into the administratively priced discount window, on 
the one hand, and market-priced sources, on the other. As the literature 
is mainly concerned with the system in the United States, these 
model~, have had to be modified to take into account the fact that the 
discount window interest rate in the United States has generally been 
below the Federal funds rate, suggesting unlimited profit opportunities. 
But this need not be a problem, of course; it has been recognized, at 
least since the paper by Goldfeld and Kane (1966), that implicit costs 
related to borrowing from the discount window may explain this 
apparent contradiction.5 In their formulation, borrowing by banks was 
explained by a spread between the market interest rate and the 
discount window interest rate. In equilibrium, the effective cost of 
borrowing from the discount window and from the money market 

5 An early treatment of this subject can also be found in Polakoff (1960). 
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should be the same for all banks. The presence of a spread between 
nominal interest rates has been taken to imply non-price rationing by 
the authorities. 

In the subsequent empirical work this analysis has been extended 
to take into account nonlinearities in the relationship between 
borrowing and the interest rate spread. For example, Judd and 
Scadding (1982) use a zero dummy variable for negative values of 
spreads and a square root of the spread for positive values. Tinsley et 
al. (1982) use a hyperbolic function with different weights for negative 
and positive spreads. Anderson and Rasche (1982) also modify the 
basic formulation by applying additional dummy variables for some 
values of the' interest rate spread. 

Theoretical explanations for the presence of nonlinearities in the 
static Godfeld-Kane framework have been developed and empirically 
tested in Dutkowsky (1984), Dutkowsky and Foote (1988) and in a 
recent study by Peristiani (1991). The explanation offered by 
Dutkowsky is based on truncation of the borrowing variable from zero 
and implicit costs attached to borrowing, which together, according to 
the analysis, introduce an unknown switching point into the borrowing 
schedule. Switching behaviour results from fact that borrowing is 
always restricted to zero when the spread is unfavourable, while a 
normal, continuous borrowing function describes the behaviour when 
the spread exceeds some threshold value. In Dutkowsky and Foote 
(1985), this model is extended to a three-regime switching model, in 
which the middle regime results from aggregation considerations and 
produces additional nonlinearities. 

In Peristiani (1991), it is assumed that the bank's borrowing is 
subject to collateral limitations. This imposes an upper bound on the 
amount of borrowing, so that in effect the borrowing variable is 
truncated from both ends: the lower point of truncation is zero and the 
upper point of truncation is the collateral limit. Because of this 
censoring structure, the demand-for-borrowing schedule becomes S
shaped. Again, the explanation is country-specific: neither collateral 
limitations nor a zero restriction on (net) borrowing have been relevant 
constraints in Finland. But technically, this solution utilizes exactly the 
same mechanism that will produce the nonlinearity in the model 
considered in this study, the difference being that it is the graduated 
discount window interest rate structure that causes censoring in the 
Finnish case. 

In addition to nonlinearity, the censored structure of the model 
produces heteroscedasticity when aggregation is taken into account. In 
an empirical application, Peristiani finds that applying a nonlinear 
borrowing schedule (eight order polynomial of the spread) will indeed 
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result in heteroseeclastie errors. The tests presented are supportive 
of ARCH-type violations (Peristiani, 1991, p. 27), but this finding is 
not utilized. The model is estimated only under a eonstant varianee 
assumption. Simulations with the model are presented in Hamdani and 
Peristiani (1991), where it is shown that the model is eapable of 
producing predietions that imply nonlinearity and heteroseedasticity. 

An important distinetion in demand-for-borrowing models, at least 
from the point of view of analytieal methods, coneems the time 
horizon involved. In a seminal artic1e on dynamic diseount window 
policies, Goodfriend (1983) shows how the intertemporal, aspeets of 
administrative eredit rationing in the United States lead to a dynamie 
demand sehedule for banks' diseount window borrowing. In the 
United States, banks are diseouraged by the authorities from borrowing 
too frequently andlor exeessively. Although the intertemporal aspeets 
of the US system are eaused by implicit eosts related to frequent 
borrowing, the implicit non-priee rationing itself is not an essential 
part of the model. A comparable demand sehedule eould be derlved 
from an explicit, dynamie eost of borrowing funetion. 

The banks' optimization problem as formulated by Goodfriend is 
to choose, at eaeh time perlod t, a sequenee of borrowing wt+j that 
maximizes the present value of profits from arbitrage between the 
interbank market and the diseount window: 

co 

TIt = Eb j[öt+,wt+, -Ct+J
,] 

j=O J J 
(2.1) 

1'& = present value of profits, C = eost of borrowing from the diseount 
window, Ö = interbank overnight interest rate, d = diseount window 
interest rate, w = diseount window borrowing, b = eonstant rate of 
time discount. 

In specifying the eost funetion C, Goodfriend (1983) makes the 
assumption that the eost of borrowing not only increases progressively 
with the level of borrowing, but also depends on the level of 
borrowing the previous clay. The quadratie form of the eost function is 
intended to eapture the essential elements of the system in the United 
States. It is defined only for positive levels of borrowing, again in 
aeeordanee with the system in the United States. 
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Because lagged borrowing enters into today's costs, borrowing 
today also affects profits both today and tomorrow. Differentiating 
today's and tomorrow's G = 0,1) profits with respect to wt gives the 
following Euler equation: 

(2.2) 

This Euler equation is a second order difference equation in borrowing 
and it defines the optimal path from date t to infinity. The solution 
without leads in borrowing is shown by Goodfriend (1983) to be the 
following: 

co 

w
t 
=kiw

t
- i _(10-ih(Öt -dJ -hL(10-i(Öt+i_i -dt+i-i), 

i=2 

where h = 1/(2bci ) and -1 < ki < 0, k2 < -1. 

(2.3) 

Equation (2.3) shows that current borrowing depends negatively on 
past borrowing and positively on current and future spreads between 
the discount rate and overnight market interest rate. It is a perfect 
foresight solution, so that in order to derive an operational rule for the 
bank's borrowing, some process of expectations formation should 
be specified. This process is probably influenced by the policy of 
the central bank. In Goodfriend (1983), a case of an autoregressive 
process is considered. He conc1udes that the dynamic structure of the 
demand schedule is a likely cause of the instability in static borrowing 
functions and that the Fed should make c1ear its policy intentions 
towards the spread if it wants to avoid variability in borrowing. The 
above solution to the Euler equation implies cyc1ical adjustment of 
borrowing to liquidity shocks, if parameters co, ci and b are such that 
the roots are real valued. Later, Van Hoose (1987) studied policy rules 
for setting the discount window interest rate on the basis of overnight 
interest rates, which effectively means the same as setting the spread. 
He found that borrowing variability is minimized by keeping the 
spread steady (by adjusting the discount rate accordingly or by 
pegging the overnight rate to the discount rate using open market 
operations). 
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2.3 Liquidity management theory 

A long-standing tradition in the research on bank behaviour has been 
to analyze the bank's decision on liquidity management as a problem 
of inventory optimization under stochastic demand. Basically, these 
models consider the optimal amount of reserves that a bank is willing 
to hold as a consequence of uncertain deposit levels. Holding reserves 
yields a retum to the bank by preventing costs from unexpected 
deposit drains, but the other side of the bargain is the. opportunity cost 
of reduced lending. The problem the bank faces is to allocate its funds 
optimally between reserves and lending on the basis of costs and 
retums related to different assets. 

The structure of standard liquidity management models can be 
presented in a compact form.6 Assume that a bank has two assets it 
can choose as investments, loans yielding a net rate of retum rand 
non-interest-bearing reserves (R). It also has a given level of deposits 
(D), which is subject to withdrawal risk. The net amount of 
withdrawals is denoted by X; and is distributed with a density function 
f(X). The bank knows the distribution of X but not its realizations in 
advance. 

If withdrawals exceed reserves, X > R, the bank must make up for 
the deficiency by selling assets or by borrowing. Obtaining additional 
funds is assumed to be subject to a proportional cost p. The problem 
is then to maximize the profits from 

00 

n =r(D-R) - Ip(X -R)f(X)d(X). (2.4) 

Optimization of profits requires that the marginal cost of holding 
reserves and the marginal retum from reserves are equalized, which 
implies 

00 

r =p If(X)d(X). (2.5) 

This first order condition, which states that the probability of reserve 
deficiencies must equal the ratio r/p, characterizes all liquidity 

6 This presentation of liquidity management theory follows the surveys by Baltensberger 
(1980) and Santornero (1984). 
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management models. It has some implieations whieh should be briefly 
noted. 

First, Poole (1968) has shown that the effeet of increased 
uncertainty (mean preserving inerease in varianee) on the level of 
reserves is ambiguous, assuming that the distribution of X is 
symmetrie with zero mean. This result is obviously in aeeordanee with 
intuition, beeause an inerease in variance c1early implies inereased 
probability of large exeessive positions on both sides. There is no 
a priori reason for ehanges on either side to dominate. 

Seeondly, for the optimal reserves to be positive, it is required that 
p > 2r, given again that the mean of X is zero. This ean be seen by 
setting R = 0 in the first order eondition, whieh yields r/p = 1/2. 
Therefore, in order to have an optimal solution in a range R > 0, 
r/p < 1/2 must hold. This simple result has potentially important 
implieations. If a well funetioning money market exists, it is unlikely 
that the inequality will hold generally, even if we note that p may 
inc1ude transaetion eosts and other possible ineonvenienees. A more 
likely predietion of the model is that we should observe negative 
reserves, at least in some time periods. 

In the vast literature in this area, the basie liquidity management 
model has been extended to inc1ude other aspeets whieh eould be of 
importanee in liquidity management deeisions. These additional faetors 
may be institutional cireumstanees affeeting profits, for example legal 
reserve requirements on deposits. Another direetion in whieh the 
model has been extended is to eonsider ways the bank ean affeet the 
parameters in equation (2.1) by its own aetions, other than ehoosing 
the level of reserves. 

The existenee of legal reserve requirements does not alter the logie 
of the model, although the details depend on specifie rules governing 
the eomputation of required reserves and the form in whieh they are 
held. A general effeet of reserve requirements is a shift in the measure 
of reserve deficieney, so that exeess levels of reserves start from 
where the legal reserve requirement is met, and not from zero. The 
optimum eondition is still that the eost of hoI ding reserves must equal 
the eost of obtaining new funds, multiplied by the probability of 
reserve deficieney (Baltensberger, 1980). 

Frost (1971) was the first to eonsider adjustment eosts in a reserve 
model (see also Baltensberger, 1972a). It is c1ear that without 
adjustment eosts, the level of reserves in the preceding period is 
irrelevant in the basie formulation of the model because the bank may 
rearrange its portfolio eontinuously. But when adjusting reserves is 
eostly, it is done only to the extent it inereases profits; Le. the eost of 
adjustment is less than the resulting gain. An interesting eonsequenee 
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of this is that, in the presence of adjustment costs, no adjustments 
are made within a certain range around the otherwise optimal level 
of reserves. Within this range, changes in observed reserves would 
therefore follow variation in the bank's depositsl. Further, any 
adjustment would always be incomplete as adjustments would never 
be made to the extent that the limits of this range would be exceeded. 

Other extensions of the model take into account the fact that the 
bank may be able to affect the degree of uncertainty related to its 
balance sheet or to affect the interest rate it receives on loans (see, 
for example, Tobin, 1982). These assumptions lead to interesting 
modifications of the optimality condition (2.5). If it is assumed that the 
bank faces a dec1ining demand function, the interest rate becomes 
dependent on the amount of credit extended. As a result, the 
optimality condition inc1udes· a derivative of a revenue function instead 
of a constant interest rate on loans. 

If, on the other hand, the distribution of X is made conditional 
on available information, which is costly to acquire, the optimality 
condition requires that the expected marginal return on investment 
in collecting information be equal to the associated expected marginal 
costs (Baltensberger, 1972b, Baltensberger and Milde, 1976). Endog
enous uncertainty has important implications for reserve demand, as it 
implies that the burden of adjustment due to changes in interest rates 
is shared between expenditure on information and precautionary 
demand for reserves. We shall utilize this literature in the analysis in 
Chapter 5. 

Alternatively, it has been assumed that the bank can influence the 
distribution of X by diversifying its deposit portfolio (Baltensberger, 
1972a). By utilizing the law of large numbers and by concentrating on 
time deposits, the bank can reduce the optimal level of reserves. This 
path of modelling is evidently a step towards more complete models 
of a banking firm, which, however, goes beyond the liquidity 
management model considered here. 

. Some reviewers of the liquidity management literature (Santomero, 
1984, in particular) have pointed out that there seems to be an 
apparent contradiction between the sophisticated state of the theory 
and the modest empirical relevance that banks' total excess reserves 
have - also in the United States - as a balance sheet item. Indeed, as 
a model of a banking firm, the liquidity management model is quite 
restricted and compact. But the interest in this model arises not only 
from its applicability as a micro-level description of bank behaviour, 
but also from its usefulness as a framework in which to model the 
demand for short-term assets in the economy and borrowing from the 
central bank. 
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2.4 The theoretical framework of the study 

The approach taken in this study is to apply liquidity management 
theory in modelling banks' demand for borrowing from the central 
bank in a way that is consistent with the broader framework of the 
market for reserves. Often the liquidity management model is used to 
describe the demand for excess reserves, but, as explained above, at 
least in the Finnish case we can combine both negative and positive 
reserves in one reserve component only. Therefore, the simultaneity 
problem of two alternative reserve buffers that confuses the link 
between the traditlonal liquidity management model and the reserve 
market model does not exist. Banks' free reserves consist of net 
borrowing from the central bank only. The analysis that will be 
undertaken does not particularly depend on the aggregate level reserve 
market model of Section 2.1. However, the above discussion (it is to 
be hoped) helps to relate this analysis to more general descriptions of 
interest rate determination by showing that it is a special case of the 
reserve market model and has the same, broader interpretation. The 
crucial assumptions that are needed in order to make this interpretation 
are that no independent instrument for excess reserves exists and that 
the demand for total reserves is exogenous. In the Finnish case, the 
former is c1early fulfilled and the latter is at least reasonable in short
term analysis. 

The liquidity management model has the appealing feature that it 
explicitly considers the uncertainty banks face. Of course, the 
existence of uncertainty must underlie all reserve literature, because 
there would be no reason for a bank to hold reserves if information 
about future needs were perfect. Even over a horizon of one day there 
are several factors which can cause the liquidity position of the bank 
at the end of the day to deviate from what was expected in the 
morning. A large part of all transfers from and to custo:mers' accounts 
are not known in advance. The public's demand for money is a 
random variable for banks even in the short term, though they may try 
to predict it on the basis of seasonal variation associated with timing 
of pay-days, weekends, holidays, etc. Also, in extending loans, banks 
presumably must often meet their customers needs at short notice "and 
scramble, 'if necessary, for funds later", simply because it is a business 
to them, and one of their major economic functions (poole, 1982, 
p. 582). The same argument even applies to banks' own operations in 
the money market. Fixing their position at a given level would prevent 
them form engaging in potentially profitable transactions. 

When . the application of the liquidity management model to the 
Finnish banking environment is considered, heterogeneity among 
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banks seems to be a feature that should be allowed for in the analysis. 
It is likely that banks differ with respect to the information they have 
for liquidity management decisions. A part of the banking sector 
consists of small banks which are relatively active in the money 
market and in the foreign exchange market, but which do not have 
large retail operations. It is possible that a bank without any significant 
retail business could more easily match transactions and in that way 
reduce the probability of a reserve deficiency. On the other hand, the 
law of large numbers works to the benefit of large retail banks, so 
a priari conc1usions cannot be made. Also, it is possible that a bank 
with Treasury funds on its balance sheet faces ei completely different 
degree of uncertainty as compared with other banks because it has one 
very large customer. 

In the subsequent analysis the uncertainty facing banks is treated 
as exogenous in Chapter 4 and the effects of relaxing this assumption 
are studied separately in Chapter 5. Assuming exogenous uncertainty 
does not imply that the analysis does not allow for differences 
between banks. To the extent that the differences are caused by 
different volatility in reserves, their existence fits well into the 
framework of the basic model. The extension of the model to 
investments in gathering information and other activities affecting the 
liquidity management decision are of interest in this study mainly 
because, with endogenous variance, the relationship between reserves 
and the market interest rate is changed. With endogenous variance, 
changes in interest rates are reflected both in banks' willingness to 
hold reserves and in their efforts to control liquidity. 

An important and restricting choice is made by assuming that the 
supply of nonborrowed reserves is exogenous. As was noted above, in 
several studies nonborrowed reserves have been specified as a function 
of the central bank's target variables, so that the model inc1udes a 
policy rule for the central bank's intervention in the money market. 
Usually, these policy rules are at least to some extent ad hae 
specifications, but in the Finnish case it would be especially hard to 
define such a rule explicitly. Certainly, any realistic specification 
should inc1ude the exchange rate, because of the fixed exchange rate 
regime in force in Finland. But, another important target might be the 
level of interest rates, because the exchange rate is allowed to fluctuate 
within a band and, moreover, the weights assigned to the exchange 
rate and interest rates are not necessarily constant over time. Interesting 
as it would be to inc1ude both the yield curve and the exchange rate 
block in this analysis, it is certainly beyond our ability to derive any 
estimable equations in this way. In a theoretical study by Englund, 
Hörngren and Viotti (1989) one longer-term money market interest 
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rate is added to the model on the assumption that the exchange rate is 
fixed, which has strong implications. The course taken here is to focus 
attention on short-term developments only, which means that even the 
level of nonborrowed reserves is exogenous. 

Before turning to our own application of the liquidity management 
model, the institutiona1 framework and some characteristics of the 
relevant data are first discussed in the next chapter. 
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3 The Market for Ovemight Funds 
and the Ca11 Money Facility 
in Finland 

3.1 Evolution and current structure of the call 
money facility 

3.1.1 Historical background 

The evolution of the facilities used in the management of liquidity 
changes in the banking system in Finland has been c10sely interrelated 
with the development of financial markets and the whole central 
bank financing system. Earlier, when the financial markets were 
characterized by credit rationing, the central bank's role in providing 
liquidity management services was considerably more important than it 
has been since the emergence of interbank markets. Over the last 
decades, there has been a gradual shift towards a system in which 
banks rely quantitatively less on the central bank in their short-term 
liquidity management and more on market-priced interbank trade. In 
this respect, the changes in Finland follow the same broad pattem that 
is discernible in many OECD countries. In Finland, the changes 
occurred somewhat later than in most countries because of the 
relatively late start in the liberalization process. 

Financial markets in Finland were tightly regulated from the end 
of the Second World War until the second half of the 1980s. 
Rationing of banks' borrowing from the central bank by means of 
bank -specific quotas and graduated interest rate schedules was the 
most important method of monetary contro1.! In addition to the system 
of quotas for central bank financing, interest rates on bank loans were 
extensively regulated during most of the period. As a consequence of 
the lending rate controls, the quantitative quotas applled to banks' 
central bank financing were reflected in bank lending as credit 
rationing, and incentives for interbank trade were negligible. 

Until the late 1970s, the main instrument of central bank financing 
was the discounting and rediscounting of bills presented by banks. But, 
particularly as regards short-term liquidity needs, there were also other 

1 The histary af the system af central bank financing for cammercial banks in Finland has 
been described in detail by Saarinen (1986). 
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arrangements. Starting from the late 19508, short-term repurchase 
agreements in government bonds outside the basic quota were introduced 
as an instrument for smoothing the liquidity imbalances of individual 
banks. Another major instrument used for banks' short-term liquidity 
mangement was based on government cash funds. An important source 
of liquidity variation in the banking system was, and indeed sti11 is, funds 
held in government accounts with the state-owned Postipankki. From the 
late 1960s, Finnish banks had an arrangement among themselves under 
which commercial banks, which were constantly short of liquidity, could 
accept deposits from Postipankki, which had a constant surplus of funds. 
These deposits were inc1uded in the central bank: financing quotas of 
commercial banks, which made them a c10se substitute for direct 
borrowing from the central bank:. In addition, commercial banks could 
malm bilateral interbank: deposits. A regular market for overnight funds 
did not develop at this stage, however. 

Starting from the mid-19?Os, the Bank of Finland's "ca11 money 
system" replaced these arrangements, when daily call money credits 
began to be used as an instrument for the provision of central bank 
financing to banks. Apart from borrowing overnight, banks were also 
allowed to make call money deposits. An interesting feature of this 
arrangement was that it originally imitated 'real' ovemight markets to 
some degree, the central bank being the invisible hand guiding 
movements in the interest rate and balancing the market. In principle, 
the central bank only intervened as a borrower in accordance with 
certain rules, and the call money rate was adjusted to reflect the 
liquidity needs of banks. But, in a non-market environment, these 
arrangements for liquidity adjustment required additional balancing 
regulations. In particular, because of the constantly asymmetric 
liquidity position of banks, the commercial banks were reimbursed for 
part of their nominal borrowing costs by the depository for the 
Treasury's cash funds. Therefore the official call money rate for that 
period occasionally deviated from the effective marginal cost of 
borrowing the banks actually faced. 

The call money system was originally introduced as a complement 
to other central bank financing in order to manage short-term 
variations in banks' liquidity, but its relative significance subsequently 
increased. In the early 1980s, the rediscounting quotas were reduced 
significantly, and the graduated interest rate schedule was abolished. 
Call money credits then became the most important channel of central 
bank financing and the most important monetary policy too1. An 
essential feature of the change in the system was that the call money 
rate was made an explicit policy instrument, decisions on which were 
made explicitly by the central bank. 
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From 1984 to the autumn of 1986 all central bank financing was 
granted in the form of call money credits. The penalty rate schedule 
applied to these credits was abolished, so that the banks were allowed 
to raise overnight loans at a fixed interest rate. This implied that the 
supply-of-reserves curve of the central bank was horizontal. 

The fixed call money interest rate was the key instrument of 
monetary policy under the horizontal supply curve for call money. In 
terms of the reserve model, the overnight market rate of interest would 
have been tightly pegged to the call money rate, had it only been 
possible to record it at that time. The call money rate effectively 
represented the short end of the maturity spectrum of interest rates. 
Also, as there were no other important methods of central bank 
financing, the fixed call money rate determined the cost of banks' 
borrowing from the central bank, both at the margin and on average. 
For that reason, it had a significant direct impact on the profitability of 
banks, which limited its use as an instrument of monetary policy. 

As a part of the liberalization of the financial markets, monetary 
policy operating procedures in Finland were substantially revised in late 
1986 and early 1987. The regulation of bank lending rates was abolished, 
the previously modest interbank market started to function on a larger 
sca1e and the central bank also began to operate in the money market. 
After a short period of transition, money market instruments began to be 
used for the major part of central bank financing . 

. One institutional precondition for this change was that the terms of 
banks' central bank financing had to be modified in a way that 
considerably reduced the volume of daily call money credits granted to 
banks. The new discount window was effectively a penalty rate 
system. The interest rate on call money deposits was set below the 
rate on ca11 money credits. This spread between the central bank's 
borrowing and deposit rates made it profitable for banks to search for 
other sources of funds or investment opportunities before approaching 
the window. As a consequence, banks also started to trade in overnight 
funds in rapidly expanding interbank markets at interest rates 
determined in the market. The aforementioned perfect peg of the 
short-term interest rate to the call money interest rate was broken. 

When banks' access to the call money facility was restricted and a 
major part of central bank financing shifted to money market 
instruments in 1986-1987, one consequence was that the ca11 money 
credit rate became an instrument affecting merely the marginal costs 
of borrowing. The call money credit rate did not even directly 
determine individual banks' marginal costs of borrowing overnight 
funds any more. The interbank rate became a more relevant measure 
of marginal cost because buying funds from other banks became the 
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alternative to using the central bank's ca1l money facility. The call 
money rate lost much of its status as a policy instrument, but 
controlling the level of liquidity of the banldng system through money 
market operations became another monetary policy instrument. In all, 
the guiding of interest rates became indirect by nature. 

The importance of the ca1l money faci1ity as a source of funding to 
banks has declined drastica1ly because of these changes, although it sti1l 
has a role to play in managing changes in the liquidity of the banking 
system. The effect of these institutional changes on the use of the ca1l 
money facility can be seen c1early from the data. There was an obvious 
regime shift in borrowing behaviour at the time the ca1l money interest 
rate spread was introduced. Figure 3.1 shows the 22-day moving standard 
deviation of net borrowing by one of the major banks operating in 
Finland before and after the penalizing ca11 money interest rate spread 
was adopted. Mean levels of standard deviation in the respective time 
periods are indicated by dashed lines. The average level of the moving 
standard deviation is approximately three times higher in the period of a 
horizontal discount window supply curve than in the latter period when 
the penalizing interest rate spread was in effect. 

Figure 3.1 
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3.1.2 The structure of the call money facility 

The current call money facility in Finland consists of elements that 
are widely used in other countries, although the details vary greatly 
in different countries. (por a description and analysis of discount 
windows in several countries, see Kneeshaw and Van den Berg, 1989, 
and Batten et al., 1989). In most countries there is at least some 
arrangement that permits banks to borrow from the central bank 
at short notice and on more or less predetermined terms. Apart from 
the lending rate, typical restrictions imposed on these loans are 
quantitative quotas, penalties for frequent borrowing and minimum 
maturity requirements. 

Compared intemationally, the distinctive feature of the Finnish call 
money facility is that it is basically a penalty rate system in that the 
call money lending rate is normally above market interest rates. The 
Finnish system also differs in certain other respects from the 
corresponding arrangements in several other countries. First, banks 
are allowed to make interest-bearing demand deposits - call money 
deposits - in their cheque accounts at the Finnish central bank. 
Secondly, in Finland the penalties for borrowing from the central bank 
are mostly explicit and predetermined. For example, in the United 
States, by contrast, more or less discretionary decision making by the 
authorities is evidently an important element of discount window 
policies.2 Further, US banks are allowed to cover required reserves 
with past excess reserves (carry-over provisions), so that the retum on 
excess reserves depends on the future opportunity cost of reserves. In 
Finland, on the other hand, required reserves are deposited in the 
central bank at the end of each month on the basis of the level of 
deposits in the bank in the previous month. Consequently, the only 
connection between required reserve deposits and excess reserves is 
the daily balance sheet constraint. 

The exact terms for call money credits and deposits have also 
been modified since the major overhaul of the system in 1987. 
lnitially, the interest rate on deposits was set at 7.5 per cent and the 
basic rate on credits at 11 per cent. In addition, borrowing at basic rate 
was subject to a quota defined separately for each bank according to 
its size. Borrowing in excess of quota was subject to a penalty rate, 
which was set at 19 per cent. A further restriction was that average 
borrowing in any five consecutive banking days should not exceed 

2 For a discussion see Goodfriend (1983) and Waller (1990). The importance of this 
feature for the functioning of the discount window in the United States seems to be 
widely accepted in the literature. 
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quota. No explicit monetary penalty was stipulated for failing to meet 
the five day restriction, but the central bank had the option of taking 
discretionary action. 

There have been few changes in interest rates on call money 
credits and deposits since April 1987; the first change was not until 
October 6, 1988, when the lending rate was raised to 13 per cent 
and the deposit rate lowered to 4 per cent. This widened the interest 
rate spread from 3.5 percentage points to 9 percentage points, 
and strengthened banks' incentives to undertake transactions in the 
interbank market for overnight funds. It seems that in practice a 
relatively wide spread is needed to sustain overnight trade properly in 
Finnish circumstances. Even though the spread between annual interest 
rates may seem quite large, it is actually applied to the overnight 
period only. 

The next change in the system was in June 1989, when the 
borrowing quotas were abolished. At the same time, however, it was 
stipulated that the five-day moving average of a bank's net borrowing 
should not be positive. The right to borrow at a fixed lending rate, 
which was set at 15 per cent, was otherwise unlimited. But the 
effective cost of borrowing under these arrangements was higher than 
the loan rate itself. Because of the restriction on the five- day average, 
a borrowing bank was obliged to make corresponding deposits in the 
future, and deposits earned interest at a rate of only 4 per cent. In 
October 1989, this implicit cost was replaced by an explicit penalty 
rate. Under the new rule, the interest rate charged on borrowing was 
twice the basic lending rate if a bank's average borrowing over a five
day period was positive. 

This multiple structure of the call money facility was probably 
partly motivated by the authorities' desire to also be able to control 
borrowing under exceptional circumstances, in particular during times 
of speculative attacks on currency. Finland has previously experienced 
a number of attacks during which banks' borrowing tends to increase 
rapidly as the public's demand for foreign currency increases and 
markka liquidity is drawn into the central bank in exchange for foreign 
currency. From the point of view of the central bank, the last limit on 
borrowing reduces the possibility that the central bank is forced to 
finance what it regards as speculative currency flows. But it applies 
equally well to any other cases of severe liquidity drain. 

Although the five-day moving average level of borrowing has 
been restricted since the inception of the system in 1987, the empirical 
relevance of this condition was much enhanced when the quotas 
applied to borrowing at the basic call money lending rate were 
abolished in June 1989. Before that, the aggregate quota for the whole 
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banking system was about FIM 5 billion. In practice, this was never 
exceeded, not even for one day. Likewise, borrowing by individual 
banks seIdom exceeded the basic-rate quota. In all cases where it was 
exceeded, the borrower was a small bank, which had been allotted a 
very small quota because of its Iow level of equity capital. There is no 
indication that any measures was ever taken by the central bank on the 
basis of the five-day limit during that time. After the quotas were 
abolished, the five-day restriction became much more binding. 
Practically all banks exceeded the limit at times. It seems reasonable 
to conc1ude that, until June 1989, the call money facility was mostly 
characterized by the penalizing spread, after which the five-day limit 
also became important. 

3.2 The ovemight market: some 'stylized facts' 

In Finland, the interbank market for overnight funds started to function 
on a regular basis in the spring of 1987. The reason for the late start 
of this trade was primarily the regulation of bank lending rates. 

Trading in the overnight market is concentrated at the end of the 
banking day. The normal practice is that banks start requesting 
overnight funds shortly after markets for other maturities have c1osed. 
Because of this timing, banks can use overnight trade for eliminating 
deficits or surpluses which could not be c1eared during the day, or 
which were not known earlier in the day. It is logical to presume that 
banks' information about their final liquidity position becomes more 
precise as the c10sing of the books for the day approaches. If a bank 
knows that it is running a surplus, it has an incentive to offer funds in 
the overnight market, and conversely, demand funds from other banks 
if it knows it is on the short side. 

The volumes traded in the overnight market have been roughly 
one-third of the total turnover in interbank markets. This comparison 
is, of course, affected by the fact that overnight funds are, by 
definition, sold and bought every day, whiIe this is not necessarily so 
for c1aims with longer maturities. Nevertheless, an average turnover of 
about FIM 4 billion a day (from August 1988 to August 1989) is 
notable by Finnish standards. 

The rate of interest in the overnight market is shown in Figure 
3.2, together with the central bank's call money lending and deposit 
rates. The market interest rate is computed as an average of interest 
rates applied to all individual deals. Daily variation in the average 
overnight interest rate seems to have been high; it has, in fact, been 
much higher than in interest rates on longer maturities. From March 
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1987 to June 1989, the standard deviation of the overnight interest rate 
was 1.30 per cent. The corresponding figure for the three-month 
market interest rate was 0.92 and for the twelve-month interest rate 
0.86. 

Also, the dispersion of interest rates applied to individual deals in 
overnight funds between the banks in a given day has been notably 
large. For example, from January 1989 to June 1989, the mean of the 
daily standard deviation within the average rate was 2.19 per cent. 
This somewhat surprisingly large deviation could result from the fact 
that a1l deals are not done at the same time, so that recorded interest 
rates are based on different information about liquidity. Another 
possible explanation is that all banks are not in equal position in the 
market. In the thin markets of Finland, it is possible that banks tend to 
establish relationships which might influence the setting of prices. For 
example, a large and frequent buyer may be favoured by a frequent 
seller. 

Figure 3.2 
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From the point of view of the reserve market framework presented 
above, the most notable feature of Figure 3.2 is that the overnight rate 
of interest c1early .deviates from the interest rates on the central bank's 
call money. It is usually somewhere between the call money lending 
and deposit rates. Very seldom is it at the same level as either of these 
or does it exceed the limits of a band defined by these rates.· 

This same phenomenon is illustrated in Figures 3.3a and b, which 
depict the overnight market rate of interest as a function of the net 
borrowing position of the banks at the central bank. The first figure 
contains a plot of observations from March 1987 to October 1988 and 
the second a plot from October 1988 to June 1989. Both plots indicate 
that there is definitely a positive correlation between these two 
variables. But it is not so simple as in the basic reserve market 
framework, which predicts that the market rate will equal the call 
money deposit rate when reserves are positive . and the call money 
lending rate when reserves are negative. Rather, the plots indicate a 
continuous, although possibly nonlinear, relationship. 

It is interesting to note that the plots reveal very much the same 
pattern in observations as can be discerned in comparable plots from 
US data presented by Peristiani (1991) and Tinsley et al. l1982). 
The relevant y-axis in plotting US data is the spread between the 
discount rate and the Federal funds rate; in other respects, the plots are 
the same as depicted here. As noted above, Peristiani found evidence 
of nonlinearity and heteroscedasticity. 

In order to explain the pattern observed in these figures, an asset 
allocation liquidity management model of the overnight market is 
studied in the next chapter. The result of this is a demand-for-reserves 
schedule that allows for both nonlinearity and heteroscedasticity. 
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Figure 3.3a 

Figure 3.3b 
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4 A Stochastic Asset A1location 
Model of the Overnight Market 

In the following, banks' demand for free reserves is derived from an 
optimization problem in whlch each bank maximizes its expected 
profits from trade in the overnight market. The model employed is 
basically the same as the traditionai liquidity management model 
(Section 2.3) that was first applied to money markets in Modigliani, 
Rasche and Cooper (1970), in Frost and Sargent (1970) and in Poole 
(1968).1 In these pioneering works the approach employed was to 
describe the bank's portfolio allocation to free reserves and other 
assets, taking into account the fact that some of the relevant variables 
affecting reserves are not known for certain. The same framework is 
applied here but with a specific description of the overnight market 
and explicit terms concerning discount window borrowing, reflecting 
the circumstances in Finland. The model will enable us to derive the 
demand for free reserves solely as a function of the terms for (net) 
discount window borrowing and the overnight interest rate. After 
aggregation, the model yields the equilibrium interest rate in the 
overnight market as a function of the level of borrowing and the 
bOITowing terms. 

It is assumed that banks dear their balances at the end of each 
banking day at the central bank. If a bank has positive free reserves at 
the tlme the books are dosed, it will make a deposit of an equal 
amount. When the bank's reserve position is negative, it has the option 
of bOITowing from the central bank. The bank cannot know precisely 
all transactions that will be carried out on its customers' accounts 
during the day, so the final reserve position of the bank is uncertain. 
Without uncertainty the model would coincide with the simple 
description of the market for reserves that was discussed at the 
beginning of Chapter 2. The interest rate in the overnight market 
would always, through arbitrage, approach either the deposit or lending 
rate at the central bank's discount window. The money market is 
presumed to function efficiently, so that banks can buy and sell money 
market instruments without limit, and freely exploit all opportunities 
for arbitrage that arise if the bank perceives differences between 
discount window interest rates and money market interest rates. 

1 A more recent application is found in Dotsey (1991), for example. 
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Two important assumptions of the model are that trading in the 
overnight market begins after the normal banking day is over and that 
the discount window is the last option available to banks after the 
overnight market is c1osed. Because of these assumptions, the 
discussion can be limited to these particular markets and the 
maximization problem defined without any reference to other markets, 
i.e. markets for maturities other than overnight loans. This time 
structure of the availability of different sources of funding to banks 
was also used by Ho and Saunders (1985) and by Van Hoose (1991) 
in their analysis of the Federal funds market. What we now have is 
the following description of a bank's normal business day: 

At the beginning of the day the bank is thought to be at its target 
level of reserves. During the day, the bank's liquidity position may 
change because of transactions made by the public and also because of 
its own operations in the money market. The bank also decldes in the 
course of the day whether or not it is willing to trade in the overnight 
market and at what prices. These declsions must be made under 
uncertainty, because the bank does not know exactly the liquidity 
position that it will end up with. After the markets for longer 
maturities have c1osed, the deals in overnight loans and deposits 
between the banks are settled. Finally, at the end of the day, the 
banks' balances are c1eared in the central bank. Negative reserves are 
then covered with discount window loans and positive reserves are 
converted into deposits. 

Banking Day OjN trade Overnight period 

OjN market open, 
other markets closed 

Discount window open, 
closing of books 

The target level of reserves is taken to be the bank's position at the 
beginning of the day, so that the final position at the end of the day 
deviates from the target level exactly by the amount of unforeseen 
changes in liquidity. Therefore, the adjustment of reserves to the target 
level is not considered in the model. If a bank's reserve position 
deviates from the target level during the day, it can always make the 
necessary correction without any significant costs by buying or selling 
money market instruments, for example. There is no obvious way to 
inc1ude adjustment costs in the model without abandoning the 
assumption that funding from the well functioning money market is 
available to banks. 
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To summarize, the following assumptions are made: 

The overnight market is open between normal banking days, i.e. 
the bank is not able to use any other means to adjust its reserves 
after overnight trading is over. During the day the bank can freely 
buy and sell money market instruments. 

When making offers in connection with trade in the overnight 
market, the bank knows its exact reserve position the previous 
day. The amount of today's reserves is a random variable with a 
known distribution. 

After the c10sing of the overnight market, the bank is allowed to 
use the central bank's discount window. The balance sheet 
constraint must be satisfied daily. It is assumed that positive 
reserves are deposited at the central bank and that negative reserve 
positions are covered by discount window borrowing. 

The overnight market is competitive. 

4.1 The basic made! 

As a basic model we consider a simple case of a quantitatively 
unrestricted discount window with a penalizing interest rate spread. 
The bank may make deposits and borrow without limit, but the 
interest rate paid on deposits is lower than the interest rate charged on 
loans. A rationally behaving bank will, of course, use only one of 
these two options on the same day, so we are interested in the bank's 
net position on a given day. Under these assumptions concerning the 
discount window, the rate of retum on reserves can be written as 
follows: 

Rate of retum on reserves :::rd +(rl-rd) min(O,w), 
w 

where w = bank's net discount window position 
rd = interest rate on discount window deposits 
rl = interest rate on discount window loans. 

(4.1) 

The above equation states that a bank's rate of retum on reserves 
equals the deposit interest rate when its discount window position is 
positive and the loan interest rate when its position is negative. The 
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total position is a random varlable and its actual level can be written 
as the sum of the level of reserves at the beginning of the day, the 
amount of reserves purchased or sold in the overnight market and the 
net amount of all other transactions carried out during the day. A 
random variable u is taken to summarize all these other transactions 
and it is unknown to the bank at the time of trading in the overnight 
market. AlI transactions which are known can be thought to be 
inc1uded in the deterministic part of the discount window position. 

w = W + u = R + 0 + u, 

R = target level for reserves 
Q = overnight loans 
u = random shocks to liquidity, u - N(O,a2). 

(4.2) 

The bank's profits are defined as the difference between the return on 
reserves and the cost of obtaining reserves from the overnight 
interbank market. In this basic model, the maximization of expected 
profits from overnight trade is taken to be the bank's objective. Thus 
the bank faces the following maximization problem: 

max 
Q 

B(n) 

n =rd'W + (rl-rd)min(O,w) -öO, 

where ö = interest rate in the interbank overnight market. 

(4.3) 

(4.4) 

Because the expected vaIue of the random variabIe u is zero, equation 
(4.4) can be written as 

B(n) =rd'W +(rl-rd)B(min(O,W+u)) -öO. (4.5) 

To derive the expected vaIue of min(W+u,O), we define a random 
variabIe Y that follows a truncated normaI distribution. Let 

Y ={ Y = W +u, if y > ° ~ u < - W 
Y = 0, otherwise. 

46 

(4.6) 



The expected value of a truncated variable is a probability-weighted 
sum of conditional expected values. Using the notation <1> and <p to 
. denote the cumulative distribution function and density function for the 
standard normal, respectively, we obtain 

E(Y) =Prob(y<O)'E(y !y<O) + Prob(y=O)'E(y !y=O) 

=<1>( -W/a)E(y !y<O), 

=<1>( -W/a)(W + E(u !u<-W)) 

00 

=<1>( -W/a)(W + I u'l/a'<p(u/a) du) 
_00 <1>( -W/a) 

= <1>(-W/a)(W + -a'<p( -W/a)). 
<1>(-W/a) 

(4.7) 

Using (4.7), the maximization problem in (4.3) can be solved. Taking 
a derivative with respect to Q gives a first order condition for the 
maximum and consequently the bank's demand for reserves, which 
is of very simple form in this case. If the discount window is 
unrestricted with respect to quantities borrowed or deposited, but 
involves a penalizing interest rate spread, a bank is willing to trade in 
the ovemight market at an interest rate that is a weighted average of 
discount window interest rates, the weights being the probabilities of 
discount window positions. In other words, the optimality condition is 
that the market interest rate must equal the probability-weighted 
average of the central bank's interest rates. 

Ö =rd + (rl-rd)<1>( -(Q+R)/a) 

=rd + (rl-rd)<1>( -W/a). 
(4.8) 

Equation (4.8) is essentially a modification of the first order condition 
(2.2) from the general liquidity management model. It is a probit 
function with the central bank's call money deposit rate as a lower 
asymptote and the central bank's call money lending rate as an upper 
asymptote. At the point where reserves switch from positive to 
negative, the market interest rate equals the arithmetic average of the 
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central bank's interest rates. The conditions for positive and negative 
optimal reserves are 

ö<rd + (rl-rd)/2 ~ W>O 

ö>rd + (rl-rd)/2 ~ W <0. 

The equilibrium interest rate schedule is illustrated graphically in 
Figure 4.1. It should be noted that in this figure reserves are measured 
relative to their standard deviation. When equation (4.8) is later solved 
with respect to the level of reserves ( equation 4.9), the standard 
deviation of reserves will become one of the variables explaining the 
level of reserves. 

Figure 4.1 
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Aggregation of interest rate schedules 

Equation (4.8) was derived for a single bank. The aggregate demand 
can be derived using the fact that in the interbank market the amount 
of deposits must equal the amount of loans by definition, so that 
L Qi = O. Aggregating over all banks (i = 1, ... ,II) then gives the 
market-c1earing overnight interest rate as a function of the aggregate 
target level of reserves, the sum of standard deviations of each bank's 
reserves and the terms for discount window loans and deposits. 

In order to be able to derive the aggregate demand, (4.8) must first 
be solved with respect to quantities. Because the inverse of the 
cumulative distribution function of the standard normal has no c10sed 
form expression, the only way to solve for W in (4.8) is to use some 
approximation. A convenient and statistically fitting choice for that 
purpose is a logistic distribution. It is commonly used in empirical 
studies instead of the normal distribution and it has a cumulative 
distribution function that is much easier to manipulate? In the 
following, those variables that differ across banks are marked with the 
superscript i and aggregation is done by summing over banks after 
replacing the normal distribution with the logit distribution. 

ö =rd + (rl-rd)<I>( -(Q+RWai
) 

(ö-rd)/(rl-rd) =<I>( -(Q+RY/ai
) 

"" 1/(1 +exp(k(Q+RWai) 

~ Q i =aijkolog((rl-ö)/(ö-rd» - R i 

LQi = 0, which implies 

ERi =E ai/kolog((rl-ö)/(ö-rd» 

Ö =rd + (rl-rd)/(l +exp(kER i/Eai) (4.9) 

2 A logistic distribution has a cumulative distribution function L(x) = 1/(1 +exp( -x)). The 
transformation 4(X) = l/(l+exp(-kx)) closely follows the normal distribution function 
<I>(x) when k = 1.6 (Amemiya, 1981, p. 1487). According to Amemiya, in empirical work 
it is difficult to distinguish between these two distributions statistically, unless the 
observations are heavily concentrated in the tails of the distribution. (The logistic 
distribution has heavier tails.) 
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(4.10) 

The aggregated equation for the market interest rate c10sely resembles 
the interest rate equation in the case of a single bank. The only 
differences are that the sum of reserve targets has now replaced the 
discount window position of individual banks and that reserves are 
now measured as relative to the sum of standard deviations of 
individual reserve positions. When empirical applications and policy 
issues are considered, (4.10) is especially noteworthy because it shows 
that the aggregate net reserve target of the banking system is the key 
variable that is linked to the equilibrium interest rate. On the other 
hand, the equation also illustrates that the relationship between reserve 
targets and the equilibrium interest rate is affected by the variance of 
reserves at the disaggregated level. Potentially, this point might be of 
some importance in empirical applications because the sum of standard 
deviations of reserves need not behave in a similar fashion in time as 
the standard deviation of the aggregate position. 

Comparative statics 

The steepness of the interest rate schedule (4.10) depends on the sum 
of standard deviations of reserves. This sum of standard deviations can 
be interpreted as a measure of the degree of uncertainty facing banks, 
which raises the question as to how increased uncertainty changes the 
bank's borrowing behaviour. Taking a derivative of the market interest 
'rate with respect to the sum of standard deviations yields 

The effect of an increase in the degree of uncertainty on the market 
interest rate depends on the sign of the sum of reserve targets. More 
uncertainty makes the interest rate schedule less steep; it raises the 
market interest rate if the sum of reserve targets is positive and lowers 
the market interest rate if the sum of reserve targets is negative 
(Figure 4.2). Less uncertainty works in the opposite direction, making 
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the interest rate schedule steeper. When the sum of standard deviations 
approaches zero, the schedule becomes a step function that jumps 
from the central bank's deposit interest rate to the loan interest rate as 
the sum of reserve targets changes from positive to negative.· So, the 
model does inc1ude as a special case the full information case 
discussed in the previous chapter. 

Changes in the central bank's call money deposit and lending rates 
have straightforward effects on the equilibrium market interest rate. 
Derivatives of the call money interest rate are positive in both cases, 
<I>(-~R.lLa) wlth respect to the deposit rate and <I>~Rrza) with respect 
to the lending rate. Because of this symmetry, an increase in the width 
of the interest rate spread between the central bank's interest rates 
widens the equilibrium interest rate locus evenly with respect to the 
len ding and deposit rates. 

Figure 4.2 The effect of an increase in the degree of 
uncertainty (the sum of standard deviations of 
reserves) on the equilibrium market interest 
rate 
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The impact of changes in the central bank's. interest rates on the 
demand for reseIVes at a given level of the market interest rate can be 
obtained from (4.9). An increase in uncertainty obviously increases the 
reseIVe target as the sum of deviations of reseIVes enters the reseIVe 
equation multiplicatively. The effects of changes in the deposit rate 
and lending rate are, of course, symmetric on reseIVes also, as they 
were on the market interest rate. 

aLR Lo/k and aLR La/k 
=--. 

arl rl-o ard o-rd 

4.2 Effects of risk aversion 

In the basic model, the bank's objective was to maximize expected 
profits from the allocation of funds to overnight market trade and to 
net reseIVes in the central bank. That particular formulation of the 
objective function implies risk neutrality as the bank is assumed to be 
interested only in the first moment of the profit distribution. In the 
following, a mean-variance approach is applied in order to study the 
effects of risk aversion. For thls purpose, the second moment of the 
distribution, the variance of profits, is inc1uded in the objective 
function of the bank. 

Applying a mean-variance approach can be justified with a fairly 
general, explicit objective function. The following exponential function 
is commonly used and can be implemented empirically as well: 

U(n) = -exp( -M ':Tt), (4.11) 

where M = positive constant, 
n = profits from interbank trade. 

Thls objective function U is continuous and monotonic and its first 
derivative with respect to profits is positive and second negative. 
Because of these properties, the function implies increasing utility and 
risk aversion. Furthermore, the negative of the second derivative 
relative to the first derivative equals M, -U"IU' = M, which implies 
that constant M is a measure of absolute risk aversion. A particular 
advantage of thls specific functional form is that it can be shown to 
lead to the following expression for expected utility, assuming that n 
is a normally distributed random variable (see Bray, 1985, p. 172): 
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E(U) = -exp[ -M[E(n) -lIzM·Yar(n)]]. 

The above expression can be further simplified by applying a_ 
monotonie transformation. As a result, the obj eetive of a bank's 
maximization problem ean now be expressed as the differenee 
between expected profits and the variance term 

max E(U) =E(n) -lIzM·Yar(n). 
Q 

(4.12) 

The first part of the right-hand side of (4.12), E(n), was already 
maximized when the basic model was discussed. In addition to 
expected profits, the solution will now inc1ude the derivative of the 
varianee of profits with respeet to Q, multiplied by the eoefficient of 
risk aversion. In order to derive the first order condition, the variance 
will have to be eomputed and differentiated. These computations are 
presented in Appendix 1. The result is the following equation for the 
market interest rate: 

ö =rd + (rl-rd)<1> 
(4.13) 

+ (rl-rd)M<I>(1-<I»trd 'E[w Iw>O] -rl'E[w Iw<O]}. 

The last part of the interest rate equation is the risk premium. It shows 
the effect on the interest rate that is due to risk aversion, as compared 
to risk neutrality, at different levels of (net) diseount window 
borrowing. By assuming a normal distribution, we can write the 
expected values in explicit form. This yields an estimable expression 
for the premium. 

Risk premium =M(rl-rd?{(b+1-<I»mp - W(1-<1»<I>}, (4.14) 

where b = rd/(rl-rd). The argument in the distribution funetion <I> and 
density funetion cj> is -W/a (the point of truneation) in both (4.13) and 
(4.14) 

From (4.13) it can be seen that the risk premium approaches zero 
when W goes to either positive or negative infinity. The term <I>(1-<1», 
which is the binomial distribution of discount window deposits and 
loans, approaches zero at both ends of the distribution. This refleets 
the faet that the uncertainty concerning the interest rate that will be 
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applied to a bank's discount window position diminishes when the 
target level of reserves is either very high or very low. In this 
framework, the actual rate of retum on reserves depends only on the 
sign of the bank's discount window position, and the sign is unlikely 
to change at extreme reserve target levels. 

The absolute size of tp.e premium depends on the coefficient of 
risk aversion M, which is unknown. (lt is known to be positive, 
however because of the assumptions made about the objective function 
U.) It can also be seen that the risk premium is positive at all levels 
of discount window borrowing because both <1>(1-<1» and 
{rd·E[w I w>O] - rl·E[w I w<O]} are certain to be positive. On the 
other hand, the maximum of the premium is generally not at the zero 
position. In the above expression for the risk premium, conditional 
expected values of discount window positions ·are weighted with 
interest rates applied by the central bank and the rate on loans is 
presumed to be higher than the rate on deposits. The maximum of the 
premium is at zero only if the deposit and loan interest rates are equal. 
Intuitively, the bank's risk is bigger on the loan side of the distribution 
because the changes in retums that are caused by changes in liquidity 
are greater on the loan side since the percentage rate applied to loans 
is higher. 

Forma11y, the maximum of the risk premium can be found from 
(4.14). Let (J = 1 for simplicity, and take a derivative of the premium 
with respect to reserves to obtain (4.15). (The inequality holds because 
<1>2 < <1>(1-<1»). In the same way it can also be shown that the variance 
~ and the interest rate spread between loan and deposit rates both 
have a positive effect on the risk premium. 

(4.15) 

To summarize the results, we have shown that the equilibrium interest 
rate is higher if the bank is risk averse than it is when risk neutrality 
is assumed. The effects of risk aversion are potentially most important 
when reserves are "elose" to zero. The equilibrium locus for a risk 
averse bank is shown graphically in Figure 4.3 with parameter values 
M = 0,1 (risk aversion) and M = 0 (risk neutrality). The area between 
the two loci is the risk premium. It is depicted separately in Figure 
4.4. 
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Figure 4.3 Equilibrium locus of a risk averse bank as 
compared to a case of risk neutrality 
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Figure 4.4 The risk premium 
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4.3 Quantitative quotas on borrowing 

Many central banks restrict the amount of banks' borrowing from the 
discount window by applying quantitative quotas. In this section, the 
basic mode! is modified, in the simplest possible way, so as to allow 
to the effects of these arrangements to be examined. 

It is assumed that, in addition to separate interest rates on deposits 
and 10ans, the discount window interest rate schedule has one 
additional step after some fixed amount of borrowing. As before, it is 
assumed that the bank may deposit positive reserves without restriction 
and that an interest rate rd is applied to deposits. The modification 
made here is that the bank's borrowing from the window at the basic 
call money lending interest rate rl is limited to an exogenous quota K 
while the rest of the borrowing is subject to a penalty rate rs. The 
bank's cost of borrowing therefore jumps discontinuously at K. The 
bank's profits from overnight trade can then be written as follows: 

rd'w, if w>O 

Jt= -6Q + rl'w, if K<w<O 

rl·K +rs(w-K), if w<K 
(4.17) 

rd(W+u), if u>-W 

=-6Q+ rl(W+u), if K-W<u<-W 

rl'K +rs(W +u -K), if u<K-W. 

The expected value of profits is then: 
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E[n] = -öQ + Prob(u>-W)rd 'E[W +u lu>-W] 

+ Prob(K -W<u<-W)rl'E[W +u IK-W<u<-W] 

+ Prob(u<K -W){(rl-rs)K +rs'E[W +u lu<K -W]} 

E[ n] = -öQ + {l-<l>[ - W /a ]hd 'E[W +u I u> - W] 

+{<l>[ -W/a]-<l>[(K -W)/a]hl'E[W+u IK -W<u<-W] 

+ <l>[(K-W)/a]{(rl-rs)K +rs'E[W +u lu<K -W]}, 

(4.18) 

Because of the new step in the central bank's discount window interest 
rate schedule, two points of truncation of the random variable u have 
to be considered in order to obtain the expected vaIue of profits. Two 
points of truncation mean that three separate parts of the distribution 
must be taken into account: one truncated from below, one truncated 
from above and one truncated from both ends. The expected values of 
w = W + uwith separate upper and lower truncations were already 
presented when the demand for reserves was derived in the basic 
model. When the distribution is truncated from both ends, the expected 
value of w is (see Maddala, 1983, Appendix): 

E[W+uIK-W<u<-W] = a<j>«K-W)/a) -a<j>(-W/a) +W. 
<l>( -W/a) -<l>«K -W)/a) 

After substitutions and some manipulation, (4.18) can be written as 
follows: 

E[n] = -öQ -(rl-rd)mj>( -W/a) -(rl-rs)a<j>«K -W)/a) 

+ W[rd +(rl-rd)<l>(-W/a)] 

-(K -W)(rs-rl)<l>«K -W)/a). 

(4.19) 

The equilibrium locus is now obtained by taking the derivative of the 
expected profits with respect to Q. The result follows the same pattem 
as the solution of the basic model. The difference is that the 
expression for the interest rate now entails an additional term that 
gives the probability of borrowing in excess of the quota K, weighted 
with the spread between the central bank's call money lending rate 
and penalty rate. 
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ö =rd + (rl-rd)<I>( -W/a) + (rs-rl)<I>((K-W)/a). (4.20) 

The equilibrium interest rate locus is a probability-weighted 
combination of two adjoining basic model solutions. The 
generalization of the model to more interest rate steps in the discount 
window is not made here, but by the logic of the model it is obvious 
that adding more steps would only add new probability-weighted 
interest rate steps to the equilibrium solution. This follows naturally 
from the fact that the basic model is also a quota system, the quota 
being zero in that case. The market interest rate is in that case a 
probability-weighted average of call money· interest rates in the 
neighbourhood of zero reserves, wmch is the position of the interest 
rate step in that model. Bach new quota and a corresponding interest 
rate step will yield the same kind of probability term for the 
equilibrium locus. 

For example, in Sweden, banks' borrowing from the discount 
window has been restricted by means of a large number of quotas and 
interest rate steps. In 1988, there were 11 such steps, each bank's scale 
depending on thesize of the bank. (Englund, Hörngren, Viotti, 1989). 
In practice, the penalty rate model that is discussed here could hardly 
be modified to incIude so many steps. But it probably would not be 
necessary either. This analysis suggests that, at least in the case of 
relatively narrow steps, it might be reasonable to approximate the 
overnight interest rate with a continuous, linear function. That is, in 
fact, the assumption made about the supply of reserves from the 
discount window in the Swedish system by Englund, Hörngren and 
Viotti (1989). Further, the argument on wmch they base tms 
assumption is that banks are uncertain about their actual liquidity 
positions (pp. 531-532). The idea is therefore very similar to the one 
formally presented here. 

Figure 4.5 shows the interest rate schedule that follows from the 
assumption that a penalty rate is applied to borrowing in excess of a 
given quota. The horizontal axis measures reserves relative to their 
standard deviation, as it also did in the basic model. In the figure, the 
exogenous quota K is set at four times the deviation of the bank's 
reserves. The exact amount is not important for the interpretation of 
the figure; using some other quota would only change the scale. 
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Figure 4.5 Interest rate schedule in a model with a penalty 
rate and a quota on borrowing 
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4.4 Time-dependent costs of borrowing 

The following seetion eontains a brief diseussion on dynamie analysis 
in the eontext of this liquidity management framework. The model 
beeomes dynamie if the eost-of-borrowing funetion is specified as 
intertemporal. In Seetion (2.2) above, a study by Goodfriend (1983) 
was cited as a key eontribution to the literature on dynamie borrowing 
eosts. " 

In order to keep the analysis simple and traetable, the dependeney 
of the bank's eost of borrowing on previous borrowing is inc1uded in 
the model very straightforwardly. It is assumed that an additional 
penalty rate, rs, is eharged if the bank is a borrower on two eon
seeutive days. 
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Addi ' a1 al . ( 0) min(wt-l,O) tlOn pen ty costs = rSt ·mm wt' . . 
wt- 1 

(4.21) 

Using a more complicated cost-of-borrowing function would not add 
any significant new economic insight. Increasing the number of days 
or formulating more advanced rules for determining the dependency of 
the cost of borrowing from history would yield basically the same 
elements in the solution, but in a less transparent form. 

As in the previous basic model, the bank is assumed to be 
concerned about expected profits from arbitrage between the overnight 
market and the central bank's call money facility. In an intertemporal 
setting, the time horizon of the objective function becomes important. 
When considering overnight market transactions, the bank must take 
into account the consequences that trading today will have on the 
future. If the cost-of-borrowing function is defined over a two-day 
time horizon, then borrowing today affects profits both today and 
tomorrow. Profits in day t and 1+1 are written below. Income from 
later periods is less valuable, and therefore a discount factor c is 
introduced. 

O'tt =rdt ·wt + (rl-rd)min(wt,O) 

min(wt-l,O) . 
+rs mm(wt,O) -ötQt 

wt - 1 

O'tt+l =chd ·wt+1 + (rl-rd)min(wt+l'°) 

min(wt' 0) . 
+rs mm(wt+l'0) -öt+1Qt+l}' 

w
t 

The expected value of profits on day t are then 

E(O'tt) =rdtWt + (rlt-rdJFJwt, ut<-Wt] .' 
l 0, othelWise 
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and the derivative with respeet to today's trade is 

(4.25) 

Today's borrowing enters tomorrow's eost funetion only through its 
effeet on expeeted penalty eosts, and therefore the rest of the 
expression does not affeet the solution. The expeeted penalty eosts on 
day 1+1 are 

E[e'rst+1 'min(wt+l'O), ut<-WtJ' 
o othetwise 

Takingthe derivative with respeet to today's trade yields 

(4.26) 

(4.27) 

The total effeet of a ehange in Qt is the sum of the derivatives of 
expeeted profits on days t and t+ 1. The first order eondition for the 
optimum is that the sum of derivatives equals zero. The solution to 
this two-day model is therefore defined by the following Euler 
equation, whieh expresses the market interest rate as a funetion of 
yesterday's, today's and tomorrow's diseount window positions. The 
equation is a seeond order differenee equation with respeet to 
borrowing. 

(4.28) 
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As in the basic model, the current interest rate is a function of the 
central bank's interest rates weighted with probabilities of discount 
window positions. But, in addition to today's probability-weighted 
deposit and lending rates, this intertemporal solution also inc1udes the 
penalty rate weighted with a probability that the penalty rate will be 
applied today. This probability depends on both previous and current 
borrowing. In this example, it equals zero if previous borrowing is 
zero because of simplicity of the cost function. With positive values of 
previous borrowing (negative wt_1), the current penalty rate is weighted 
with the probability of current borrowing. 

The last part of Euler equation takes into account the impact of 
the current net position on future borrowing costs, which is also a 
consequence of intertemporal penalty costs. This term is a product of 
the probability distribution of the current discount window position 
and expected future values of borrowing and the penalty rate. Because 
the expected value of future borrowing is non-positive, the effect of 
this term on the current interest rate is positive in the Euler equation. 

To summarize, inc1uding intertemporally defined penalty costs in 
this model yields two additional elements in the solution. These 
additions can be interpreted as the chance that borrowing today will 
cause penalty costs today and the chance that borrowing today will 
cause penalty costs in the future. Intuitively, (4.28) is a probabilistic 
analogue of the Euler equation in Goodfriend (1983). The next step 
would be to solve the difference equation for current borrowing so that 
the dynamics of the solution could be studied. But an inherent 
difficulty in applying dynamic analysis to this framework is the 
nonlinearity created by interest rate steps. Even in this simplest case it 
prevents us from solving the difference equation and reproducing other 
results presented in Goodfriend (1983). 
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5 Endogenous Variance: 
Effects of Liquidity Contro! 

5.1 Introduction 

The degree of uncertainty faced by the bank was considered to be 
exogenous in the preceding discussion. It was assumed that the bank 
takes the market interest rate, the central bank's interest rates and the 
variation of reserves as given and chooses the amount of reserves it is 
willing to hold under these conditions. But, as uncertainty is costly, it 
seems reasonable to suppose that the bank is willing to make some 
effort to reduce it, at least over some time horizon. By reducing 
uncertainty is meant decreasing the value of a, the standard deviation 
of net borrowing. That can happen either via a general reduction in the 
level of liquidity shocks, u, or via a reduction in the frequency of 
large shocks. In the analysis of this section it is assumed that the bank 
practices liquidity control with the purpose of affecting the value of a. 

The effects of liquidity control are studied in very general terms 
~ere. Clearly, banks are engaged in various activities aimed at 
controlling their liquidity, though it is difficult to specify the relevant 
costs and benefits associated with any particular activity. Por example, 
banks are likely to monitor their c1ients' transactions, synchronize 
payments, put varying amounts of effort into internal accounting 
procedures, forecasting reserve needs and collecting information on the 
general economic environment. These activities produce information 
about inflows and outfiows of funds and they entail costs, as some 
resources are necessarily devoted to them. So, one could expect that 
they are pursued to the extent that there is a gain to be achieved. 

The following exposition draws especially from studies on 
information costs in reserve models by Baltensberger (1974) and 
Baltensberger and Milde (1976). The contribution here is merely the 
application of their analysis to this particular problem. In this 
application the central bank's discount window defines the cost of 
liquidity variation, and therefore the analysis can provide some insight 
into the effects of the structure of window. 
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5.2 The mode! 

As in Baltensberger and Milde (1976), efforts to control liquidity are 
summarized by a variable q measuring resource units spent on relevant 
activities. The measurement unit of resources can be thought to be 
man-hours, for example. The cost of one unit of q is denoted' by the 
symbol sand it is assumed to be fixed and independent of the number 
of the units. The cost of resources devoted to liquidity control is then 

s·q. (5.1) 

The relationship between resources used for liquidity control and the 
degree of uncertainty facing the bank is described by the function a(.). 
A reasonable assumption is that spending more resources reduces the 
degree of uncertainty, but at a diminishing rate 

cr = a( q), a I (q)<O, a" (q»O. (5.2) 

AlI other assumptions of the previous (basic) model are maintained 
intact. Allowing for expenditure on liquidity control, expected profits 
from overnight trade are then 

B(n) = -6Q +rd'W + (rl-rd)B(min(W+u,O)) -s 'q. (5.3) 

By assumption, the expected vaIue of the random reserve position 
(w+u) depends on the resources devoted to liquidity control. This is 
formaIized by writing the density function of u in terms of a joint 
distribution of u and q. The joint distribution is thought to be such 
that, given the value of q, the distribution of u is symmetric with zero 
mean. Taking advantage of results presented above, expected profits 
can be expressed as 

-w 

B(n) = -6W +rd'W + (rl-rd)F( -W)(W+ J uf(u,q) du) -s'q 
-00 F(-W) 

-w 

= -60 +rd'W + (rl-rd) J (W +u)f(u,q)du -s·q. 
-00 

(5.4) 

Bxpected profits are then standardized by dividing u by its own 
standard deviation. The result is that the objective function is again 
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expressed in terms of a one dimensional density function. The 
standardized random variable is independent of q because only its 
standard deviation depends on q. Define 

v == ula, E(v)=O, E(v 2)=1, 
(5.5) 

m = W/a. 

Denoting the standardized density function of v by g(v), expected 
profits in terms of standardized variables are 

-m 

E(n) = -(am-R)6 +rd oma + (rl-rd)a I (v +m)g(v)dv -s·q. (5.6) 
-00 

Taking the derivatives with respect to the dedsion variables q and m 
yields the following first order conditions for the optim,um. The 
function G denotes the cumulative distribution function of v such that 
G'=g 

aE(n) = -a6 +rd °a + (rl-rd)aG( -m) =0 
am 
<=> 6 :=rd + (rl-rd)G( -m) 

aE(n) = 

aq 

-rn 

-a / (q)m6 +a / (q)rdom + (rl-rd)a / (q) I (v+m)g(v)dv -s =0 
-00 

<=> a I (q) = ______ s _____ _ 
-m 

-m6 +rdom + (rl-rd) I (v +m)g(v)dv 
-00 

(5.7) 

(5.8) 

The equilibrium condition for m is of exactly the same form as in the 
basic mode! without liquidity contral activitieso This is so because q 
enters the interest rate - reserve locus only via its effect on the 
standard deviation, and therefore it affects m but does not affect w 
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directly. The latter equation in (5.8) is the equilibrium condition for 
optimal q. If an explicit expression for a( q) were specified, q could be 
solved from this equilibrium condition and an explicit equation for the 
standard deviation would emerge. The result would be a two-equation 
model for the bank's optimal reserves and optimal degree of liquidity 
uncertainty, given the exogenous parameters for costs of liquidity 
control, the central bank's discount window interest rates and the 
overnight market interest rate. 

The economic content in these equations is that the bank is 
thought to react to uncertainty in two ways: by holding precautionary 
reserves and by trying to reduce the degree of uncertainty through 
liquidity control measures. As in the basic model, 'holding reserves' 
has a slightly different meaning in this context than is usually the case 
in reserve models. Reserves can be of either sign, the interpretation 
being that, given the level of interest rates, the bank is not willing to 
trade away Hs position completely in the overnight market because of 
uncertainty. If the bank is on the short side, it will not be prepared to 
buy the total amount of the shortfall at a price that is slightly less than 
the central bank's lending rate, as it would be in The perfect 
information case. The same precautionary behaviour applies equally to 
long positions as wel1. The point is that this strategy is costly in 
comparison to optimal behaviour under perfect information. Therefore, 
when liquidity control is also inc1uded among a bank's options, it will 
use it as a means to reduce the need to hold costly positions. In that 
case, the optimal amount of expenditure on controlling liquidity is 
determined by the above equilibrium condition. 

5.3 Comparative statics 

Effects on liquidity control 

Comparative statics results of the model can be derived directly from 
the first order conditions 5.7-5.8. These calculations are documented 
in Appendix 2 and only the results are shown below. First, the effects 
of changes in exogenous parameters on expenditure on liquidity 
control are as follows: 
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dq _ a' 
----<0 
ds a"s 

dq _ (a tim S ( ) -- - gn m 
dö a" s 

-m 

dq = _ (a ')2 I(m +v)g(v)dv:2:0 
drl a"s -00 

-m 

dq = (a '? (-m + I(m +v)g(v)dv)sO. 
drd a" s 

-00 

(5.9) 

The first result shows the effect on liquidity control of an increase in 
its own price. It is negative, as it obviously should be, and exactly the 
same as in Baltensperger and Milde (1976). The next derivative shows 
that, in this model, the effect of changes in the market interest rate on 
liquidity control follows the sign of a bank's position in the central 
bank. This is a direct consequence of allowing reserves to be of either 
sign in setting up the model; otherwise the derivative is of standard 
form. 

More interesting are the effects of changes in the central bank's 
interest rates on q because they are distinctive of this particular 
application. When changes in interest rates are considered separately, 
we obtain the intuitively reasonable results that raising the discount 
window lending rate has a positive effect on q while raising the 
deposit rate has a negative effect. Of particular interest is the 
combined effect of opposite changes in the central bank's lending and 
deposits rates, i.e. the effect of widening the central bank's interest 
rate spread. It can be shown, after some manipulation, that the 
difference of the derivatives is positive: 

d d (a ')2 -m 
~ -~ = ---Un(2G( -m) -1) + 2 Ivg(v)dvb O. 
drl drd a II s . 

-00 

(5.10) 

The result (5.10) above shows that widening the interest rate spread of 
the discount window will lead to increased investments in liquidity 
control. A wider discount window interest rate spread will make 
uncertainty more costly to the banks, and, consequently, the banks are 
induced to increase expenditure on reducing the degree of uncertainty. 
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Effects on reserves 

Comparative statie effects on reserves are calculated by first solving 
the impact of changes in exogenous parameters on m. The final effects 
on W are then derived using the above results on the effects of 
changes on q and, consequently, on 0'. The following results are 
derived in Appendix 2: 

dW 

dö 

dW 
.drl 

= 
a m 2(a')3 

----------+ <0 
(rl-rd)g( -m) a 1/ s 

(5.11) 

dW = 2G(-m)-1 _ m(a'? hn(2G(-m)-1) 
drd (rl-rd)g(-m) a 1/ s 

(5.12) 
-m 

+ I vg(v)dv}- -Sgn(m). 
-00 

The first of the above results confirms that an increase in the market 
interest rate will reduce optimal reserves. The second result concerns 
the effect of widening the interest rate spread. The signs of the 
derivatives with respect to 'discount window deposit and lending rates 
are ambiguous in both cases when considered separately (see 
Appendix 2); in this mode!, raising the discount window lending rate 
will not necessarily increase optimal reserves. This is because the 
higher discount window lending rate will, by making reserve 
deficiencies more costly, increase both m and q, and the latter will 
reduce 0'. In order to obtain an unambiguous effect, some additional 
restrictions concerning the relationship between 0' and q should be 
introduced. 

The combined effect of widening the whole interest rate spread is, 
however, opposite to the sign of a bank's position. That means that 
increasing the penalizing interest rate spread will deerease, in absolute 
terms, both negative and positive reserves. In other words, a wider 
penalty spread will work to reduce the bank's precautionary positions. 
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5.4 Solution of the model 

Although a(q) was not represented by an explicit function, we can 
outline the solution of the model and show what elements it would 
contain. Substituting the equilibrium condition for reserves into the 
equilibrium condition for optimal q yields 

a I (q) = ___ s __ _ 
-m 

(rl-rd) f vg(v)dv 
-00 

(5.13) 

s 
(rl-rd)G(-m)E(v Iv< -m) 

At this stage an assumption concerning the distribution of v is needed. 
It will be useful to consider the solution under both normal and logit 
distributions. 

Normal distribution 

If G is the cumuIative distribution function of standard normal, then 
E(v I v<-m) = -~( -m)/<D( -m). The complete model can then be 
written as follows: 

ö =rd + (rl-rd)<D( -m) 

-s 
a I ( q) = -:-:-~--,---:-

(rl-rd)<j>( -m) 
(5.14) 

o=a(q), m=W/o. 

In the case of the normal distribution, an explicit solution for m cannot 
be obtained, but the equilibrium condition for q becomes simple. By 
taking a Taylor series expansion around m=O, a'(q) can be expressed 
as 
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af (q) =c +c.m 2, 
c = s(2n)1/2 

rl-rd (5.15) 

The above result implies that with a suitable specification of a( q), it is 
possible to derive an explicit expression for the optimal variance in the 
model. From (5.15) it follows that the optimal variance is proportional 
to the squared level of reserves: 

(;2 = cW, where C 
c=~:----

(af (q) -c) 
(5.15') 

This relationship will be utilized later in the study, when empirical 
equations are specified. 

Logit distribution 

As was already noted, manipulation of the reserve equation is easier 
when random shocks are assumed to follow a logit distribution. In 
that case, the equation for reserves can be solved explicitly, 
m = log(rl-ö)-log(ö-rd) and the conditional expected value of v 
is E(v I v < -m) = -m + log(l-F(-m))/F(-m) (Maddala, 1983, Appen
dix). Substituting into first order conditions yields 

m=log --
( 

rl-Ö) 
ö-rd 

af (q) = ______ s _____ _ 

(rl-ö)10g(_rl-_ö ) +(Ö-rd)log(_Ö-_rd) 
rl-rd rl-rd 

(5.16) 

" The expression for a'(q) states that q depends on s and on a weighted 
average of (relative) spreads between the market interest rate and 
discount window interest rates. These spreads are the respective 
distances from the market interest rate to the central bank's call money 
len ding and call money deposit rates. In order to illustrate the structure 
of this model more c1early, we denote the upper spread by x and the 
lower spread by y, implying the following graphical interpretation. 
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Figure 5.1 Partial interest rate spreads 

Using these symbols, 

w x 
m=-=log(-) 

o y 

a I (q) = ____ s ___ _ 

xlog(~) +ylog(--L) 
x+y x+y 

(5.17) 

According to the above expression, both m and q depend on the 
relative spreads between the market rate and the upper and lower 
central bank interest rates. The expression for a' (q) also inc1udes the 
sum of these partial spreads, measuring the total width of the spread. 
It can easily be confirmed that an increase in the central bank's 
interest rate spread will have a positive effect on liquidity control: 

(5.18) 

where 'l!J =XIOg(~) +YIOg(...L). 
x+y x+y 
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5.5 Concluding remarks 

The aim of this chapter was to endogenize the variance of liquiclity. 
Holding reserves is the only way the bank is thought to react to 
uncertainty in a standard liquidity management model. But, because 
reserves are costly, a logical extension to the model is to consider the 
implications from inc1ucling alternative ways to react, and specifically 
the implications for clirect expenditure on liquidity control. A110wing 
for the possibility of liquiclity control measures broadens the 
interpretation of the model considerably. This study emphasizes the 
reserve management decision, but one could also view the bank's 
problem as being primarily a problem of controlling liquidity and 
hoiding reserves as a way to economize on costs of liquidity control 
(Baltensberger and Milde, 1976). 

In this two-equation model both the optimal variance and optimal 
reserves are functions of interest rate spreads between the market 
interest rate and the central bank's lending and deposit rates. The 
optimal amount of (standardized) reserves is determined as a function' 
of the upper spread relative to the lower spread just as in the basic 
model, while optimal variance also depends on the height of the 
central bank's interest rate step. It was shown that raising this step 
increases expenditure on liquiclity control, reduces optimal variance 
and reduces both negative and positive reserve positions in absolute 
terms. Further, it was shown that under certain assumptions optimal 
variance can be expressed as a function of squared reserves. 

These results are consistent with the sudden dec1ine in the 
variability of borrowing that occurred when the central bank's interest 
rate step was first introduced in March 1987. Figure 3.1 on page 36 
demonstrates that a c1ear change in borrowing behaviour occurred at 
that time. This observation cannot be explained in terms of the 
exogenous variance model presented in the previous chapter. This 
analysis of endogenous variance model suggests that the banks' were 
induced by this change to increase their expenditure on liquiclity 
control in order to reduce the variability of borrowing because holding 
reserves had become costly. Such a regime shift is, of course, an 
extreme case. The fact that it· had noticeable effects on that occasion 
does not necessarily imply that liquidity control should be an 
important factor when borrowing behaviour is studied under more 
normal circumstances. Obviously, some measures to control liquiclity 
are too cumbersome to be flexibly adjusted accorcling to market 
conditions. For example, the time perspective in decisions concerning 
the structure of organization cannot be the same as in short-term 
liquidity management. Probably a major regime shift is needed to 
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cause changes in organization. But payments synchronization and 
monitoring clients' transactions, carried out with a varying degree of 
effort, are examples of activities whichmight be relevant for short
term considerations as well. 

In the empirical section of the study, the variance is specified as 
time-dependent in GARCH estimations by conditionalizing it on 
available information. Although the equation for conditional variance 
is deterministic in the empirical model, it is basically treated as an 
endogenous variable. The above results are a possible explanation for 
some of the empirica1 findings concerning the specification of the 
conditional varia,lce equation that are presented in Chapter 7. In 
particular, these results may help to explain the asymmetric response 
of borrowing to interest rate changes. 

73 



6 Empirical ApplicatioIl of the 
Model with Constant Variance 

6.1 Data and organization of the empirical study 

The empirical work is organized under two main headings, according 
to the assumption that is made about the variance of the model. First, 
constant variance specifications are discussed in this chapter. The aim 
is to describe the relationship between the key variabIes of the model 
using simple econometrics and to carry out conventional analysis of 
overnight market interest rates. Results from straightforward 
estimations of a nonlinear overnight market interest rate equation are 
presented first. After that we estimate theoretically more justified 
specifications in which the variable to be explained is banks' 
borrowing from the central bank. The chapter conc1udes with a 
description of the observed volatility in borrowing. 

In Chapter 7, the empirical model is related more c10sely to the 
preceding theoretical discussion by extending the analysis to a 
GARCH framework, which allows for time-dependent conditional 
variance. According to the liquidity management model, the steepness 
of the bank's demand-for-reserves locus depends on the variance of 
liquidity, and therefore a crucial element of the theory might be 
missing from constant variance specifications. Autoregressive 
specifications of conditional variance are considered first. This 
approach can be viewed as a relatively direct empirical implementation 
of the one-equation liquidity management model. We then introduce 
exogenous variables into the conditional variance equation. At this 
stage, the results from the two-equation model are used as a point of 
departure, although several other money market variables are also 
considered. It turns out that the specification corresponding to the 
theoretical two-equation model is also empirically most promising. 
Technically, the specification implies asymmetric responses to new 
innovations. The model exhibits fat-tailed residuals and therefore it is 
also estimated under the standardized conditional Student's t 
distribution. When Student's t distribution is used, the thickness of the 
tails of the distribution varies, depending on the degrees of freedom 
parameter. 

The data used in the empirica1 applications of the model are from 
March 1987 to June 1989. During that time, the banks' were 
discouraged from using the central bank's discount window mainly by 
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means of a penalizing interest rate spread between the call money 
deposit and lending rates. After that period, the terms applied to 
discount window bOITowing were modified in a way that made time
dependent costs more relevant than previously. Data from that period 
are stilI unsatisfactorily fractured because of a banking strike and 
major changes in the call money financing system, and are not 
therefore inc1uded in the sample. Moreover, from the point of view of 
testing the assumptions of the model, the difference between 
estimations of these two regimes would be in the functional form of 
the cost-of-borrowing schedule and due only to differences in 
bOITowing tenns. 

The system also underwent important changes during the period 
from March 1987 to June 1989. In order to control for the effects of 
these institutional developments, the model was estimated separately 
for the whole period and for two shorter periods. During the firstsix 
months of the whole estimation period, the central bank did not 
announce daily figures on the liquidity of the system. Only end-of
week balances were published and with a two-day lag. Starting from 
August 1987, an estimate of the previous day's central bank deposits 
and credits was published every morning. Because of these changes, 
the infonnation available to the banks was significantly poorer in the 
beginning of the estimation period than in the remaining part. The first 
six months were therefore exc1uded from the first estimation period. 

Also exc1uded was a one-month period prior to the widening of 
the central bank's call money interest rate spread in October 1988, 
from which time the second period of estimation begins. At that time, 
the average rate of interest was apparently totally unresponsive to 
changes in liquidity, indicating that the market was seriously disturbed. 
Thus, the first sub-period was from August 1987 to August 1988 and 
the second, during which the interest rate spread was wider, from 
October 1988 to June 1989. Because of these definitions of the 
estimation intervals, the two shorter estimation periods do not add up 
to the whole period under investigation. However, in addition to 
examining the whole period, the aim was to form sub-samples during 
which there were no known disturbances of an institutional nature. 

Data on banks' discount window deposits and credits are based on 
daily balance sheet information. AlI banks with a right to central bank 
financing have cheque accounts in the Bank of Finland and these 
accounts are used for the settlement of interbank c1aims. Technically, 
the banks do not have to ask for call money credits or to offer call 
money deposits explicitly. When, after c1earing, a bank's overall 
position is known, its cheque account in the central bank is 
automatically adjusted so that the balance sheet constraint is satisfied. 
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Thus the balanees on these eheque aeeounts at the end of the day 
eonstitute the net diseount window position variable for eaeh bank 
used in the study. The aggregate position of the whole banking system 
,is the sum of individual banks' positions. The number of banks with 
aeeess to the eall money facility was 10 or 11 during the estimation 
period. 1n praetice, all eommercial banks have had this right. 1nc1uded 
in this eategory are The central banks of savings banks and eooperative 
banks, through whieh finaneing is ehannelled to loeal banks. 

There is a potential souree of error in The balanee sheet 
information when used for the purposes of the model eonsidered here. 
It has been a praetiee to aeeept eorreetions to banks' c1earing up tilI 
noon of the following day. It is not possible to know whether all these 
transaetions are aetually based on ,book-keeping errors or if they 
inc1ude new deals made afterwards in order to adjust the diseount 
window position. Another potential souree of error is' the exeeptional 
liquidity developments of individual banks, Le. major disturbanees in 
funding. For example, in Peristiani (1991), aggregate borrowing 
figures are eorreeted for episodes of this kind. During the period under 
investigation in this study, this latter problem was probably not 
serious. At least there were no special financing arrangements for 
individual banks during that time. 

The interest rate variable used is the overnight market rate of 
interest eomputed and published by the Bank of Finland. It is 
ealeulated as a weighted average of rates of interest applied in, all 
interbank ovemight transaetions. This might introduce some problems, 
whieh will be diseussed later. It would be more appropriate to use 
interest rates based on aetual quotations, and preferably from the same 
point in time. Unfortunately, sueh data are not available for the 
overnight market; banks do not quote priees of ovemight loans 
systematieally, nor do they aet as market makers as they do in the 
markets for longer maturities. 

1nterest rates for diseount window deposits and eredits, and all 
exogenous variables used in explaining volatility, are taken from the 
Bank of Finland's database. Throughout the empirical work, all data 
used are daily. 1n Finland, the interval between settlements is one day, 
which makes this data frequency a logical choiee. 
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6.2 A madel with canstant variance 

The interest rate schedule that was derlved from the basic liquidity 
management model express ed the overnight market rate of interest as 
an average of the central bank's deposit and lending rates, weighted 
with probabilities of target levels of discount window positions. 
Assuming normally distrlbuted deviations of the bank's actualliquidity 
position from the predicted position, this schedule was shown to be a 
probit function with the central bank's call money interest rates as 
limiting asymptotes. 

We begin the empirlcal analysis with a simple regression of 
discount window positions on the overnight market interest rate, using 
a cumulative normal distrlbution function as a functional form of 
specification. Althohgh the theoretical model is a demand-for-reserves 
equation and not an interest rate equation, explaining market interest 
rates with the discount window position of the banking system as an 
explanatory varlable is of interest especially from the point of view of 
the aggregate level reserve market model. The interest rate equation 
corresponds to the reduced form of that model (eq. E6' in Chapter 2). 

The derlved interest rate schedule was 

ö ::::rd + (rl-rd)<I>( -ERi/Ea) 

::::rd . <I>(ERi/Ea) +rlo<I>( -ERi/Ea). 
(6.1) 

In order to implement it empirlcally, the following equation was 
specified: 

(6.2) 

where wt = banks' aggregate net discount window position in the 
central bank, and 

Et = residual (a measurement error). 

In the parameterlzation of the interest rate equation, coefficient a1 was 
inc1uded in the cumulative distrlbution function. It can be interpreted 
as an inverse of the standard deviation varlable in the interest rate 
schedule, the assumption being that the degree of uncertainty is 
constant over time, a~ :::: a~+k' AlI time-dependent varlables of the 
modeI were specified to be from the same day. 
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The results from the estimation of (6.2) are reported in Table 6.1. 
Estimations were carried out separately for the whole period and for 
the two sub-samples described above. The equation for the whole 
period performed especially poorly without any adjustment for the 
change in the width of the penalizing interest rate spread, and 
therefore a dummy variable that permitted coefficient a1 to change in 
the latter part of the period was added to the equation. 

The parameter estimates for the coefficients of asymptotes are in 
most cases reasonably c10se to one, which is the value implied by the 
model (strict parameter restrictions are statistically rejected in several 
cases, however). The estimate for the parameter defining the steepness 
of the schedule varies in different estimation periods. R-squared in 
these estimation runs from .62 to .74. 

Table 6.1 Interest rate model, OLS 

Sample: AlI First Second 
obs. period period 

Coefficient 

a1 1.89 (.324) 2.75 (.375) .801 (.145) 
a2 1.06 (.014) 1.08 (.006) 1.36 (.170) 
a3 1.01 (.028) .957 (.009) .976 (.015) 
a4 -.68 (.058) 

R2
: .628 .745 .687 

SSR: 373.8 49.2 207.6 
SEE: .803 .418 1.098 
Durbin-Watson .885 1.66 .912 
Observations 584 295 175 

Wald test statistics for pammeter restrictions: 

a2=a3=1 47.8** 193.4** 4.6 
a2 = 1 21.9** 189.0** 3.5 
a3 = 1 .16 21.2** .57 

The estimated equation was for the whole period öt =a2rd t<I>((1 +ap)a1w J + 
a3rl t<I>( -(1 +ap)a1wt) +Ilt, where coefficient a4 is for a slope dummy D that effectively 
allows for a shift in pammeter a1. The dummy equals one in the latter period and zero 
elsewhere. In estimations of sub-periods, the dummy is not induded. 

SEE = Standard error of estimate 
SSR = Sum of squared residuaIs 
Standard deviations of estimated pammeters are in parentheses (computed from the 
covariance matrix modified using a procedure developed by Hansen, 1982). 
The Wald test statisties are distributed under the null hypothesis as chi-squared with 
degrees of freedom equal to the number of restrictions. 
Asterisks indicate significance levels (** = 1 %, * = 5 %) for tests of parameter 
restrictions. 
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Figure 6.1 Overnight rates of interest and fitted values from 
the constant variance interest rate equation 
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The residuals of the model are serially correlated, the values of 
Durbin-Watson statistics ranging from .756 to 1.66. Because of 
autocorrelation, a direct estimate for the variance-covariance matrix of 
parameters is not consistent. Therefore, a procedure developed by 
Hansen (1982) was used to modify the estimate for the covariance 
1.l}.atrix. (A lag length of 12 periods was applied. The effect was that 
the original standard deviations of the parameters more than doubled.) 
AlI tests for parameter restrictions were calculated from the modified 
covariance matrix. 

Fitted values from the interest rate model (6.2) are shown in 
Figures 6.1 and 6.2. In the first of these figures, the values generated 
from the estimated model are compared to actual values of overnight 
interest rates. The fit does follow the main developments in the data, 
but the problem of serial correlation is also c1early evident from the 
graph. Periods during which the model systematically under- or 
overestimated observed interest rates can be visually detected. The 
model fails most notably in the spring of 1988, for a period of 
approximately one month. This is probably connected with the 
revaluation of the currency at that time. A change in the fluctuation 
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limits of the markka was followed by a tightening of conditions in the 
money market, increased discount window borrowing by the banks 
and a steep rise in short-term interest rates. The model does not 
adequately capture these large changes. 

Figure 6.2 illustrates fitted values from the model as a function of 
the discount window position of the banking system. These estimated 
interest rate schedules, or inverted demand-for-borrowing schedules, 
are graphed for two discount window interest rate regimes. The 
narrow schedule relates to discount window interest rates from March 
1987 to October 1988 (7.5 per cent and 11 per cent), and the other 
to interest rates from October 1988 to June 1989 (4 per cent and 13 
per cent). 

Figure 6.2 
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Fitted values from the constant variance 
interest rate model as a function of the discount 
window position of the banking system 
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The analysis of the theoretical model in the preceding section suggests 
that the empirical interest rate equation (6.2) might suffer from a 
problem of missing variables. The actual terms for discount window 
borrowing were, in fact, more complicated during the period under 
investigation than is assumed in (6.2). Most notably, there was an 
upper bound for borrowing at the interest rate rl, and borrowing in 
excess of quota was subject to a penalty rate rs. It was shown that the 
interest rate schedule should inc1ude the effect of the probability of 
exceeding this limit. Another point made in the analysis was that risk 
averse behaviour by banks would add a positive risk premium to 
interest rates. 

In order to take these considerations into account, variables arising 
from the quota system, (rs -rl)<I>((K -w)/a) , and risk aversion, 
(rl-rd?{(b+ 1-<I»acp -w(1-<I»<I>}, were added to (6.2) (see pp. 53 and 
58). In both cases the variance term was replaced with coefficient a1 
as in (6.2) and the model was estimated using OLS. Neither of 
additional variables proved to be significant. It should be noted that 
there were no instances where aggregate borrowing was observed to 
be in excess of the aggregate quota. Although the existence of a quota 
should, according to the theory, affect borrowing behaviour, it is not 
detected empirically. The results are reported in Appendix 3. 

But a major problem in the above specification of the empirical 
interest rate equation is that it is based on a significant simplification 
of the error structure implied by the theoretical model. In the 
theoretical model, k~ was the aggregate target level of liquidity, 
which is an unobservable variable. The observed variable is the net 
daily position of the banks, wt = 2:Rit + 2:uit• In the interest rate model 
the observed net position was used instead of the target leve1, the 
implicit assumption being that 2:uit = O. If this is not the case, as might 
be expected, then it is not reasonable to assume that the residuals in 
the empirical model follow a known distribution. 

Therefore, in order to maintain the interpretation of the theoretical 
model, the interest rate schedule has to be inverted for estimation. The 
model is then a normal demand-for-reserves equation, in which the 
level of reserves is explained by the market interest rate and the cost 
of net discount window borrowing. As noted above on p. 49, the 
interest rate equation can be inverted to form a net borrowing equation 
by applying the logistic distribution as an approximation for the 
normal distribution. The cumulative distribution functions of the 
standard normal are then replaced by exponential functions and the 
unobservable sum of reserve targets, 2:Rit' can be solved out. Writing 
this as W t - 2:uit gives the reserve model directly in a form that can be 
estimated 
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Öt =rdt +(rlt -rdJ<p( -:ER/EO'iJ 

:ERit = EO'i/k[log(rl t -ÖJ -log(öt -rdt)] (6.3) 

In (6.3), the level of net borrowing is given as a product of the 
standard deviation of reserves and a logarithmic expression for spreads 
between the market interest rate and the central bank's lending and 
deposit rates, plus random shocks to liquidity. These shocks, Ui' are 
nonnally distributed with mean zero and variance af, which implies 
that the sum of shocks, 2:ui, also follows a nonnal distribution with 
EUi - N(O,EO'f). In order to simplify the notation~ indexing over 
banks is not used from here on, so that 0'2 = EO'i' and EUi = u, 
u - N(O,0'2). It should be noted, however, that the volatility tenn in 
the reserve equation is a function of the standard deviations of 
individual banks' borrowing, 0' =(EO'~Yi. Thus there might be an 
aggregation problem in the specification of the empirical model. For 
example, Peristiani (1991) and Dutkowky and Foote (1985) emphazise 
aggregation considerations. . 

In the empirical applications aggregate data on borrowing were 
used, which means that it was implicitly assumed that the sum of the 
standard deviations of borrowing is proportional to the standard 
deviation of the sum of borrowing. In the light of historical variances 
from both aggregated and disaggregated data shown in Figure 6.3 on 
page 86, this is not a particularly controversial assumption. Of course, 
a coefficient was inc1uded in the specification in order to allow for a 
constant difference between the levels of aggregate and disaggregated 
variables. 

The equation for banks' net borrowing was first estimated with the 
same constant variance assumption that was made in the estimation of 
the interest rate model. In order to ensure compatibility with later 
specifications, the model was parametrized to inc1ude the variance 
parameter explicitly and estimated using the method of maximum 
likelihood. The specification of the empirical constant variance net 
borrowing equation was 

wt =b1{c; !k(1og(b2rl t -öt) -log(öt -rdt)) +ut 

u t - N(O,co)' 
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Table 6.2 Equation for net borrowing, constant variance 
(ML) 

Sample: AlI First Second 
obs. period period 

Coefficients 

bl 1.57 (.074) 1.80 (.104) 2.21 (.175) 
b2 1.02 (.003) 1.06 (.014) 1.03 (.008) 

cO .280 (.013) .178 (.012) .256 (.025) 

LogL -455.55 -158.09 -128.44 
R2

: .588 .551 .705 
SSR: 162.89 50.62 44.65 

Ljung-Box 
LB(5) 552.7** 144.4** 121.8** 
LB2(5) 313.8** 43.1** 78.27** 

Durbin-Watson 0.72 0.96 0.95 

TR2 172.4** 20.52** 33.41** 

Estimated model: 
W t = b1{c; /k(10g(b2r1t -(\) -log(öt -rdt)) +Ut 

ut - N(O,co) 

Standard errors of the estimates are in parentheses. 
The Ljung-Box(p) statistic tests the randomness in standardized residuals (LB) and in 
standardized squared residuals (LBz:J indicated by first P autocorrelations. Under the nulI 
hypothesis, it folIows a chi2 distribution with P degrees of freedom. 
TR2 is the Lagrange multiplier test statistic for the presence of first order ARCH as 
proposed in Engle (1982a). It is computed as TR2 from a regression of squared 
standardized residuals on its own first lag. Under the nulI hypothesis of no ARCH, TR2 is 
distributed as chi2 with one degree of freedom. 

The main reason for inc1uding coefficient b2 in the specification is 
that the data contain five observations of the market interest rate that 
are a few basis points higher than the prevailing discount window loan 
rate. Coefficient b2 is needed to ensure that the equation is also 
defined in these cases. The sca1e parameter k=1.6 is inc1uded merely 
to preserve the original interpretation of the parameters. The results 
are presented in Table 6.2. The important thing to note is that the 
constant variance reserve model also performs inadequately in 
diagnostic tests; the residuals are serially interdependent and exhibit 
heteroscedasticity. This is c1early illustrated by the high values of the 
Ljung-Box test statistics computed from standardized residuals and 
squared standardized residuals. 
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The presence of serlal correlation in the residuals of the model is, 
of course, a sign of misspecification. At worst, it is possible that some 
of the key assumptions underlying the model are violated, so that the 
theoretical model should be rejected and derived again from the 
beginning under new assumptions. The framework of the analysis 
could be modified, for example, to allow for imperfect competition 
between the banks. But the problem may also be due to less serlous 
problems connected with empirlcal implementation of the model. 

It is evident that the severeness of the problem of serlal 
correlation, as detected by the tests, is partly due to the high frequency 
of the data. Using daily data provides a large number of observations, 
so the chances of rejecting a null hypothesis are statistically better than 
with lower frequency data from the same time span. But one might 
suspect that the adjustment of interest rates is completely 
instantaneous, irrespective of the time frame of sampling. 

The model was also estimated using only one observation from 
each week. The estimations were carrled out separately for each day 
of the week, so that any bias that could have resulted from averaging 
over weeks could be avoided. One data set contained the observations 
from Mondays, one from Tuesdays, and so on. The results of these 
estimations are reported in Appendix 3. The main point is illustrated in 
Table 6.3, which shows test statisties on serlal correlation from week
day estimations compared with the statistics on the whole data set. 
The problem of serlal correlation is substantially reduced in week-day 
estimations; but at a cost of using less information. The estimations of 
daily models do not reveal any obvious differences between different 
days. Frlday might be expected to be an exceptional day, because 
Frlday's position determines the cost for the weekend as well. 
However, there is only slight evidence of this. Mostly, it is the 
problem of serlal correlation which is the worst in data for Frldays. 
The data also show that, on average, the banks' position has been 
somewhat smaller at weekends than during the week, although no 
systematic differences are found between interest rates on Frldays and 
those on other days. The mean values of varlables and tests for 
differences between means are also reported in Appendix 3. 
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Table 6.3 Statisties on serlal correlation in the residuals 
of week-day models 

Q(5) D-W 

Monday 8.77 1.56 
Tuesday 7.38 1.60 
Wednesday 8.28 1.42 
Thursday 18.92** 1.42 
Friday 21.53** 1.31 
AlI days 527.78** 0.72 

The estimates of the model might also be affected by a simultaneity 
bias, because the estimated equation is a demand equation and the 
observations may refiect changes in both demand and supply, as was 
discussed in Chapter 2 when the aggregate level reserve market model 
was presented. Estimated parameters are unbiased only if all variation 
is caused by supply side factors and the demand relationship is stable. 
The supply side in this context is the fixed amount of liquidity that is 
available in the market at the time the overnight market is open. 
Therefore, observations should refiect daily changes in liquidity only, 
otherwise the estimates are biased.· If the theoretical model is taken 
extremely seriously, then simultaneity should not be a problem in 
estimations of the borrowing equation. By assumption, the only 
stochastic component in the model is the amount of available liquidity, 
and the specification of the model was derived from that assumption. 
But of course, one cannot rule out the possibility that the demand 
relationship is subject to errors. Our best defence is that it seems 
unlikely that this component could be important as compared to 
changes in daily liquidity. If it were important, then instrumental 
variables techniques should be used in estimation and perhaps a less 
exact functional specification should be preferred. However, the 
strategy adopted here was to maintain the assumptions of the 
theoretical model, also those concerning the stochastic properties, and 
to proceed with the specification that was derived. 

6.3 Changes in the standard deviation 
of borrowing 

In the light of liquidity management theory, an obvious question to 
ask is whether the assumption of constant variance of discount 
window borrowing is reasonable; or is it the cause of the symptoms of 
misspecification that can be detected? Because the theory predicts that 
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the variance of borrowing explains the level of borrowing, the constant 
variance assumption is a particularly interesting issue in the empirical 
implementation of the model. If changes in the variance are a source 
of variation in borrowing, then constant variance specifications suffer 
from the missing variables problem, in addition to the usual problem 
of inefficiency of estimates. 

One way to approach this question is to examine the variance in the 
data at different time periods. Figure 6.3 contains two moving standard 
deviation series computed from net discount window borrowing. One 
series is computed from the aggregate net discount window position of 
the banking system, and the other is a sum of deviations of individual 
banks' borrowing. The latter is probably eloser to the concept that was 
used in the derivation of the model. On the other hand, the former is 
much easier to obtain, as well as being based on publielY available data. 
The time span in these calculations was approximately one month (22 
banking days), so that each observation in the series is a standard 
deviation of the previous month's borrowing. 

Figure 6.3 
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The average level of the moving standard deviation of aggregate 
borrowing is c10se to FIM 500 million and the corresponding figure 
for disaggregated data is about twice as high. The correlation between 
these two series is high, over .90, which indicates that the standard 
deviation from the aggregate data might be an appropriate proxy for 
the sum of deviations. 

Judging from graphs of both series of moving standard deviations, 
the constancy of variance is not supported by the data. This suggests 
that it should be inc1uded in the equation for borrowing as an 
explanatory variable. Related evidence is provided by the Ljung-Box 
tests for non-linear dependence and the Lagrange multiplier test for 
ARCH that were presented in Table 6.2, and which both indicate 
heteroscedasticity. Because the model is unsatisfactorily specified, 
these tests cannot be considered to be reliable. When serial correlation 
is eliminated by means of the AR(l) correction, evidence of 
heteroscedasticity is still found, although it is much weaker.1 

A crude approach would be to estimate the model using the above 
computed moving standard deviation series as explanatory variables. But 
simply adding such exogenously computed proxies to the model must be 
considered an inadequate solution to the problem for at least two reasons. 
First, the time span and the weights used in the computation of these 
variables are completely arbitrary. Using some other formula would yield 
a different variable. Therefore, some criterion would be needed for 
choosing between alternatives. Second, any method of computation that 
treats the variance as an exogenous variable would result in inefficient 
estimation of the borrowing equation. Because the amount of discount 
window borrowing in different time periods and the variance of 
borrowing are determined by the same process, it would be inappropriate 
to estimate either of these assuming the other to be exogenous. But, 
especia1ly because variance enters the demand schedule and affects the 
estimates of associated parameters, the variance of residuals from 
estimation should be linked to the variance in the demand schedule and 
the system should be estimated as a whole. 

These considerations can be taken into account in ARG1 and 
GARG1 models, which are the subject of the next chapter. They provide 
a framework in which a liquidity management model can be empirically 
specified and estimated in a way that encompasses the essential feature 
of the theoretica1 model, Le. that the steepness of the demand-for-reserves 
schedule depends on the variance of liquidity shocks. 

1 The presence of heteroscedasticity could be further studied by applying the. test 
presented in White (1980) to equation (6.4). This was not considered necessary here, 
however, because the heteroscedasticity properties of the model are investigated using 
tests for parameter restrictions in a more general model in the next chapter. 
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7 Estimatian af the Reserve Madel 
with Time-Dependent Conditional 
Variance 

7.1 A nanlinear GARCH-in mean madel 

A standard, albeit implicit, assumption made about the variance in 
econometric models is that it is in the information set of the agents 
whose behaviour is being described. Of course, there is usually no 
particular reason why this should be the case. There are very strong 
grounds for questioning the validity of this assumption in reserve 
models, because the whole need for hoI ding reserves in the theoretical 
model derives from the expected variation of reserves in the future. 
Fixing the variance by presuming that it is known to agents, ex ante 
and ex post, is, in principle, a very restrictive assumption in these 
models. 

ARCH and GARCH models constitute a c1ass of econometric 
models that explicitly allow for non-constant variance, or conditional 
dynamic heteroscedasticity. In these models, the conditional variance 
may vary over time, although the unconditional, or theoretical, 
variance is constant. More precisely, the expected value of the second 
moment of the distribution of a random variable is specified to be 
conditional on the set of information that is available at the time 
expectations are formed. In· other words, if we consider the distribution 
of a random variable c and the information set 1, the idea in these 
models is to make a distinction between time-varying expectation 
El c2

1 It_1) and constant, unconditional variance E( c2
). Important 

contributions to the literature on these models inc1ude Engle (1982), 
Bollerslev (1986), Engle, Lilien and Robins (1987) and Bollerslev, 
Engle and Wooldridge (1988). 

Because of this focus on information in the specification of the 
variance of the model, ARCH and GARCH models are potentially 
applicable, especially when the problem to be modelled 
econometrically involves some aspects of uncertainty. In the model 
considered here the link is obvious. The point of departure in 
discussing banks' demand for reserves above was that their liquidity 
position at the end of the day was unknown at the time the decisions 
on trade in the overnight market were made. Without further 
assumptions, it is logical to take account of the fact that the variance 
of liquidity is also unknown to banks. The notion that banks act on the 
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basis of the expected variance of liquidity, conditional on available 
information, fits very well into this framework. 

The information set in ARCH and GARCH models normally 
consists of past observations of the variables in the model and the 
equation for the conditional variance is autoregressive. In principle, 
there is no reason why an autoregressive equation should always be 
applied. If the conditional variance has the interpretation in the model 
that it is an expectation formed by some agent, then it might be 
possible to model the process using truly exogenous variables. Without 
any knowledge of the true process, the autoregressive equation is, of 
course, a natural choice. 

In the following a GARCH-in mean model is used to explain 
banks' demand for reserves. The model is formed by adding an 
equation for the conditional variance of liquidity, on the assumption 
that it is the conditional variance that enters into the ban1(S' demand 
schedule. In this setting, the conditional variance can be regarded as 
the banks' expectation concerning the variance of liquidity in the same 
day. 

From here on, the symbol h2 is used to denote the conditional 
variance and the symbol cl- is reserved for unconditional variance. The 
banks' information set is denoted by the symbolI. In order to keep the 
notation simple, the variable ~. with a parameter vector B is used to 
denote the logarithmic expression for exogenous variables in the 
reserve equation (6.4). The explanatory variables in the equation for 
the conditional variance are expressed as ~,;, where ~ is a matrix 
consisting of past errors and past conditional variances and ,; the 
corresponding vector of parameters. Using these symbols, the model 
can now be written in the following form: 

wt =h~t~ +ut; 

ht
2 =Z;,;, 

and Xt = log((rlt -6;;/(6t -rd;;). 

(7.1) 

The conditional variance equation in (7.1) is of the form GARCH(p,q), 
where ht

2 is a function of past residuals, ut=j, i = 1, ... , q, and lagged 
values of conditional variance, ht=j, i = 1, ... , p. If ht

2 is specified as a 
function of past residuals only, the model is said to be ARCH(q) 
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(autoregressive conditionaI heteroscedasticity). The ARCH model, 
first introduced in Engle (1982), is a special case of the GARCH 
model, as the difference between these models can be expressed as 
linear restrictions on parameters. Moreover, it can be shown that the 
GARCH(q,p) process can aIways be express ed as the ARCH(oo) 
process, i.e. with an infinite number of lagged residuals (Bollerslev, 
1986, p. 309). 

Important extensions of simple ARCH and GARCH models are 
ARCH- and GARCH-in mean models, where the conditionaI variance 
is inc1uded as an explanatory variable in the mean equation (equation 
for wt here). In mean models c1early have more economic content than 
simple models because the conditional variance is also aIlowed to 
affect the predictions of the model in addition to a rather technical 
correction for heteroscedasticity. Mean-effect implies that uncertainty 
has a genuine effect on behaviour. In the first GARCH-in mean model 
presented in the literature, the conditionaI variance was used to 
account for a risk premium in the interest rate equation (Engle, Lilien, 
Robins, 1987). 

In model (7.1) above, the square root of the conditionaI variance, 
ht, enters the reserve equation as a result of banks' maximizing 
behaviour. So, the model belongs to the c1ass of in mean models. 
It differs somewhat, however, from the original formulation of the 
model by Engle et aI. (1987). In their presentation the effect of the 
conditionaI variance term in the mean equation was linear while in 
(7.1) it is nonlinear or multiplicative. 

It should be emphasized that the nonlinearity of the mean equation 
with respect to conditionaI variance has a meaningful economic 
interpretation in this context. Because of this nonlinearity, uncertainty 
affects the steepness of the demand schedule and the sign of the effect 
of uncertainty on the market interest rate depends on the level of 
reserves. An increase in uncertainty raises the market interest rate if 
banks are net borrowers and lowers it if they are net lenders. 
Linearization of the equation would substantially aIter the logic of the 
model. In a linearized model the changes in variance would shift the 
interest rate schedule independently of the level of reserves. This 
would change the interpretation of the effect of uncertainty, so that it 
would be the same as in the case of a risk premium, which is not 
consistent with the theoretical model discussed above. 

As is explained in Engle and Bollerslev (1986) and in Chou 
(1988), the parameters of the variance equation of a GARCH(l,l) 
model are particularly informative as regards the persistence of shocks. 
This can be seen by considering the time path of conditional variance 

. d 1 h h 2 2 h 2 Th d" aI . III a mo e w ere t =Co +C1ut- 1 +C2 1-1' e con ltlOn vanance at 
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period Hs and its expected vaIue conditionaI on information available 
at period t are then 

On the other hand, the unconditional variance of the model is1 

E(ut
2
) =a2 =cJ(1-(c1 +cJ) 

=* co=a2 -(c1 +cJa2
• 

(7.2) 

(7.3) 

Solving (7.3) for Co and substituting the result into the equation for 
conditional variance yields 

(7.4) 

The formulation above reveals directIy that for all parameter vaIues 
Ci + ~ < 1 (stationary variance equation) the conditional variance 
Et(h;+s) approaches the unconditional variance if when s goes to 
infinity. Further, the impact of shocks on volatility decays at a 
constant rate and the speed of the decay is measured by the sum of 
the parameters Ci and ~ (Chou, 1988, p. 282; see also EngIe and 
Bollerslev, 1986). 

If the sum of the coefficients ci and ~ is one, the unconditional 
variance of the model is no longer defined. Engle and Bollerslev 
(1986) cal1 this case the integrated GARCH process. It has the 

1 The unconditional variance E (u~) can be derived using the law of iterative expectations, 
according to which the unconditionaI expected vaIue of a variable is found by repeatedIy 
taking conditional expectations starting at time t-1. Thus E(xJ = Eo .... Et.2Et.l(XJ. 
(Harvey, 1990, p. 212). 
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property that all shocks have a pennanent impact on conditional 
variance. The conditional variance at Hs is simply the next period's 
conditional variance plus a constant trend, Le. 

(7.5) 

In Engle and Ng (1991), the concept of News Impact Curve is 
introduced as a means to analyze and compare different formulations 
of conditional variance. This curve is the relationship between lagged 
innovations, ut_1, and conditional variance, h~, assuming all previous 
information to be constant. It shows the effect that new innovations 
have on volatility. In the basic GARCH(l,l) model this curve is of 
the form h ~ = (co + c2h 2) + cI U~-I , implying a symmetric, parabolic 
relationship between innovations and conditional variance. Thus the 
effect of an innovation is stronger the larger is its size, and the effect 
does not depend on the sign. But, for example in the exponential 
GARCH developed by Nelson (1990), the slopes of the News Impact 
Curve are different on the positive and negative sides of the 
distribution of innovations, allowing for shocks of different sign to 
have different impacts on volatility. (The argument Nelson makes is 
that negative shocks to asset markets increase conditional variance 
more than positive shocks.) 

Maximum likelihood estimation of the model is considered in 
some detail in Appendix 4. Because of thenonlinear structure of the 
mean equation with respect to effects of conditional variance, 
expressions for derivatives are also derived there. (When numerical 
derivatives are applied, the estimation procedures do not differ from 
estimating a linear ARCH-in mean or GARCH-in mean mode1.) If the 
random variable u follows a nonnal distribution, the log-likelihood 
function of the model, L(e), where e = (E','t') is the vector of all 
exogenous parameters, can we written as follows: 

222 Lie) = -Yzlog(2Jt) -Yzlog(ht ) -Yzut /h t 

2 2 2 2 2 where ht =co +C1Ut-1 + ... +cqUt-q +aIht-1 + ... +aqht_p 

ut
2

=(w t -htX;~i-
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Under sufficient regularity conditions, the maximum likelihood 
estimator is consistent and asymptotically normal. Weiss (1986) 
presents a set of sufficient conditions in the case of the ARCH model, 
but for models with a conditional variance in mean equation such 
conditions have not been derived (Nelson, 1991). Following others, we 
also make the standard assumption that the maximum likelihood 
estimator is consistent and asymptotically normal. 

7.2 Estimation results from GARCH(l,l)-in 
mean 

The empirical borrowing equation with time-dependent conditional 
variance was first specified as GARCH(1,1)-in mean in the following 
nonlinear form: 

(7.7) 

The results from the GARCH(1,1)-in mean model are reported in 
Table 3. Using the whole sample, the estimated coefficients for the 
lagged residual and the lagged variance term in the conditional 
variance equation were .35 and .48, respectively. Dividing the sample 
into two sub-periods reduced the estimated coefficients for lagged 
residuals and increased the coefficients for lagged variance terms in 
both sub-samples, the coefficient for lagged variance· being a little 
higher in the latter period. The higher is the value of the coefficient 
for lagged variance, the smoother the time series of conditional 
variance becomes. 

As was shown earlier, the sum of the coefficients cl and c2 gives 
an estimate of the speed of decay of shocks in the model because of 
the properties of GARCH(1,1) process. For the whole period, the sum 
of cl and c2 is .833, and in the two subperiods .778 and .925, 
respectively. In the light of these estimates, the effects of shocks are 
less permanent in the former period; after a week, the effect is reduced 
to less than 30 per cent in the first period and to 68 per cent in the 
second period. For the whole period, the estimates imply that about 40 
per cent of the effect of a shock remains after a week (see Engle and 
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Bollerslev, 1986, and Nelson, 1990) on issues re1ated to defining 
persistence in the GARCH-model). 

The GARCH(l,l)-in mean model was tested against both one step 
higher and lower order specifications of the variance equation. Based 
on the likelihood ratios computed, the model passed tests in both cases 
with c1ear margins. Consequently, the constant conditional variance 
hypothesis with one more degree of freedom was also rejected. 

The model explains a notable part of the variation in reserves, R2 

being .62 and .74 in the respective subperiods and .67 in the whole 
period. These values indicate a considerable improvement as compared 
to the constant conditional variance model (6.4). Visual inspection also 
confirms that the fitted values of the model do follow the main 
developments in the data. Figure 7.1 contains fitted values of the 
model evaluated on the parameters estimated from the whole sample, 
together with actual values of the bank's net discount window 
borrowing. 

Figure 7.1 
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Table 7.1 GARCH(l,l)-in mean 

Sample AlI First Second 
obs. period period 

Mean equation 
bl 1.40 (.055) 1.75 (.086) 2.35 (.238) 
b2 1.07 (.014) 1.06 (.017) 1.15 (.231) 

Variance equation 
cO .041 (.006) .032 (.007) .025 (.009) 
cl .354 (.050) .228 (.040) .281 (.091) 
c2 .479 (.039) .550 (.070) .644 (.055) 

LogL -333.78 -111.94 -105.61 
RZ: .671 .621 .738 
SSR: 129.985 42.73 39.67 

Likelihood ratio tests for model specification 

LR for: 

Z c3ut-Z=0 0.01 1.24 0.57 
Z 

C}lt-l =0 32.82** 19.35** 68.64** 

ht
Z =constant 92.30** 45.66** 243.55** 

The estimated GARCH(1,1)-in mean model was 

wt =b1h/k(log(bzdt -öJ -log(öt -rdJ) +ut 
Z 2 Z 

ht =Co +C1Ut- 1 +CZht-l 
Z 

U t - N(O,ht )· 

Standard errors of estimates are in the parentheses. 
LR = likelihood ratio test statistics = -2(LogL(H0)-LogL(H1». 
Under the null hypothesis, LR is distributed as chiz with degrees of freedom equalling the 
number of restrietions. 
Asterisks indicate significance levels (* = 5 %, ** = 1 %) for LR statistics. 

The values of R2 are about the same size in the GARCH(l,l)-M 
model for reserves and in the constant variance interest rate model. 
Because these models are non-nested, any comparisons might be 
misleading. However, there is an obvious reason why R2 values tend 
to be higher in the interest rate model than in the reserve model. In 
the interest rate model, the functional form used makes it possible for 
the observations to falI outside the estimated asymptotes. This is in 
contrast with the theoretical model, because no-one would buy at a 
higher price than the central bank's lending rate or sell at a lower 
price than the central bank's deposit rate. A1lowing for that possibility 
in estimation understandably reduces the sum of squared residuals, 
however. In the reserve model, the estimated logarithmic function is 
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not defined outside the asymptotes, which means that in that 
specification both asymptotes must lie outside the extremum values of 
the observed distribution. 

The interest rate model failed especially during the spring of 1989, 
when money and currency markets were in turmoil because of the 
change in the fluctuation range of the currency index. This period is 
explained somewhat better by the reserve model, in which the 
conditional variance responds to the change in the level of discount 
window borrowing that followed the revaluation of the markka. The 
model does not, however, adequately explain the reduction in 
borrowing that began a few weeks after the revaluation. 

The statistics on the residuals of the model reveal serious defects 
in the specification. Table 7.2 contains some of the diagnostic statistics 
that were computed. The Ljung-Box test statistics on the standardized 
conditional residuals are statistically very significant, indicating the 
presence of serial correlation in the residuals. 

The same Ljung-Box statistics based on squared standardized 
conditional residuals are not statistically significant, which means that 
no evidence of heteroscedasticity is found. This is a c1ear improvement 
in comparison to the model with constant conditional variance. The 
results from the constant variance reserve model reported above in 
Table 6.2 indicate heteroscedastic residuals even after correction for 
serial correlation. In addition, a standard Lagrange multiplier test for 
the presence of ARCH, based on autocorrelations between the squares 
of residuals, was applied to the constant variance model (see Engle, 
1982). This test also showed that there are strong grounds for doubting 
the constant varlance assumption. Of course, the likelihood ratio tests 
of the specification of the conditional variance, which were presented 
in Table 7.1, support the same conc1usion. AlI this evidence suggests 
that applying GARCH methodology to this problem is a reasonable 
approach, even though the specification is stilI not adequate for 
conc1usions to be made. 

Apart from serlal correlation, the tests indicate other problems in the 
residuals of the GARCH(l,l)-M model. First of all, the mean of the 
residuals deviates significantly from zero in the whole sample and in the 
first sub-sample. Unlike OLS with a constant term, the maximum 
likelihood method does not force the mean of the residuals to be zero. 
The mean of the residuals is an assumption to be tested, and its violation 
must be taken as a sign of a possible misspecification. Adding a constant 
term to the mean equation did not change the properties of the residuals 
in this respect. One is tempted to conc1ude that the misspecification is of 
a more complicated nature and has something to do with the asymmetry 
of the distribution, and not with Hs location. 
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Table 7.2 GARCH(l,l)-in mean: statistics on residuals 

Sample Allobs. First period Second period 

Ljung-Box 

LB(5) 233.0** 43.5** 63.32** 
LB2(5) 1.59 5.02 9.00 

LB(25) 305.9** 76.6** 107.8** 
LB2(25) 15.1 38.4 22.9 

Durbin-Watson 1.10 1.30 1.22 

t-test for mean (u) = 0 4.68** 3.35** 1.10 

Skewness -.09 0.39 -.05 

Kurtosis 3.85** 3.76** 3.60 

Bera-Jarque 18.43** 14.18** 2.75 

Asterisks indicate significance levels (* = 5 %, ** = 1 %) of the reported test statisties for 
the Ljung-Box tests, t-test for mean and Bera-Jarque. For skewness and kurtosis, they 
indicate significance of deviation from zero and three, respectively. 

In the maximum likelihood estimation of the model it was also 
presumed that the residuals are normally distributed. This implies 
restrictions for the third and fourth moments of the distribution. Table 
7.2 also contains coefficients of skewness and kurtosis computed from 
the actual distribution. Under the normality assumption, these should 
be c10se to zero and three, respectively. A joint test for the above 
restrictions, often called the Bera-Jarque statistic, was carried out to 
test for normality? Except for the latter sub-sample, the resulting test 
statistics led to rejection of the null hypothesis. Thls resulted mainly 
from the high values of the coefficient of kurtosis. 

m (m -3? 
2 Bera and Jarque (1980). The test statistic is computed as T(_3 + 4 ), where 

6 24 

u 3 u 4 

(~Yi=E(_t ) is the coefficient of kurtosis and m4 =E(_t) is the coefficient of 
h 3 h 4 

t t 

skewness. Under the null hypothesis of normality, the test statistic is distributed 
asymptotically as chi2 with two degrees of freedom. 
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Figure 7.2 Cumulative probability distributions of 
conditional residuals from the GARCH(l,l)-in 
mean model, as compared to the standard 
normal 
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Normality plots of residuals from the GARaI(l,l)-in mean model are 
illustrated in Figure 7.2. Cumulative probability distributions of 
standardized conditional residuals were calculated for the whole period 
and separately for both sub-periods. The plot shows the results from 
the whole period. The scale of the plot is such that the straight forty
five degree line in the figure corresponds to the cumulative distribution 
of the standard normal, which was assumed to be the underlylng 
theoretical distribution. Basically, if the empirical distribution is 
leptokurtic, then the observed cumulative distribution should run above 
the forty-five degree line, and vice versa if the empirical distribution 
has thinner tails than the standard normal. It seems that the empirical 
distribution is thinner than the standard normal near the mean value 
and has excessive probability mass in the tails of the distribution. This 
is the same pattem that was also indicated by the statistically 
significant values for excess kurtosis in Table 7.2. 

A standard solution to the problem of serial correlation is to 
postulate that the residuals follow a AR or MA process. The plot of 
the autocorrelation functions and partial autocorrelation functions 
indicates that here the serial dependence between residuals is of the 
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type AR(l). These plots are shown in Appendix 6.3 But, the difficulty 
with this approach is, of course, that there is no reliable justification 
for the presence of AR(l) in this context. There were no dynamic 
elements in the theoretical model that could be argued to be a cause of 
serial correlation, and even if some potential explanation for it could 
be found, the solution would be somewhat ad hoc.4 However, because 
of the assumptions on which the maximum likelihood approach is 
based, there are strong arguments for correcting for AR(l), as the fact 
is that serial correlation is present in the data. A proper likelihood 
function under the assumption that the residuals follow the AR(l) 
process is also derived in Appendix 6. 

The results from the estimation of the GARaI(l,l)-in mean 
model with the AR(l) correction are reported in Table 7.3. Applying 
the AR(l) assumption corrects, to a large extent, for the problem of 
serial correlation. This can be seen from the Ljung-Box test statistics 
computed from the conditional residuals. In both of the shorter 
estimation periods, these values are statistically insignificant if five 
sample autocorrelations are used. For the whole period, the value of 
the test statistic is 11.56, which slightly exceeds the 5 per cent level 
critical value (11.1), but is c1early less than 1 per cent level critical 
value (15.1). Increasing the number of lags to 25 still reveals some 
problems in the first estimation period as wel1. The value of the AR(l) 
coefficient p is notably high, ranging from 0.664 to 0.777. 

3 A partial autocorrelation function of an AR(p) process has a cutoff after a lag p and its 
autocorrelation function tails off, while the opposite is true for a MA process (Box and 
Jenkins, p. 175). The plots in Appendix 2 show that the residuals are more likely to 
follow the former pattern than the latter. 

4 When considering the dynamic properties of the specification of model (7.1), one 
interesting point to note is that the interest rate variable is computed as a weighted 
average of interest rates applied to all overnight transactions during the day. It is possible, 
and indeed quite likely, that all deals are not done at exactly the same time. 
Consequently, one might suspect something akin to the problem of non-synchronization 
that is frequently encountered in stock market data (see, for example Baillie and 
DeGennaro, 1990). According to well-known argumentation, non-synchronization induces 
spurious autocorrelation in returns (see, for example, Scholes and Williams, 1977, Lo and 
MacKinlay, 1988 and Conrad et al., 1991). 
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Table 7.3 GARCH(l,l)-in mean, AR(l) 

Sample AlI First Second 
obs. period period 

Mean equation 
b1 1.04 (.120) 1.30 (.149) 2.13 (.436) 
b2 1.35 (.111) 1.46 (.134) 1.11 (.063) 

Variance equation 
cO .027 (.006) .007 (.002) .026 (.015) 
e1 .189 (.041) .095 (.024) .110 (.058) 
e2 .623 (.065) .852 (.033) .737 (.113) 

P .777 (.026) .688 (.042) .664 (.079) 

LogL -227.75 -84.20 -86.63 
R2: .796 .695 .810 

Ljung-Box 
LB(5) 11.56* 7.85 8.31 
LB2(5) 4.84 5.37 6.75 

LB(25) 73.6* 52.5** 32.7 
LB2(25) 31.2 28.7 23.0 

Durbin-Watson 2.00 2.04 2.17 

t-statistics 
for mean(u) = 0 0.35 .37 .79 
Skewness -.20* -.04 -.26 
Kurtosis 4.46** 4.71 ** 4.17** 
Bera-Jarque 55.67** 34.69** 11.97** 

Tests for madel s~cification 

LR: e2ht=1 =0 23.5** 20.0** 6.8** 

ht
2 = constant 43.1** 29.1** 10.6** 

The estimated model was wt =b1h/k(1og(bflt -Öt) -log(Öt -rdt» +ut 
et =ut -p ut-1 
222 ht =co +c1e t-1 +C2ht-l 

et - N(O,ht~. 

Standard errars af estimates are in parentheses. AlI statistics on residuals were computed 
using the conditianal distribution. LR = likelihood ratio test statistie = 
-2(Logl..(H0)-Logl..(H1». LR is distributed under the null hypothesis as chi2 with degrees 
of freedam equalling the number af restrictions. Asterisks after LR, lJung-Box, t-statistics 
for mean, and Bera-Jarque indicate the significance levels of reported statistics (* = 5 %, 
** = 1 %). For skewness and kurtosis they indicate the significance of deviation from 
zero and three, respectively. 

100 



An important thing to note is that the presence of GARCH is ~ti11 
detected in the residuals despite the AR(l) correction. This can be 
seen from the likelihood ratio tests, in which GARCH(l,l) was set 
against ARCH(l) and constant variance models. These tests rejected 
lower order specifications of conditional variance in favour of 
GARCH(l,l) by c1ear margins. Nor is there any need to further 
increase the order of the conditional variance equation. The Ljung-Box 
test statistics from the squared conditional residuals are insignificant, 
indicating that no heteroscedasticity remains. 

Other diagnostic checks on the residuals were also carried out. 
Bera-Jarque statistics indicate that the normality assumption of the 
conditional residuals is violated in all cases. The cause of this is 
excess kurtosis, which means that the empirical distribution has 
heavier tails than the normal distribution. On the other hand, the first 
and third moments of the empirical distribution are not found to be in 
conflict with the assumptions. 

Even though one cannot be completely satisfied with the AR(l) 
mode! because ofits weak theoretical background, in purely empirical 
terms it is a fairly good description of the data, except for the above
mentioned problem of excess kurtosis in residuals. In the econometric 
Hterature, it is frequently the case that researchers do not hesitate to 
use the AR or MA correction (examples that are c10sely related to this 
study inc1ude Baillie and DeGennaro, 1990, Nelson, 1991, and 
Schwert and Sequin, 1990). The rej ection of the constant conditional 
variance model in favour of the GARCH(l,l)-M with AR(l) is 
empirically a major result of the study. 

7.3 Specification of the variance equation 

In order to maintain a c10se Hnk between the theoretical model of 
the previous sections and the empirical model, the strategy adopted 
here is to consider alternative distributional assumptions (in Section 
7.4) and to improve the specification of the variance equation, rather 
than to c10se the discussion with the AR(l) correction. From the point 
of view of the theoretica1 model, both the distrlbution and· the 
variance equation are open issues in the above specification of a 
GARCH(l,l)-M model for the conditional variance equation. 
Functional forms other than simple linear specifications could be tried, 
but some of the exogenous variables inc1uded in the information set of 
agents could also be added to the equation. An extensive collection of 
specifications used in the Hterature is provided in Engle and Ng 
(1991). In fact, a number of different functional forms for conditional 
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variance were applied. These experiments did not produce any 
important results and are not reported here. Instead, specifications of 
the conditional variance equation with exogenous variables are 
considered next. Examples of this approach are found in Baillie and 
DeGennaro (1990) and Lastrapes (1989). 

When the model is extended from autoregressive specification of 
the conditional variance equation to specifications with additional 
information, a logical way to proceed is to consider the implications of 
a theoretical-model with endogenous variance. In Chapter 5, it was 
shown that if the bank is assumed to be able to affect the variance of 
liquidity shocks by devoting resources to liquidity control, then the 
optimal variance depends on essentially the same variables that affect 
the demand for reserves, along with the direct cost of liquidity control. 
It was shown that, with a logistic distribution, both optimal reserves 
and optimal variance were functions of spreads between the overnight 
interest rate and the central bank's call money interest rate, although 
the latter in a more complicated way. On the other hand, a very , 
convenient representation of the equilibrium condition for optimal 
variance was derived by assuming normally distributed errors and by 
applying Taylor series linearization around W=O. It was shown that 
the optimal variance is in that case proportional to the squared level of 
reserves, given the level of expenditure on liquidity control, Le. 

a2 = c W 2, where c = __ c __ 
(a '(q)-c) 

(7.8) 

Based on the above relationship, an empirical equation for conditional 
variance was formed by combining the squared level of liquidity with 
autoregressive terms. A proper interpretation of this equation is that it 
describes the banks' expectations concerning variance. Even though it 
is not the conditional expectation that is determined in the theoretical 
model, it is assumed that the same factors that affect the optimality 
condition also affect the expectation of variance that is formed at any 
given time. To put it in another way, if one specifies an equation for 
some agents' expectations about some variable, then the optimality 
condition of the variable in question is a reasonable point of departure. 

Since, however, the actual process generating the expectations of 
variance is really not known, restricting the empirical analysis 
exc1usively to the specification in (7.8) might be unwarranted. Looking 
at the problem from a more empirical viewpoint, there are a large 
number of other variables that could be useful in predicting the 
conditional variance of liquidity, other than the past levels of liquidity. 
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Clearly, one would expect that the more c10sely a variable is related to 
the money market, the more information it carries on the expected 
volatility. On these grounds, among the variables chosen for the 
empirical tests, along with the level of liquidity, were the spread 
between the overnight interest rate and the 30-day interest rate (yield 
curve spread) and the lagged change in the stock market index. 
Further, as the money market in Finland is c10sely integrated into the 
foreign exchange market, the changes in the exchange rate and in the 
foreign reserves of the central bank were inc1uded in the list of 
variables that were tested empirically. For all these variables, lagged 
values were used because of the definition of the information set on 
which the variance is conditionalized. 

One way to investigate the usefulness of these variables, inc1uding 
the lagged level of liquidity as implied by the liquidity control model, 
would be to add each in turn to the conditional variance equation and 
then use the resulting values of the likelihood function for constructing 
likelihood ratio tests for restricting the added coefficients of the 
general model to zero. Yet another, and equally powerful, test is the 
Lagrange multiplier test. This requires the estimation of the restricted 
model only. In this case, the restricted model is GARCH(1, 1), so that, 
in fact, no new estimations are needed. 

A general approach to LM tests, also applicable to GARCH 
models, is presented in Engle (1982b) (for an application, see also 
Engle, Lilien and Robins, 1987). Intuitively, the idea in this test is to 
view the restricted model as a problem of maximizing a function 
under constraints. In such a maximization problem, Lagrange 
multipliers give the shadow prices of constraints. When applied to 
testing restrictions in an econometric model, these shadow prices must 
be large if the null hypothesis is false and small if the null is true. 
Because shadow prices are associated with the constrained optimum, 
parameters maximizing the constrained model are used in the test, 
rather than parameters that maximize the general model. Thus the test 
is based on the matrix of first derivatives of the likelihood function of 
the explicitly constrained model, which is, in other words, the matrix 
of derivatives from the general model evaluated at the parameter 
estimates under the null. 

In practice, this matrix can be formed by taking the matrix of 
scores, S, from the converged GARCH(1,1) estimation (the matrix of 
scores consists of vectors of derivatives of the log-likelihood function 
with respect to the parameters; see Appendix 4). The procedure is to 
concatenate this with a matrix of derivatives with respect to the 
constrained parameters, evaluated at zero in this case. The resulting 
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matrix, SO, then has the dimensions of the general model and the last 
columns of it consist of Lagrange multipliers. The LM test statistics is 

LM = 1 's o(S ° 's <)-lS ° '1, 

which is easily computed from the first BHHH iteration5 of the 
general model starting from the parameters under the null. In practice, 
this test is considerably more convenient to apply than the likelihood 
ratio test if the model to be estimated is complicated and particularly 
if the test is to be repeated for several variables. Note that the 
expression for 1M is the uncentred correlation coefficient between the 
unit matrix 1 and the matrix of scores, So. Therefore, it can also be 
ca1culated as T*R2 from an OLS regression of SO on 1. 

Values of the computed Lagrange multiplier test statistics are 
presented in Table 7.4. The restricted model was the GARCH(l,l)-in 
mean (model 7.1 above) and the results refer to estimates from the 
whole period from March 1987 to June 1989. 

Table 7.4 Lagrange multiplier statistics for variables 
omitted from the conditional variance equation 

LM 

2 
31.67** wt-1 

2 spreadt_1 10.06** 

2 
HEXt~l 0.74 

2 
et-1 1.13 

2 
FRt-2 2.20 

Explanations: w = banks' position in the central bank, spread = 
o/n interest rate - 30-day interest rate, REX = change in the 
stock market index, e = change in the exchange rate, FR = 
change in the foreign exchange reserves of the central bank. 

AlI variables were entered in squared form. Under the null the 
test statistic is distributed as chi-squared with degrees of freedom 
equal to the number of restrictions. ** = test statistie significant 
at 1 % level. 

5 An algorithm by Berndt, Hall, Hall and Hausman (1974) is used in all maximum 
likelihood estimations in this study. See Appendix 4 for details. 
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The values of the LM test statistics indicate that the variables that 
significantly improve the model are the lagged level of liquidity and 
the interest rate spread. By experimentation, it was also found that it is 
indeed the squared forms of these variables that should be used. Thus, 
the effect depends on the magnitude of these variables and not on 
their sign. This is of importance for the consistency of the model, as 
these variables are entered into the variance equation, in which 
negative values are generally not allowed. In principle, it is not 
necessary to restrict the variables in the equation to be non-negative as 
long as the implied conditional variance is positive. For example, in 
Schwert (1989), volatility in the stock market is modelled without this 
restriction. But, if the model is expected to be valid in out of sample 
predictions, allowing for the possibility that predictions are negative 
with some values of variables might be problematic. And in any case, 
one avoids aiot of checking if all variables are positive. 

For the same reason it is usually alsp required that all parameters 
in the conditional variance equation be positive. The signs of 
parameters could c1early be a problem in a model in which the 
conditional variance equation inc1udes additional variables. This 
problem is often also encountered in higher order ARCH models, for 
which the usual practice is to inc1ude some explicit parameter 
restrictions. 

Based on the values of the LM statistics presented above in Table 
7.4, the basic GARCH(l,l)-in mean model was modified to inc1ude 
Wt~l in the conditional variance equation, as was suggested by 
theoretical analysis of the liquidity control model. It was also checked, 
using LM statistics, that after adding Wt~l to the model, the effect of 
the yield curve spread becomes insignificant (LM = 0.33). The 
specification of the conditional variance of the model was then 

(7.9) 

Technically, the effect of this formulation, as compared to the basic 
GARCH(l,l)-M model, is that is permits the conditional variance to 
increase when the level of liquidity is either low or high, given th~t C:3 
is positive. This adds to the flexibility of the model in explaining the 
peak values of observed discount window borrowing. Figure 7.1, 
which presented fitted values from the basic GARCH(l,l)-M model, 
suggests that a systematic underestimation of large values of liquidity 
might be the source of serial correlation in the residuals of that model. 

The economic interpretation of the formulation is that the banks 
tend to expect high volatility when the level of liquidity is especially 
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high or low. Therefore, the market interest rate does not falI with large 
positive levels of liquidity as much as it would otherwise do, and, 
consequently, we observe higher levels of discount window deposits 
being associated with higher interest rates than in the absence of this 
effect. When the liquidity of the banking system is very tight, on the 
other hand, a rise in the equilibrium interest rate is damped by the 
increase in expected volatility. 

The News Impact Curve (see p. 92) can be used to illustrate the 
effect of inc1uding Wt~l in the conditional variance equation. The 
dynamic structure of this particular GARCH process is affected by the 
fact that Wt~l is not "truly" exogenous to the mode1, because it 
consists of a lagged predicted mean and innovations. Substituting the 
mean equation into conditional variance, holding previous information 
constant, gives the folIowing relationship 

(7.9') 

The predictable volatility in this model thus depends on the exogenous 
variable ht-l~-l as welI as new innovations. The News Impact Curve is 
consequently somewhat more complicated than in the basic GARCH 
model. The slope of the curve depends on the sign of Xt-1, which 
means that the effect of a new innovation is different on different 
levels of (lagged) market interest rates. In addition, the location of the 
minimum of the curve depends on the mean, ~-l~-l' In this respect 
the formulation resembles the NGARCH model of Engle and Ng 
(1991). The News Impact Curve of the model is depicted in Figure 7.3 
below_ 

The News Impact Curves in Figure 7.3 are depicted separately for 
positive and negative values of the mean ofthe model. When the 
mean is negative, meaning that the model predicts that banks will be 
net borrowers, "further" negative innovations increase the predictable 
variance of the model more than positive innovations. Likewise, on the 
deposit side, positive deviations from the predicted mean have a 
stronger impact on predicted volatility than negative deviations. This 
may be taken as an empirical finding concerning expectations, but the 
explanation suggested by the theory is that the variance increases 
because expenditure on liquidity control is reduced when there are 
large positions of either sign. These volatility effects are then reflected 
in the steepness of the demand-for-borrowing schedule via the in mean 
term in the complete de.mand model. 
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Figure 7.3 News Impact Curve for the GARCH-M model 
with w:-1 in the conditional variance equation 

..... ..'" ...... ..'" 

o 

1 Previous mean negative, 'G:-l < 0 
2 Previous mean positive, 'G:-l > 0 

...... .. .. ................. - .. -_ ................... ... 

llr-l 

f' It is interesting to note that evidence of such asymmetrica1 responses 
to shocks is fairly common in studies on financial market data 

. employing conditional heteroscedasticity techniques. For example, 
Spanos (1991) cites this as one of the empirical issues to which the 
first applications of ARCH specifications gave rise. For example, the 
exponential GARCH of Nelson (1991), the NGARCH of Engle and 
Ng (1991), the QARCH of Sentana (1991) andthe volatility feedback 
model of Campbell and Hentschell (1991) have, in fact, been 
developed to deal with this issue. 

Before turning ta the estimation results from this enhanced model, 
ways to account for the thick tails of the distribution of conditional 
residuals are considered in the next section. 
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7.4 Altemative distributional assumptions 

One eommonly aeeepted 'stylized faet' associated with financial 
market time series is that empirieal distributions are often too thiek
tailed and too peaked as eompared to the normal distribution. This 
property, leptokurtosis, was also exhibited by the residuals of the 
GARCH(l,l) model above. Our eoneern is that it invalidates the 
maximum likelihood estimation procedures applied to that model. 
Ways to overeome this obstac1e are eonsidered in this seetion. 

The distributional assumption about residuals eould be relaxed 
altogether, at least in principle. Rieh, Raymond and Butler (1991) 
show how generalized methods of moments estimation (GMM) ean be 
used to estimate ARCH modeIs in the presenee of non-normal 
residuals. However, the model considered here is more eomplieated 
beeause of the mean effeet of the varianee term. That would make 
generalized instrumental variabIes estimation eonsiderably more 
labourious. 

The restrietions imposed on the distribution of residuals ean be 
made somewhat more flexible by applying the eonditional Student's t 
distribution instead of the eonditional normal. The t distribution is also 
symmetrie around the mean, but it may have heavier taiIs than the 
normal distribution, depending on the degrees of freedom. At the 
extreme, when the degrees of freedom parameter d goes to infinity, the 
t distribution flO,d-,d) approaches the normal distribution N(O,d-). The 
parameter values d < 00, in turn, impIy that more probability mass is 
eoneentrated in the tails of the distribution than in a normal 
distribution with equal varianee. Therefore, the normal distribution ean 
be derived from Student's t with a simpIe parameter restrietion and 
these distributional assumptions ean be tested against eaeh other. 
Examples of studies using the t-distribution in modelling financial 
market data with the GARCH inc1ude Bollerslev (1987), Baillie and 
DeGennaro (1990) and Booth, Hatem, Virtanen and Yli-Olli (1990). 

Adopting the standardized6 Student's t implies the following 
distribution for conditional residuals: 

6 The standardization scheme used implies Var(u) = v/(v-2) (Le. unequal to one). For 
detaiIs conceming the standardization of a Student random variable, see, for example, 
Blattberg and Gonodes (1974). 
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where r(.) = gamma function. 

The log-likelihood function of the model with a standardized Student's 
t distribution is then 

L = Llog(flO,h t
2,d)) 

t 

~{ d+1 d -1 2 
=LJ log(r(-)r(-) ) -1/210g(d-2)n) -1/210g(h t ) 

t 2 2 

In the case of leptokurtic, or thick-tailed, conditional residuals, the 
above likelihood function should provide a more accurate description 
of the data than the one under the conditional normal. It should be 
noted that the unconditional distribution corresponding to conditionally 
normal residuals is also leptokurtic. Applying Student's t distribution 
to the conditional residuals is another way to deal with fat tails in the 
distribution of underlying time series (Bollerslev, 1987). 

In the estimations, the degrees for freedom parameter d in the 
above likelihood function was replaced by lId, so 'that in comparisons 
with the normal distribution the null hypothesis could be written in a 
testable form as 1/d = O. Por computational reasons the values of the 
gamma function were evaluated using Stirling's formula (see, for 
example, Cramer, 1971, p. 130). The derivation of the estimated 
model is documented in Appendix 5. 

As in the case of the conditional normal distribution, the 
appropriateness of the model can be assessed by comparing the 
resulting empirical distribution to its theoretical counterpart. The 
second and third moments of the conditional Student's t distribution 
are the same as in the conditional normal (ht

2 
and 0, respectively), 

but the fourth moment is defined as follows (see Bollerslev, 1987): 
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7.5 Estimation results from the modified 
GARCH-in mean mode! 

The modified GARCH-in mean modeI was es1imated for alI estimation 
periods using both the conditional normal and conditionaI Student's t 
to describe the distribution of residuals. TabIe 7.4 reports the results 
from the modeI with the Iagged squared IeveI of liquidity in the 
variance equation, assuming a conditional normal distribution of errors. 

According to the likeIihood ratio tests, the values of the Iog
likelihood function of the normal distribution modeI are significantIy 
higher in alI estimation periods than in the results from the basic 
GARCH(1,1)-in mean formuIation of the conditionaI variance. The 
results also indicate that adding the squared Iagged IeveI of net 
borrowing to the conditional variance equation c1early improved the 
quality of residuals. Serial correIation was reduced in all estimation 
periods, particuIary in the first period where onIy weak evidence of 
autocorreIation is found. Further, the mean of the residuals is zero in 
both sub-periods, as is presumed in the maximum likelihood 
estimation. . 

A joint test for higher moments still indicates a departure from the 
normality assumption, except for the second estimation period. The 
vaIue of the Bera-Jarque statistic is 57.1 in the first period and 2.7 in 
the second period, whiIe the criticaI vaIue at the 1 per cent IeveI is 
9.21. 

The parameter estimates for CS, which is the coefficient of Iagged 
squared borrowing in the conditional variance equation, are statistically 
significant and positive. As alI variabIes of the conditional variance 
equation are in squared form and alI parameter estimates positive, the 
estimate of the conditional variance is certain to be always positive. 
Estimates for cI and ~ are reduced in all cases as compared to the 
basic GARCH-M, and in the first period the coefficient for Iagged 
variance is not statistically significant. Inc1uding additional Iags of 
residuals in the equation for conditional variance is not supported by 
the LM test. 

The coefficient of the sIope of the demand scheduIe, bl , also 
differs from the basic formuIation of the conditional variance. The 
results from the enhanced modeI impIy a steeper demand-for
borrowing scheduIe, or equivalentIy, a Iess steep interest rate Iocus. 
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Table 7.5 GARCH(l,l)-in mean, Wt~l in the conditional 
variance equation 

Sample AlI First 
obs. period 

Mean equation 
bl 1.60 (.071) 2.04 
b2 1.0S (.009) 1.06 

Variance equation 
cO .OS9 (.009) .047 
cl .201 (.OSl) .100 
c2 .176 (.083) .036 
c3 .094 (.018) .079 

LogL -304.06 -84.49 
R2

: .726 .701 
SSR: 108.0S 33.74 

Ljung-Box 
LB(S) lS7.7** 11.49* 
LB2(5) 4.95 5.65 

LB(2S) 246.1** 40.5* 
LB2(25) 36.3 17.0 

t-statistics 
for mean(u)=O 3.0** 0.92 

Skewness .09 .53** 
Kurtosis 4.0S** 4.94** 
Bera-Jarque 27.4** 57.1** 

2 
LR for c3wt-l =0 S9.4** 54.9** 

2 
LM for ut -2 =0 2.53 .77 

The estimated GARCH(1,1)-in mean model was 

Standard errors of the estimates are in parentheses. 
LR = likelihood ratio test statistics 
LM = Lagrange multiplier test statistics 

Second 
period 

(.10S) 2.62 (.249) 
(.011) 1.12 (.018) 

(.010) .046 (.020) 
(.OS4) .179 (.082) 
(.107) .428 (.191) 
(.016) .OS4 (.031) 

-97.51 
.782 

32.97 

3S.04** 
4.58 

74.5** 
27.3 

0.06 

0.05 
3.53 
2.74 

16.20** 

.02 

LR and LM are both distributed as chi2 with degrees of freedom equalling the number of 
restrictions under the null hypothesis. 
Asterisks indicate the significance levels (* = S %, ** = 1 %) of reported test statistics for 
Ljung-Box, LR, LM, t-test for mean and Bera-Jarque. For skewness and kurtosis, they 
indicate significance of deviation from zero and three, respectively. 
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Finally, the estimation results from the' model with the conditional 
Student's t distribution of residuals are reported in Table 7.6. As noted 
before, the difference between the normal and Student's t distributions 
is that applying the latter allows for thicker tails. 

According to the estimates, the inverse of the degrees of freedom 
parameter, l/d, deviates significantly from zero in the whole I sample 
and in the first period, indicating that in these cases a statlstically 
thicker-tailed distribution fits better than a normal distribution. The 
likelihood ratio tests also show the same result. The estimate for the 
number of degrees of freedom is 4.79 in the first period, in which the 
model passed the likelihood ratio test against the normal distribution 
model, and 7.85 in the second, in which it did not pass. 

In order to compare the observed distribution of the conditional 
residuals with the standardized Student's t distribution, Kolmogorov
Smirnov7 test statistics were computed. These statistics were 
statistica1ly insignificant in both separate estimation periods. However, 
because the inverse of the degrees of freedom parameter did not 
deviate from zero in the latter period, a reasonable conc1usion is that 
the sample size is in that case so small that we cannot discriminate 
between these alternative distributions with these tests. The values of 
the observed coefficients of kurtosis are somewhat smaller than the 
theoretical values implied by degrees of freedom estimates, but not 
alarmingly. If the implied theoretical values, 3 (d-2)/(d-4), are 
computed using a 1/d ± one standard deviation, the observed values 
are well within that range. 

The residuals are c1ean from serial correlation in the first 
estimation period, but not in the second period or in the whole sample. 
There are no signs of further heteroscedasticity. As in previous 
models, restricting the conditional variance to a constant yields highly 
significant likelihood ratio test statistics. Also, the LR tests are 
supportive of the enhanced version of the conditional variance 
equation, in which the squared lagged level of liquidity is present. 

The overall picture that emerges from these experiments with 
Student's t distribution is that permitting thicker tails does not change 
the estimates very much. This finding is not uncommon (see, for 
example, Spanos, 1991). The model is, of course, statistically better, 
because it is in better accordance with the assumptions. But especially 
the parameter estimates of the demand-for-reserves equations are 
practically unchanged. 

7 The Kolmogorov-Smirnov test statistie is maxIFn(x)-F(x)l, where Fn is the cumulative 
sample distribution function and F the assumed cumulative distribution function. 
Asymptotic formulas for the critical values of the 5 % and 1 % levels are 1.36/VN and 
1.63/VN, respectively. (Lindgren, 1969, p. 486). 
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Table 7.6 GARCH(l,l)-in mean, Student's t, Wt~l in the 
conditional variance equation 

Sample AlI First Second 
obs. period period 

Mean equation 
b1 1.55 (.095) 2.02 (.169) 2.52 (.325) 
b2 1.06 (.009) 1.04 (.009) 1.12 (.018) 

Variance equation 
cO .061 (.010) .048 (.009) .045 (.026) 
e1 .222 (.068) .070 (.047) .236 (.126) 
e2 .096 (.080) .372 (.204) 
e3 .127 (.027) .098 (.020) .069 (.041) 

l/d .161 (.050) .201 (.065) .127 (.108) 

LogL -294.62 -74.99 -96.29 
R2: .733 .705 .785 
SSR: 105.80 33.27 32.55 

Ljung-Box(5) 
LB(5) 131.6** 6.86 27.91 ** 
LB2(5) 5.11 6.77 3.30 

LB(25 209.8** 36.5 61.2** n 
LB2(25) 38.4* 20.3 23.1 

t-statisties 
for mean(u)=O 3.3** 1.63 0.11 

Skewness .11 0.61 -0.01 
Kurtosis 4.31 5.37 3.82 

v 6.20 4.79 7.85 
3 (v-2)/(v-4) 5.72 9.17 4.56 
Kolmogorov-Smimov .075** .063 .041 

LR: 

2 ht =eonst. 296.0** 163.4** 62.8** 

2 e3wt- 1 =0 70.8** 66.3** 18.3** 

l/d=O 18.9** 19.0** 2.4 

Estimated model wt =b1h/k(log(b2rl t -öt) -log(öt -rd~) +ut 

h 2 2 2 2 
t =co +C1Ut-l +c2ht - 1 +C3W t- 1· 

2 ut - Student 's t(O,h t ,v) 

Standard errors of the estimatesare in parentheses. 
LR = likelihood ratio test statistics. 
LM = Lagrange multiplier test statistics. 
LR and iM are both distrlbuted as ehi2 with degrees of freedom equalling the number of 
restrletions under the nuIl hypothesis. 
Asterisks indicate the significance levels (* = 5 %, ** = 1 %) of reported test statistics for 
Ljung-Box, LR, iM, the t-test for mean and Kolmogorov-Smimov. 
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Figure 7.4 

Figure 7.5 
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Figures 7.4 and 7.5 contain fitted values from the enhanced GARCH
in mean model with the standardized Student's t distribution in the 
two sub-samples. In the first period, the fit seems to be good; the 
model now explains peak values as wel1. In the second period, the 
model still fails systematically during some episodes. In particular, 
after the revaluation of the currency in March 1989, overnight interest 
rates were for a month at a higher level than the model predicts as 
being consistent with observed levels of liquidio/. 

7.6 Conc1uding remarks 

This chapter investigated an empirical demand-for-reserves model with 
time-dependent conditional variance. Because the discussion was 
mainly concemed with econometric difficulties, the economics 
involved deserves some additional comments. 

The choice of the empirical approach was based on the notion 
that liquidity management theory emphasizes uncertainty, which in 
empirical work can be duly accounted for in dynamic heteroscedasticity 
models that allow for a changing conditional variance. Particularly in 
the short-term money market, a constant degree of uncertainty must be 
considered an extremely special case. In ARCH and GARCH models, 
the probabilistic information on new innovations is conditional on 
information that is available at any given time. When new innovations 
emerge, the information set and conditional expectations are updated 
accordingly. 

In the empirica1 model that was constructed, changes in conditional 
variance affect the slope of the demand-for-reserves schedule. At times, 
when the volatility is low and there is little uncertainty about the actual 
value of liquidity, the elasticity of the demand-for-reserves with respect 
to market interest rates is higher than in more uncertain periods. 
Therefore, the main problem with heteroscedasticity in this model is not 
that it makes parameter estimates inefficient or the variance estimate 
biased. Rather, a far more serious problem is that omitting the effects of 
changing variance gives the wrong picture of the effects of liquidity 
shocks on borrowing and on equilibrium interest rates. In particular, 
because intervention by the central bank is actually a liquidity shock, 
the heteroscedasticity model implies that the impact of intervention 
diminishes when volatility in the market increases. 

When implementing the empirical model, it was found that constant 
variance applications do not adequately describe the data. Models with 
time-dependent conditional variance performed much better, although 
not completely satisfactorily. It seems evident that this model is also 
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rejected if the estimation period is chosen arbitrarily from the period 
during which the overnight market has existed in Finland But it is 
likely that the functioning of the market has been influenced by 
developments that are beyond the scope of this simple model. The point 
emphasizedhere is that if some additional considerations are taken into 
account in choosing the estimation period, then the conditional 
heteroscedasticity model survives. 

It was also found that dealing with some of the empirica1 issues 
that are commonly encountered in GARCH applications, such as 
asymmetric effects of new innovations on volatility and the thick-tailed 
distribution of conditional residuals, did improve the statistica1 properties 
of the model. From the point of view of economics, there is not very 
much that can be said about the choice of the distribution. The normal 
distribution would probably be the first choice for most because of the 
central limit theorem. However, there are no grounds to discriminate a 
priori against alternatives in this application. Thick-tailed distributions 
have often been found to be appropriate in the context of financial 
markets time series. It is not dear why that is so in this case, but it is 
well known that the central limit theorem is not valid if the number of 
underlying random variables is too small, or' if, loosely speaking, the 
contribution of any single random variable is very large relative to the 
whole. Only a few banks have access to the ca11 money facility in 
Finland, and variation ill liquidity is likely to be dominated by 
government finances and the central bank's intervention. In these 
circumstances it is not surprising that liquidity shocks are found to be 
non-normally distributed. 

The model was made to indude asymmetric responses to shocks 
by adding the squared lagged level of liquidity to the specification of 
the conditional variance. This formulation implies that conditional 
variance increases if the previous day's liquidity is either very tight or 
very plentiful. It was also shown that this effect can be theoretically 
justified with liquidity control activities. In the theoretical model with 
liquidity control expenditure, variance increases with the size of the 
bank's net position, because less resources are used for liquidity 
control when uncertainty concerning the ca11 money interest rate 
diminishes. If a bank knows for certain on which side it will be, it is 
not willing to pay for liquidity control, but instead utilizes the 
overnight market. If the bank is uncertain about the result, then it will 
use some resources in order to reduce variance. Because uncertainty 
concerning the result diminishes as the size of the position increases, 
large positions are assodated with low expenditure on liquidity control 
and high values of variance. The Bame property was incorporated in 
the empirical model by adding the squared lagged level of liquidity to 
the equation for conditional variance. 
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8 Summary and Conclusions 

This study has investigated the determination of overnight interest 
rates and of banks' overnight borrowing from the central bank in 
Finland both theoretically and empirically. The approach employed 
was to study this subject in a liquidity management theory framework 
and to use econometric models of conditional heteroscedasticity to 
implement the theoretical model empirically. Thus, the theoretical 
framework emphasizes the effects of uncertainty and the empirical 
method is such that it allows for a changing degree of uncertainty. 

In our application of liquidity management theory, banks' demand 
for short-term liquidity in the interbank overnight market was 
explainedby the opportunity costs of liquidity, defined by the central 
bank's call money facility. In terms of the standard reserve market 
model, the call money facility in Finland can be descrlbed as a 
continuous, stepwise reserve supply function, which is defined for both 
negative and positive levels of reserves. Based on reasoning that, 
during the banking day, the banks have only a forecast available on 
their final liquidity position, the costs and returns related to overnight 
trade were specified as random variables. Because of liquidity 
uncertainty, the resulting equilibrium market interest rate locus 
becomes continuous and smooth, even though the costs of call money 
from the central bank are defined by a less well-behaved interest rate 
schedule. Since market interest rates are known to deviate from the 
central bank's stepwise interest rate schedule in Finland, a smooth 
relationship is obviously more realistic. The analysis illustrated that 
this evidence on interest rates does not need to be in contradiction 
with the standard supply - demand framework of reserve markets. 

The benchmark case in the analysis was a model in which the 
central bank's supply mechanism of (net) reserves was characterized 
by separate interest rates on call money credits and call money 
deposits. The equilibrium overnight market interest rate schedule was 
shown to be a dec1ining function of banks' free reserves, 
asymptotically approaching official interest rates. The steepness of the 
schedule depended on the degree of uncertainty. When the variance of 
reserves increases, the schedule becomes flatter, which implies weaker 
responses of interest rates to changes in liquidity. On the other hand, 
with perfect information (zero variance), the interest rate schedule 
collapses to the central bank's supply function. When the interest rate 
schedule is inverted, the equation defines banks' demand for reserves, 
Le. it shows the level of reserves that is optimal for banks at given 
leve1s of the market interest rate and the central bank's interest rates. 
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In this model, the demand for reserves is more appropriately 
understood as willingness to hold a certain liquidity position, positive 
or negative, rather than eliminate it by buying or selling at interest 
rates that are the same as the central bank's interest rates. Without 
uncertainty, a bank with surplus funds would always be ready to sell if 
the market interest rate is just higher than the central bank's call 
money deposit rate and a bank with a deficit would always offer to 
purchase funds if the market interest rate is less that the central bank's 
call money len ding rate. 

Typica1ly, the facilities used by central banks for providing short
term liquidity to banks involvemore complicated borrowing terms 
than those described in the benchmark model. Two additional types of 
instrument were considered as applications. First, the effects of a quota 
system were illustrated in an example where an additional penalty rate 
was applied to borrowing in excess of certain fixed amount. Because 
penalty rates based on quantitative quotas. are simply additional interest 
rate steps in the supply schedule, the result was an equilibrium interest 
rate schedule consisting of two adjoining basic model solutions. In the 
basic model, the expression for the market interest rate was a 
probability-weighted average of the central bank's interest rates, and 
adding one more step to the supply schedule yielded another 
probability-weighted interest rate term in the solution. Obviously, any 
number of interest rate steps can be introduced into the interest rate 
equation because of this simple additive functional form. But, at the 
same time, approximating the supply schedule with a linear function 
becomes more and more tempting as the distances between the steps 
get shorter (relative to variance). The second extension of the model 
towards more complicated supply schedules concemed time-dependent 
borrowing costs. The model becomes dynamic if previous borrowing 
leads to a penalty cost being charged on present borrowing. The result 
from a very simple example was that two additional probability terms 
appeared in the solution of the market interest rate. One was the 
probability that borrowing today is penalized because of past 
borrowing and the other the effect of today's borrowing on the 
probability that penalties will be encountered in the future. 

As a further modification, the variance of profits was inc1uded in 
the objectives of the maximizing bank. This implies risk aversion, and 
was shown to lead to a positive risk premium in the interest rate. The 
expected variance of profits diminishes as the absolute size of the 
reserve position increases, and consequently the risk premium also 
approaches zero when positions are large. The risk premium was, of 
course, a function of the variance of reserves. 
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In these applications of the model it was assumed that the bank 
takes the degree of uncertainty as given and adjusts the demand for 
net borrowing as a response to changes in variance. It was argued that 
this is unlikely to be an exhaustive description of borrowing 
behaviour; particularly if one looks at the changes in borrowing 
behaviour that occurred when the interest rate step was first 
introduced, it seems obvious that banks are able to affect the variance 
as well. Even though the study is concemed mainly with very short
term behaviour, it is not evident that liquidity control activities should 
be by-passed in the analysis. Some liquidity control measures might be 
related to long-term developments, but others might be relevant in the 
short term, too. In our static .theoretical analysis, liquidity control was 
defined as resources devoted to activities that reduce the variance of 
liquidity shocks. After making that assumption, the literature on 
liquidity management with information costs could be applied to our 
model. 

Inc1uding liquidity control activities in the analysis endogenizes 
the variance and the model becomes a two-equation system with 
equations for the level of reserves and for the variance of reserves. 
This simultaneous mode! presumes that the bank adjusts both its 
demand for liquidity and expenditure on liquidity control when faced 
with uncertainty concerning the interest rate that is applied to its final 
liquidity position. As with exogenous variance, the solution collapses 
to the central bank's supply schedule if there is no uncertainty. The 
model separates conveniently, so that the reserve equation tums out to 
be exactly the same as with exogenous variance. The other equation is 
the equilibrium condition for expenditure on liquidity control, from 
which variance is determined. Because it is not specified explicitly 
how spending resource on liquidity control affects variance, the 
resulting variance equation is also implicit. But it is shown that the 
optimal variance depends on the same variables as those that 
determine the demand for reserves; Le. the central bank's interest rates 
and the market interest rate. Under certain conditions, optimal 
standardized reserves can be express ed as a function of the 'upper 
spread' relative to the 'lower spread', where the upper and lower 
spreads are the distances between the market interest rate and the 
discount window interest rate. The corresponding variance then also 
depends on the upper and lower spreads, though the absolute size of 
the total spread matters, too. Thus the optimal variance is affected by 
the size of the interest rate step in the supply schedule, while optimal 
standardized reserves depend only on the location of the market 
interest rate relative to this step. It was also shown that, under some 
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specific assumptions, optimal variance is proportional to the square of 
optimal reserves. 

The analysis of the theoretical model suggests some implications 
for the choice of the intermediate target of monetary policy. An 
essential feature of the analysis as regards the methods of monetary 
control is that it focuses on the instability of the borrowing - interest 
rate relationship. In practice, borrowing is the operational target of 
monetary policy if the intermediate target is set in terms of quantities, 
because it is the only indicator of the changes in the level of banks' 
reserves the central bank can constantly observe. Tms analysis implies 
that targeting the level of borrawing would probably result in 
undesired volatility in interest rates because of the instability of the 
borrowing function. Interest rate changes would be needed merely to 
compensate for the changes in the demand for borrowing that are 
caused by the changes in volatility resulting from liquidity shocks. 

In addition to liquidity shocks and changes in interest rates, a third 
source of borrowing variability is identified in the analysis: changes in 
the costs of liquidity contral, or in the effectiveness of liquidity contral 
measures. Tms source of variability is c1early beyond the control of 
the monetary authority as far as fine-tuning is concerned. The 
argument we wish to make is that the relationship between borrowing 
and interest rates might be unstable because of this factor as well, and 
consequently, following either an interest rate target or a reserve target 
in the conduct of monetary policy operations would yield different 
outcomes. Tms, too, rnight be seen as an argument in favour of 
targeting interest rates rather than fixing the level of borrowing. Given 
that the borrowing schedule is subject to noise because of liquidity 
control activities, targeting the level of borrowing would result in 
volatility in interest rates. 

Another, c10sely related, point highlighted in the analysis is that 
the policies of the central bank affect the borrawing-interest rate 
relationship. Clearly, if the policy of the central bank is to smooth 
liquidity shocks, then the borrowing function becomes steeper because 
the variance of borrowing is reduced. The smaller the variance, the 
less reserves (in absolute terms) the banks wouldhold at a given level 
of interest rates and the larger the interest rate changes that would 
follow from shocks. The model suggests that it is possiblethat a 
policy of actively smoothing borrowing might actually turn out to be 
counterproductive as the banks' demand for borrowing becomes more 
responsive to changes in interest rates. 

In the empirical section of the study, the model was fitted to data 
from the overnight market and call money facility from March 1987 to 
June 1989. Theoretically, it is c1ear that borrowing is the endogenous 
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variable in the model, so that the equation should be estimated with 
borrowing variable on the left-hand side. But applications of the model 
with borrowing quotas and risk aversion yielded expressions for the 
interest rate that could not be inverted to form borrowing equations. 
These are both variables that potentially might have had influence on 
equilibrium interest rates during the period under investigation. It was 
therefore decided to start the empirical investigation with an interest 
rate specification in which these additional features could be inc1uded 
without complications. However, neither the risk premium nor quotas 
had any explanatory power with respect to interest rates. Although this 
mode1 was obviously incorrectly specified, it was determined that 
these variables can be exc1uded from further empirical investigation. 

It was possible to explore the implications of liquidity 
management theory much more fully in estimations of the borrowing 
equation. Because the variance of reserves determines the steepness of 
the borrowing function, conditional heteroscedasticity techiques were 
applied. Adopting time-dependent conditional variance means that the 
relationship between the demand for borrowing and interest rates is 
made dependent on the perceived volatility in liquidity. The demand 
schedule becomes flatter with respect to interest rates in times of large 
changes in liquidity and steeper when changes are smal1. This means 
that the more volatile the reserves are, the more sizeable is the 
liquidity shock needed to cause a given reaction in interest rates. This 
feature of the empirical model follows directly from liquidity 
management theory. The empirical section of the study was largely 
devoted to investigating - applying GARCH methodology - how this 
process should actually be described in estimations. Of course, the 
most important conc1usion is that the evidence does not support the 
assumption that it should be described as being constant over time. 

The implications of the theory concerning the specification of the 
demand-for-borrowing equation, or mean equation, are considerably 
stronger than those concerning the conditional variance equation. The 
conditional variance equation describes expectations formation, about 
which we actually did not have any prior knowledge. The usual 
solution is to apply autoregressive equations using various functional 
forms of specification and to choose the one that is statistically most 
promising. In a number of studies, autoregressive specifications have 
been supplemented with some additional exogenous variables which 
can be thought to in the information set. Following that approach, we 
inc1uded the square of (lagged) reserves in the conditional variance 
equation. The choice was also justified by theoretical analysis of the 
determinants of optimal variance in an endogenous variance version of 
the liquidity management model. A set of other variables that are 
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c10sely related to developments in the money market was also 
considered, but each was found to be unsatisfactory. Another loose 
end in the specification of our GARCH model was the distribution of 
conditional residuals. In order to account for thick tails, Student's t 
distribution was employed instead of the normal distribution in an 
additional application. 

These modifications were found to be reasonable on statistical 
grounds, but they also carry a certain economic interpretation. The 
specification of the conditional variance equation implies asymmetric 
responses to shocks, because the effect of a new innovation depends 
on the level of liquidity. Asymmetricity has been found in several 
other studies, too. In this model the interpretation is that banks expect 
large changes in liquidity when the observed level of liquidity is 
especially high or especially low. But our analysis of the theoretical 
two-equation model suggests that the underlying reason might be that 
the variance and the mean are, in fact, determined simultaneously. The 
interpretation that can be given to empirical results concerning the 
distribution is more vague; it merely implies that the liquidity shocks 
do not consist of a large number of independent random variables. 
Further conc1usions cannot be drawn, but we note that the evidence 
does not, at least, contradict the interpretation that liquidity shocks are 
caused mainly by the central bank's intervention and by changes in 
government cash funds. 

It turns out that unless the relatively inflexible specification of the 
demand equation is somewhat relaxed with an empirically oriented 
AR(l) correction, the model performs statistically adequately only in a 
part of the whole estimation period. The reluctance to accept the 
AR(l) model derives from the suspicion that a technical correction for 
dynamic misspecification might conceal genuine problems concerning 
the applicability of the theory to this particular data and distract 
attention from the true limitations of the model. Theadopted model 
describes arbitrage behaviour in competitive markets, and it was noted 
that the overnight" market in Finland has even collapsed during some 
episodes. Against this background, it is not unexpected that the model 
is found satisfactory in only a limited sample. 

Finally, some general remarks concerning the analysis should be 
pointed out. Our experience was that, by using conditional 
heteroscedasticity techniques, a straightforward application of a long
standing theory of inventory optimization under stochastic demand 
could be employed empirically in a much richer way in modelling the 
demand for reserves. By adopting this strategy, we were able to 
implement empirically" the key explanation that this theory provides for 
optimal demand, i.e. the variability of the underlying variable. Further, 
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this theory provides a good subject for applying this methodology, 
because the effects of non-constant variance are derived from the 
theory. 

Another remark relates to the empirical description of the effects 
of the central bank's intervention and of the effects of liquidity 
changes on short-term interest rates in general. It is probably a 
common consensus that short-term interest rates and banks' borrowing 
are c10sely related with each other and that the central bank's 
intervention, being liquidity shocks, affect both of these. At the same 
time, most would agree that precise statistical estimates concerning the 
dependencies are hard to present, and, in particular, that the effect of 
intervention on interest rates varies. In this study we have analyzed the 
reasons for the observed instability of the borrowing-interest rate 
relationship and found that it may very well be explained by the 
implications of liquidity uncertainty for banks' borrowing behaviour. 
According to this study, conditional heteroscedasticity models do seem 
to provide a framework in which these processes can be consistently 
described, maybe not for actuaI forecasting purposes, but anyway for 
understanding the behaviour of the market. 
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Appendix 1. Risk premium 

In the case of a risk averse bank, the maximization problem is defined 
as 

max E(U) =E(n) -~M'Var(n), 
Q 

where 

Var(n) =E(n-E(n)? 

=E[w'rd + (rl-rd)Y -öQ - W'rd -(rl-rd)E(Y) +öQY 

= E{u Td + (rl-rd)[EY -E(Y)]}2 

=E{u 2rd 2 +2rd(rl-rd)u[Y -EY] + (rl-rd)2[y -Ey]2} 

= a 2rd 2 + 2rd(rl-rd)E( u 'Y) + (rl-rd)2Var (Y). 

(A1.1) 

(A1.2) 

Next, we define a random variable Z such that Z = Y-W = min(u,-W). 
Subtracting a constant will not affect variance or covariance, so A1.2 
can be written as 

Var(n) =a2rd 2 +2(rl-rd)[rd'E(Z'U) + (rl-rd)Var(Z)] 
(Al.3) 

= a 2rd 2 + 2( rl-rd){id 'E(Z 'U) + (rl-rd)[E(Z 2) _(EZ)2]}, 

h Z . ( W) { u, if u<-W 
w ere = mm u,- = -W, if u):-W . 

In order to maximize the objective function, it is therefore necessary to 
differentatiate E(Z'u), E(Z2) and (EZi with respect to Q. These 
expressions are derived below, assuming that u's distribution is 
defined by a general symmetric cumulative distribution function F 
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E(u'Z) =F'E(u 21u< -W) -(l-F)W'E(u::::-W) 

-w 00 

=F I u 2f(u) du -(l-F)W LUf(U) du 
F l-F 

-00 -

-w 
aE(u'Z) =-W 2f(w)+ IUf(U)dU+W 2f(W) 

aQ 
-00 

= -(l-F)E(u lu::::-w) 

E(Z2) =F'E(u 2Iu<-W) +(1-F)W 2 

aE(Z 2) =2W(1-F) 
aQ 

E(Z) =F'E(ulu<-W) -(l-F)W 

a(EZ)2 
----,-::....:..- = -2E(Z)(1-F). 

aQ 

The derivative of the variance term in the expected profits equation is 
then found by substitution 

a( -~MVar(1t)) = -M(rl-rd)(l-F){-rdE(u lu::::-W) + (rl-rd)(W+EZ)} 
aQ 

=M(rl-rd)(l-F)trd[E(u+Wlu::::-W) + EZ] -rl'(W + EZ)} 

=M(rl-rd)(l-F)trd[E(u + Wlu::::-W) -(l-F)E(u + Wlu::::-W)] 

-rl'F'E(u + W lu<-W)} 

=M(rl-rd)(l-F)Ftrd'E(u + Wlu::::-W) -rl'E(u + Wlu<-W)}. 

If u is normally distributed, the premia can also be written in explicit 
form 

M(rl-rd)(l-<I»<I>trd -[W + acj> ] -rl'[W - acj>]}. (AlA) 
l-<I> <I> 
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Appendix 2. Comparative statics of the 
liquidity control model 

Following Baltensberger and Milde (1976), comparative statics results 
are derived from the differentiated form of the system of first order 
conditions 

o dm 

= 
o alI s/a 1 dq 

(A2.1) 

-m 

ds + dÖ'a/m - drD'a/m + drD'a l f(v+m)g(v)dv 
-00 

-m 

-drL'a 1 f (v+m)g(v)dv 
-00 

Applying Cramer's rule yields the required expressions. In the 
following, 1 is the matrix of second derivatives. The notation lyx is 
used for the appropriate modification of 1 needed to solve the effect of 
x on y. First, the effects on q are: 

1 1 1 = -(rL -rD)g( -m)a II s/a 1 > 0 (~.2) 

1
1 1 = -(r -r )g(-m) ==> 1

1
qsl = dq = ~ < 0 

qs L D 111 ds alI s 
(A2.3) 

(A2.4) 
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-m 

IJqrLI = (rL -rD)g(-m)a' f (m+v)g(v)dv 
-00 , 

-m (A2.5) 
-(a '? f (m+v)g(v)dv 

~dq= -00 ~O 
drL a"s 

-m 

I Jqrn I = (rL -rD)g(-m){a'm - a' L (m+v)g(v)dv} 

-m (A2.6) 
(a ')2( -m+ f (m+v)g(v)dv) 

~ dq = ____ -00 _____ :::: O. 
drD a"s 

The impact of a wider interest rate spread on liquidity control expendi
ture is: 

d d ( ')2 -m ~ - q = - a {f (m +v)g(v+m)dv - m 
drL drD a" s -00 

-m 

+ f (m +v)g(v)dv} (A2.7) 
-00 

( ')2 -m 
= - a {m(2G(-m)-1) + 2fvg(v)dv} > O. 

a"s -00 

The effects on m are: 

dm 
IJ I=O~-=O 

ms ds 
(A2.8) 

" 
dm 1 IJ öl = a s/a ~ - = - < 0 

m dl) (rL -rD)g( -m) 
(A2.9) 
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I

J 1 = -ali s/aG(-m) => dm = G(-m) > 0 
mrL drL (r

L 
-rn)g( -m) 

(A2.10) 

1 1 

II dm 1-G(-m) J = a s/a(G(-m)-l) => - = > 0 
mrD drn (rL -rn)g( -m) 

(A2.11) 

Finally, effects on W: 

m 2(a ')3 
+ < 0 (A2.12) 

a"s 

= __ G....;..( -_m....;..)_ 
(rL -rn)g( -m) 

m(a ')3-m 

----'-----'--- f (m +v)g(v)dv 
a"s -00 

1-G(-m) m(a ')3 
---,---,--'a + ----'-----'--- {-m 
(rL -rn)g( -m) a" s 

-m 

+ f (m +v)g(v)dv}. 
-00 

The effect of a wider spread on reserves is: 

dW dW = 2G( -:p.t)-1 

drL drn (rL -rn)g(-m) 

-m 

+ 2 f vg(v)dv} 
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Appendix 3. Additional estimation results 
from applications with constant 
conditional variance 

This appendix eontains the additional estimation results from the 
eonstant varianee applieation of the model whieh were referred to in 
the text. Tables A3.1, A3.2 and A3.3 report the results from the basie 
interest rate model, the model with a risk premium and the model with 
a borrowing quota, respeetively. The eonc1usion is that the estimates of 
the basie equation are not ehanged by these two modifieations and that 
the eoefficients of the additional varlables do not deviate signifieantly 
from zero. 

Table A3.4. eontains the results from week-day estimations of the 
borrowing funetion under the assumption that the eonditional varianee 
is eonstant. As was noted in the text, the main result of these estima
tions is that serlal eorrelation largely disappears when only one obser
vation from eaeh week is used. 

Table A3.1. Interest rate model, OLS 

Sample AlI First Second 
obs. period period 

Coefficient 

a1 0.44 (.048) 2.76 (.376) 0.76 (.136) 
a2 0.84 (.066) 1.08 (.006) 1.33 (.177) 
a3 1.12 (.051) 0.96 (.009) 0.99 (.017) 

R2 .619 .745 .687 
SSR 380.7 49.2 208.3 
SEE .809 .418 1.10 
Durbin-Watson .761 1.66 0.91 
Observations 584 284 176 

Wald test statistics for parameter restrictions: 

a2=a3=1 6.42* 193.4** 4.56 
a2=1 6.31* 189.0** 3.49 
a3=1 5.09* 21.2** 0.57 

Estimated equation was: 

(\ = a2rdt <1>( a1 w J + a3rl t <1>( -a1 W t) + et' 
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Table A3.2. Interest rate model with a risk premium, OLS 

Sample AlI First 
obs. period 

Coefficient 

a1 0.46 (.040) 3.42 (.787) 
a2 0.89 (.048) 1.08 (.006) 
a3 1.03 (.058) 1.21 (.371) 
a4 0.01 (.005) -0.06 (.082) 

R2 .624 .784 
SSR 375.2 48.7 
SEE .804 .417 
Durbin-Watson .763 1.69 

The estimated equation was: 

c\ = a2rdt <1>( a1 w t) + a3rlt <1>( -a1 w t) 

+ airlt-rdt?{0(alWt) ( rlt + <1>(-a1wt)) rlt-rdt 

-a1wt <1>( -a1wt)<1>(a1w J} + et' 

Second 
period 

0.77 (.146) 
1.69 (.193) 
0.41 (.533) 
0.04 (.035) 

.692 
204.9 

1.09 
.931 

Table A3.3. Interest rate model with a quota, OLS 

Sample AlI First 
obs. period 

Coefficient 

a1 0.45 (.038) 2.76 
a2 0.84 (.055) 1.08 
a3 1.11 (.052) 0.96 
a4 -.80 (.200) -573.0 

R2 .620 
SSR 380.0 
SEE .809 
Durbin-Watson .759 

The estimated equation was: 

c\ = a2rdt <1>( a1 w t) + a3rl/I>( -a1 w J 
+airst -rlJ<1>(a1(Kt-w J) + et' 
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.745 
49.2 

.419 
1.66 

Second 
period 

(.375) 0.85 (.154) 
(.006) 1.41 (.160) 
(.010) 0.96 (.019) 
(1367) 1.81 (1.39) 

.687 
208.0 

1.10 
.920 



Table A3.4. Week-day estimations of the borrowing function, ML 

Monday Tuesday Wednesday Thursday Friday 

b1 1.79 (.167) 1.62 (.168) 1.54 (.158) 1.50 (.184) 1.58 (.168) 
b2 1.06 (.011) 1.05 (.010) 1.01 (.003) 1.04 (.015) 1.00 (.012) 

Co .269 (.030) .297 (.035) .259 (.028) .306 (.039) .231 (.022) 

LogL -89.3 -94.9 -86.6 -%.7 -80.1 
R2 .621 .566 .623 .544 .669 
SSR 31.5 34.7 30.1 35.8 26.9 

Ljung-Box(5) 

1\ 8.77 7.38 8.28 18.92 21.53 

2 ut 1.47 1.03 1.74 1.81 2.49 

D-W 1.56 1.60 1.42 1.43 1.32 

NOBS 117 117 117 117 117 

~ö 
Tt t 

8.% 8.83 8.79 8.74 8.73 

1 
442 443 391 365 204** ..:.Lwt T t 

Asterisks indicate that the mean deviates significally from the mean of the obselVations from the rest of the week 
f---" (assurning normality and equal variances). UJ 
f---" 



Appendix 4. Maximum likelihaad estimatian 
af a nanlinear GARCH-in mean 
made! 

Maximum likelihood estimation of a GARCH(p,q) model is considered 
here under the assumption that the random variable u follows a normal 
distribution. The symbol e = (W,'L') is used to denote the vector of all 
exogenous parameters, consisting of a vector of mean equation para
meters ~ and a vectoi: of variance equation parameters 'L. The log
likelihood functioJ? of the model, L(e), can then be written as follows: 

(A3.1) 

where 2 I 2 2 2 2 
ht =Zt 'L=co +C1ut-1 + ... +CqUt-q +a1ht-1 + +aqht_p 

u; =(wt - htX/ ~l 

The task is to find the vector of parameters that maximizes the value of 
the log-likelihood function. A necessary condition for maximum is that 
the derivatives with respect to the parameters equal zero. Because of the 
nonlinear structure of the mean equation, analytiCal expressions for the 
derivatives are also derived. These derivatives are of following form: 

I 
aLt 1 -4 aht {2 2 I} ut aXt ~ 
-=--h - ht -ut -htutXt ~ +---. 
ae 2 ae ht ae 

(A3.2) 

These expressions for the derivatives differ only slightly from those of 
a linear ARCH-M model (Engle, Lilien and Robins, 1987, p. 398). As 
always in ARCH and GARCH models, the derivatives are recursive. 
This is seen more clearly after these expressions are elaborated alittie 
further. Bach derivative inc1udes the derivative of the conditional 
variance with respect to the parameters. First, with respect to the 
parameters of the variance equation, we have 

(A3.3) 

132 



Accordingly, the derivatives with respect to the parameters of the 
mean equation are 

(A3.4) 

Except for the last term in (A3.4),. the above expressions are the same 
as in a GARCH model without a mean effect (see Bollerslev, 1986, p. 
316). They are highly recursive since the derivatives of the variance 
equation depend on the derivatives of the lagged variances and lagged 
residuals, which, in turn, both depend on the derivatives of the lagged 
variances. Engle et al. have applied both numerical and analytical 
derivatives, and they recommend the use of the former because they 
allow the specification of the model to be changed flexibly. (Engle, 
Lilien and Robins, 1987, p. 396). 

The estimation method that is usually applied to complicated 
maximum likelihood problems is the BHHH algorithm (Berndt, Hall, 
Hall and Hausman, 1974). It has the important advantage that it only 
uses the first derivatives of the log-likelihood function. The BHHH 
algorithm was also used for iterations in the estimations carried out 
here and the derivatives were evaluated numerically. Advanced 
statistical program packages nowadays inc1ude maximization 
algorithms for functions of general form and also the possibility. to 
evaluate derivatives recursively. Much of the estimation work in this 
study was carried out using standard procedures of the RATS 
program. However, relying solely on standard packages would limit 
the possibilites for diagnostic testing, or in some cases even the 
specification of the model. Performing tests is much easier if all the 
intermediate results from the estimation procedure are available, which 
is generally not the case with standard procedures. In particular, LM 
tests for specification of the model can be computed from the matrix 
of first derivatives (matrix S below). 

Because of the lag structure of the model, an assumption has to be 
made about the values of residuals prior to the estimation period. Here 
they were set according to the expected values of residuals in the 
model, i.e. to zero. Strictly speaking, the estimation results are 
conditional on the values chosen for pre-sample residuals. 

The steps of the estimation procedure can be summarized as 
follows (Engle, Lilien and Robins, 1987): 
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1. Starting from a given vector of parameters, eI, eompute the value 
of the log-likelihood funetion L(e1). This involves the evaluation 
of the residual term and the eonditional variance term. These ean 
be eomputed reeursively from their equations, assuming that pre
sample residuals are zero. 

2. Compute the derivative of the log-likelihood funetion with respeet 
to all parameters at eaeh time period and from these form a (T x 
m) matrix S, where T = number of periods and m = number of 
parameters 

dL1(e) ... dL1(e) 

del dem 

s= 

dLT(e) ... dLT(e) 

del dem 

3. The iterations of the Berndt, Hall, Hall, Hausman algorithm (1974) 
are computed using this matrix S. They have shown that there 
always exists constant ei sueh that the iteration 
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pi+1 =pi +e \S ISr1S II, 

where I =unit matrix (Tx1), 

eonverges to a stationary point of the log-likelihood funetion (a 
loeal maximum). Moreover, S'S eonverges to the Hessian of the 
funetion when T goes to infinity. The inverse of this matrix, 
(S'sy\ is a eonsistent estimate of the varianee-eovarianee matrix 
of the parameters (Berndt, Hall, Hall and Hausman, 1974, p. 658). 



Appendix 5. - Estimating a GARCH-in mean 
madel with Student's t 
distribution 

The Student density function is 

(A5.1) 

where m is the location parameter, H is the scale parameter, d is the 
degrees of freedom parameter, d > 0 and r(.) is the gamma function. 
The first two moments of the Student distribution are E(x) = m, for d 
> 1, and E(x2

) = R 1d/(d-2), for d > 2. 
In this particular application, the moments of the conditional 

distribution are E(u;IIt_1) =ht
2 and E(utllt-l) =0. Using these; the 

conditional density function of the model can be written in 
standardized form as 

(A5.2) 

d>2. 

The expression in (AS.2) is the same as in Bollerslev (1987). The log
likelihood function of the model is 
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L=LL' t' 
t 

illd

+

1 

( 2 1 2 1 1 2 d+1 Ut =log --log((d-2)n) --loght +-log 1 + . 
r(~) 2 2 2 ht

2
(d-2) 

This expression for the log-likelihood function is stilI computationally 
inconvenient because its use would require evaluating values of the 
gamma function. In order to circumvent this, we use Stirling's formula 
(see Kendall and Stuart, 1958, p. 81), which states that 

log(r(p» =(p- ~)logp -p - ~ 10g(2n) + R(p), 

where R(P) is a cel1ain polynomial of p of order -(2k-1), k = 1,2, ... 
Reasonable adequacy for our purposes is achieved by taking the first 
three terms of this polynomial1 

R(p) = _1_ _ 1 + 1 
12p 360p3 1260p5 

Using these formulas, the gamma functions in the log-likelihood 
function are expanded into polynomials. The resulting expression can 
be further simplified, so that fina1ly the log-likelihood function is not 
computationa1ly much more demanding than the corresponding 
function under norma1ly distributed errors 

d ( d + 1) 1 ( d ) 1 1 2 d + 1 ( ut
2 1 Lt=-log - -h_Iog ----loght --log 1+-

2 d 2 2(d-2)n 2 2 2 ht
2(d-2) 

+~((d+1r1-d -1) -~((d+1r3 -d -3) +~((d+lr5 -d -5). 
12 360 1260 

1 The adequacy of approximation can be checked against theoretically known properties 
of the gamma function (see Cramer 1971). 
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Appendix 6. Modelling the residuals 
as . an AR(l) process 

Test statistics from conditional residuals of the basic GARCH(l,l)-in 
mean model indicate the presence of serlal correlation. To investigate 
the type of serial dependence, autocorrelation and partial 
autocorrelation functions of conditional residuals were ca1culated. 
These functions are plotted in Figures A6.1 and A6.2. 

The plot in Figure A6.1 shows that the partial autocorrelation 
function decays rapidly. By contrast, the decay of the autocorrelation 
function depicted in Figure A6.2 is rather slow and appears to be 
characterlzed by an exponential process. Thepattern of these functions 
implies that the type of serial correlation is indeed AR and not MA or 
a combination of these two processes, ARMA. It also seems that the 
order of the AR process is close to one, indicating that applying the 
first order correction is justified. 

Figure A6.1. Partlal autocorrelation function of conditional 
residuals from the GARCH(l,l)-in mean model: 
the whole estimation period 

1 .oo.-~------------------------------~ 
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Figure A6.2. Autocorrelation function of conditional 
residuals form the GARCH(l,l)-in mean model: 
the whole estimation period 
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0.75 

0.50 

0.25 

0.00 

-0.25 

o 5 1 0 1 5 20 25 

In the case of AR(l), the residuals are thought to be governed by the 
following process: 

(A6.1) 

It is stilI assumed that the innovations of the model, now denoted by 
e, are conditionally normally distributed. Under these assumptions, the 
complete model is 

(A6.2) 

In order to implement these changes in estimation, the likelihood 
function of the model must be modified accordingly. The probabilities 
of the observations wt must be expressed as being conditionaI on the 
previous observation, wt•1, because the previous day's observation 
affects the current day's vaIue. Noting, however, that the probability of 
the first observation is not changed, the probabilities of aIl 
observations can be written as (see Judge, Griffiths, Lutkepohl and 
Lee, 1982, p. 289) 

138 



1 

f(wt Iwt-l ) = (2nh()-Zexp( - ~ht-2e;), (A6.3) 

when t =2, ... ,T. 

The log-likelihood function is 

(A6.4) 

where 

1 1 2 1 2 2 
L l = --log(2n) - -log(hu ) - -Ul /hu ' and 

2 2 1 2 1 

when t =2, ... ,T. 

Results from the estimation of the above model are reported in the 
text in Chapter 7. 
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